Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Add terms to the query box

Query box

Clear All

Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

Filetype[PDF-1.25 MB]


  • Journal Title:
    Atmospheric Measurement Techniques
  • Description:
    Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near-infrared spectra acquired with the Solar Spectral Flux Radiometer (SSFR) during the first science phase of the NASA Airborne Tropical TRopopause EXperiment (ATTREX). From the 1400 and 1900 nm absorption bands we infer water vapor amounts in the tropical tropopause layer and adjacent regions between altitudes of 14 and 18 km. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 x 10(-4) to 4.59 x 10(-4) g cm(-2). A 0.002 difference in absorptance at 1367 nm results in a 3.35 x 10(-5) g cm(-2) change of integrated water vapor amounts; 0.004 absorptance change at 1870 nm results in 5.50 x 10(-5) g cm(-2) of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 x 10(-4) g cm(-2)) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 x 10(-4) g cm(-2)). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere is discussed.
  • Source:
    Atmospheric Measurement Techniques, 8(3), 1147-1156.
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents

Version 3.18