Welcome to the NOAA Institutional Repository |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
The Optical Autocovariance Wind Lidar. Part I: OAWL Instrument Development and Demonstration
  • Published Date:
    2018
  • Source:
    Journal of Atmospheric and Oceanic Technology, 35(10), 2079-2097.
Filetype[PDF-3.13 MB]


Details:
  • Description:
    We present the motivation, instrument concept, hardware descriptions, and initial validation testing for a Doppler wind lidar (DWL) system that uses optical autocovariance (OA) in a field-widened quadrature Mach-Zehnder interferometer lidar to measure Doppler shifts from atmospheric-aerosol-backscattered laser light. We describe system architectures for three different generations of the direct-detection aerosol Optical Autocovariance Wind Lidar (OAWL) system, including the current two-line-of-sight, dual-wavelength (355 and 532 nm) airborne configuration, designed to be an airborne demonstrator for potential space-based global wind measurement applications. We provide meter-per-second-precision results from a ground-based 355-nm OAWL aerosol winds measurement validation study alongside another DWL, results from an autumn 2011 airborne validation testing performed with radar wind profiler data, and wind measurement results from airborne validation flight testing using the 532-nm wavelength in spring 2016.

  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
You May Also Like: