The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends

Filetype[PDF-6.81 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Description:
    The atmospheric loss processes of N2O and CH4, their estimated uncertainties, lifetimes, and impacts on ozone abundance and long-term trends are examined using atmospheric model calculations and updated kinetic and photochemical parameters and uncertainty factors from Stratospheric Processes and their Role in Climate (SPARC) (2013). The uncertainty ranges in calculated N2O and CH4 global lifetimes computed using the SPARC estimated uncertainties are reduced by nearly a factor of 2 compared with uncertainties from Sander et al. (2011). Uncertainties in CH4 loss due to reaction with OH and O(D-1) have relatively small impacts on present-day global total ozone (0.2-0.5%). Uncertainty in the Cl+CH4 reaction affects the amount of chlorine in radical versus reservoir forms and has a modest impact on present-day southern hemisphere (SH) polar ozone (similar to 6%) and on the rate of past ozone decline and future recovery. Uncertainty in the total rate coefficient for the O(D-1)+N2O reaction results in a substantial range in present-day stratospheric odd nitrogen (20-25%) and global total ozone (1.5-2.5%). Uncertainty in the O(D-1)+N2O reaction branching ratio for the O-2+N-2 and 2NO product channels results in moderate impacts on odd nitrogen (+/- 10%) and global ozone (+/- 1%), with uncertainty in N2O photolysis resulting in relatively small impacts (+/- 5% in odd nitrogen, +/- 0.5% in global ozone). Uncertainties in the O(D-1)+N2O reaction and its branching ratio also affect the rate of past global total ozone decline and future recovery, with a range in future ozone projections of +/- 1-1.5% by 2100, relative to present day.
  • Source:
    Journal of Geophysical Research-Atmospheres, 120(10), 5267-5293.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Related Documents