Welcome to the NOAA Institutional Repository |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All Simple Search
Advanced Search
Variogram-Based Proper Scoring Rules for Probabilistic Forecasts of Multivariate Quantities
  • Published Date:
  • Source:
    Monthly Weather Review, 143(4), 1321-1334.
Filetype[PDF-542.08 KB]

  • Description:
    Proper scoring rules provide a theoretically principled framework for the quantitative assessment of the predictive performance of probabilistic forecasts. While a wide selection of such scoring rules for univariate quantities exists, there are only few scoring rules for multivariate quantities, and many of them require that forecasts are given in the form of a probability density function. The energy score, a multivariate generalization of the continuous ranked probability score, is the only commonly used score that is applicable in the important case of ensemble forecasts, where the multivariate predictive distribution is represented by a finite sample. Unfortunately, its ability to detect incorrectly specified correlations between the components of the multivariate quantity is somewhat limited. In this paper the authors present an alternative class of proper scoring rules based on the geostatistical concept of variograms. The sensitivity of these variogram-based scoring rules to incorrectly predicted means, variances, and correlations is studied in a number of examples with simulated observations and forecasts; they are shown to be distinctly more discriminative with respect to the correlation structure. This conclusion is confirmed in a case study with postprocessed wind speed forecasts at five wind park locations in Colorado.

  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: