The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: drivers, mechanisms and impacts

Filetype[PDF-2.81 MB]



Details:

  • Journal Title:
    Environmental Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    During austral summer (DJF) 2017/18, the New Zealand region experienced an unprecedented coupled ocean-atmosphere heatwave, covering an area of 4 million km(2). Regional average air temperature anomalies over land were +2.2 degrees C, and sea surface temperature anomalies reached +3.7 degrees C in the eastern Tasman Sea. This paper discusses the event, including atmospheric and oceanic drivers, the role of anthropogenic warming, and terrestrial and marine impacts. The heatwave was associated with very low wind speeds, reducing upper ocean mixing and allowing heat fluxes from the atmosphere to the ocean to cause substantial warming of the stratified surface layers of the Tasman Sea. The event persisted for the entire austral summer resulting in a 3.8 +/- 0.6 km(3) loss of glacier ice in the Southern Alps (the largest annual loss in records back to 1962), very early Sauvignon Blanc wine-grape maturation in Marlborough, and major species disruption in marine ecosystems. The dominant driver was positive Southern Annular Mode (SAM) conditions, with a smaller contribution from La Nina. The long-term trend towards positive SAM conditions, a result of stratospheric ozone depletion and greenhouse gas increase, is thought to have contributed through association with more frequent anticyclonic 'blocking' conditions in the New Zealand region and a more poleward average latitude for the Southern Ocean storm track. The unprecedented heatwave provides a good analogue for possible mean conditions in the late 21st century. The best match suggests this extreme summer may be typical of average New Zealand summer climate for 2081-2100, under the RCP4.5 or RCP6.0 scenario.
  • Source:
    Environmental Research Letters, 14(4), 18.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2