The climatological distribution of extreme Arctic winds and implications for ocean and sea ice processes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All
i


The climatological distribution of extreme Arctic winds and implications for ocean and sea ice processes

Filetype[PDF-12.31 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Description:
    Some of the strongest near‐surface winds on Earth form in the Arctic and sub‐Arctic due to intense midlatitude cyclones and mesoscale processes, and these strong surface winds have important impacts on ocean and sea ice processes. We examine the climatological distribution of over‐ocean, near‐surface wind speeds within a Pan‐Arctic domain for 18 years (1990–2007) in four gridded data sets: the European Centre for Medium‐Range Weather Forecasts Interim reanalysis (ERA‐I), the Climate Forecast System Reanalysis, version 2 of the Common Ocean‐Ice Reference Experiment data set, and a regional climate simulation generated using the Weather Research and Forecasting (WRF) model run at 50 km (WRF50) horizontal resolution with ERA Interim as lateral boundary conditions. We estimate probability density functions, the annual cycle, and map the 50th and 99th percentile winds. We then perform the same statistical analysis of winds for 2 years when 10 km WRF data are available (June 2005 to May 2007); despite the much shorter time period, the Pan‐Arctic statistics are very similar to those from the 18 year analysis. We repeat the wind speed statistical analysis within a subdomain surrounding Greenland and find that WRF10 has consistently larger maximum wind speeds, but this difference only appears at wind speed percentiles higher than 99%. Differences in the 99th percentile wind speeds are spatially heterogeneous. An investigation of surface fluxes within WRF50 and WRF10 reveals unrealistically large sensible heat fluxes along the sea ice edge, and the geographic distribution and magnitude of these fluxes is shown to be sensitive to sea ice representation in WRF.
  • Source:
    Journal of Geophysical Research: Atmospheres, 120(15), 7358-7377.
  • Document Type:
  • Rights Information:
    Other
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.16