The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications
-
2015
-
-
Source: Geophysical Research Letters, 42(14), 6098-6105.
Details:
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH+HCFC-133a reaction was measured between 233 and 379K and is given by k(T)=(9.320.8)x10(-13)exp(-(1296 +/- 28)/T), where k(296K) was measured to be (1.10 +/- 0.02)x10(-14) (cm(3)molecule(-1)s(-1)) (2 sigma precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240nm at 213-323K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90)years and 0.017 (0.001), respectively, where the ranges are based solely on the 2 sigma uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100year time horizon.
-
Source:Geophysical Research Letters, 42(14), 6098-6105.
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: