Welcome to the NOAA Institutional Repository |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Investigating the Local Atmospheric Response to a Realistic Shift in the Oyashio Sea Surface Temperature Front
  • Published Date:
    2015
  • Source:
    Journal of Climate, 28(3), 1126-1147.
Filetype[PDF-4.57 MB]


Details:
  • Description:
    The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25 degrees) version of the global Community Atmosphere Model, version 5 (CAMS). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly-induced diabatic heating ((Q) over dot) is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1 degrees) version of CAMS. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of (Q) over dot. However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (omega) budget reveals that HR has a substantially stronger V2(Q) over dot response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: