Flood Simulation in South Carolina Watersheds Using Different Precipitation Inputs
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Flood Simulation in South Carolina Watersheds Using Different Precipitation Inputs

Filetype[PDF-1.88 MB]



Details:

  • Journal Title:
    Advances in Meteorology
  • Description:
    Flooding induced by extreme rainfall events causes tremendous loss of life and property and infrastructure failure. Accurate representation of precipitation, which has high variation in space and time, is critical to hydrologic model simulations and flood analyses. In this study, we examined responses of differently sized United States Geological Survey (USGS) hydrologic units to heavy precipitation using three different data sets. The first consists of rainfall observed at individual meteorological gauges. The second uses the National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC) 4 km gridded radar-estimated precipitation (GRIB) Stage IV data. The third one derives from the method we developed that blends gauge data with the spatial coverage of the Parameter-elevation Relationships on Independent Slopes Model (PRISM) data. We examined how two watersheds in South Carolina respond to the three different representations of heavy rainfall, using the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) developed by the U.S. Army Corps of Engineers. We found that the latter two precipitation inputs that consider spatial representation of rainfall yielded similar performance and improved simulated streamflow as compared to simulation using rainfall observed at individual meteorological gauges. The method we developed overcomes the spatial sparsity of rain gauges required for interpolation and extends availability of precipitation surfaces. Our study advances the understanding of advantages and limitations of different precipitation products for flood simulation.
  • Source:
    Advances in Meteorology,2018
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26