The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America
-
2015
-
-
Source: Geophysical Research Letters, 42(20), 8719-8728.
Details:
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:We present a 20year time series of in situ free tropospheric ozone observations above western North America during springtime and interpret results using hindcast simulations (1980-2014) conducted with the Geophysical Fluid Dynamics Laboratory global chemistry-climate model (GFDL AM3). Revisiting the analysis of Cooper et al. (2010), we show that sampling biases can substantially influence calculated trends. AM3 cosampled in space and time with observations reproduces the observed ozone trend (0.65 +/- 0.32 ppbvyr(-1)) over 1995-2008 (in simulations either with or without time-varying emissions), whereas AM3 "true median" with continuous temporal and spatial sampling indicates an insignificant trend (0.25 +/- 0.32 ppbvyr(-1)). Extending this analysis to 1995-2014, we find a weaker ozone trend of 0.31 +/- 0.21 ppbvyr(-1) from observations and 0.36 +/- 0.18 ppbvyr(-1) from AM3 "true median." Rising Asian emissions and global methane contribute to this increase. While interannual variability complicates the attribution of ozone trends, multidecadal hindcasts can aid in the estimation of robust confidence limits for trends based on sparse observational records.
-
Source:Geophysical Research Letters, 42(20), 8719-8728.
-
DOI:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: