Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
i

Superseded

This Document Has Been Replaced By:

i

Retired

This Document Has Been Retired

i

Up-to-date Information

This is the latest update:

Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
  • Published Date:

    2016

  • Source:
    Atmospheric Chemistry and Physics, 16(22), 14169-14202.
Filetype[PDF-7.75 MB]


This document cannot be previewed automatically as it exceeds 5 MB
Please click the thumbnail image to view the document.
Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
Details:
  • Description:
    A new version of the biogenic volatile organic compounds (BVOCs) emission scheme has been developed in the global vegetation model ORCHIDEE (Organizing Carbon and Hydrology in Dynamic EcosystEm), which includes an extended list of biogenic emitted compounds, updated emission factors (EFs), a dependency on light for almost all compounds and a multi-layer radiation scheme. Over the 2000-2009 period, using this model, we estimate mean global emissions of 465 TgC yr(-1) for isoprene, 107.5 TgC yr(-1) for monoterpenes, 38 Tg C yr(-1) for methanol, 25 Tg C yr(-1) for acetone and 24 Tg C yr(-1) for sesquiterpenes. The model results are compared to state-of-the-art emission budgets, showing that the ORCHIDEE emissions are within the range of published estimates. ORCHIDEE BVOC emissions are compared to the estimates of the Model of Emissions of Gases and Aerosols from Nature (MEGAN), which is largely used throughout the biogenic emissions and atmospheric chemistry community. Our results show that global emission budgets of the two models are, in general, in good agreement. ORCHIDEE emissions are 8% higher for isoprene, 8% lower for methanol, 17% higher for acetone, 18% higher for monoterpenes and 39% higher for sesquiterpenes, compared to the MEGAN estimates. At the regional scale, the largest differences between ORCHIDEE and MEGAN are highlighted for isoprene in northern temperate regions, where ORCHIDEE emissions are higher by 21 Tg C yr(-1), and for monoterpenes, where they are higher by 4.4 and 10.2 Tg C yr(-1) in northern and southern tropical regions compared to MEGAN. The geographical differences between the two models are mainly associated with different EF and plant functional type (PFT) distributions, while differences in the seasonal cycle are mostly driven by differences in the leaf area index (LAI). Sensitivity tests are carried out for both models to explore the response to key variables or parameters such as LAI and light-dependent fraction (LDF). The ORCHIDEE and MEGAN emissions are differently affected by LAI changes, with a response highly depending on the compound considered. Scaling the LAI by a factor of 0.5 and 1.5 changes the isoprene global emission by 21 and C 8% for ORCHIDEE and 15 and C 7% for MEGAN, and affects the global emissions of monoterpenes by 43 and C 40% for ORCHIDEE and -11 and +3% for MEGAN. Performing a further sensitivity test, forcing ORCHIDEE with the MODIS LAI, confirms the high sensitivity of the ORCHIDEE emission module to LAI variation. We find that MEGAN is more sensitive to variation in the LDF parameter than ORCHIDEE. Our results highlight the importance and the need to further explore the BVOC emission estimate variability and the potential for using models to investigate the estimated uncertainties.
  • Document Type:
  • Main Document Checksum:
  • File Type:
  • Supporting Files:
    No Additional Files
No Related Documents.

You May Also Like: