U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Stratocumulus to cumulus transition in the presence of elevated smoke layers



Details

  • Journal Title:
    Geophysical Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The transition from stratocumulus to cumulus clouds in the presence of elevated light-absorbing smoke layers is investigated with idealized large-eddy simulations. A smoke layer is placed 1 km above stratocumulus top and evolves with the cloud fields over the course of a 3 day simulation. The simulations presented vary the smoke-generated heating and the moisture content of the smoke layer. A control case without smoke is simulated for comparison. On day 2 of the transition, when still above cloud, smoke generates a more broken cloud field than the control case, depending weakly on the strength of the aerosol heating but strongly on the water vapor content in the smoke layer. Following nighttime recovery and contact with the stratocumulus, smoke hinders the transition by strengthening the inversion, limiting boundary layer deepening and reducing precipitation-related breakup. This modulation delays the transition, which may extend the stratocumulus deck westward, with concomitant implications for climate forcing.
  • Source:
    Geophysical Research Letters, 42(23), 8.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha-512:0a756e28424bdacea1869c3c95ff4f667cc109061c1bbe37feb5e77586201325ae3259b22aed2b6129ccead1433a0761919fc15d6d397b80aa7a9a729c20782d
  • Download URL:
  • File Type:
    Filetype[PDF - 1.72 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.