U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Quantifying neighborhood-scale spatial variations of ozone at open space and urban sites in Boulder, Colorado using low-cost sensor technology



Details

  • Journal Title:
    Sensors
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Recent advances in air pollution sensors have led to a new wave of low-cost measurement systems that can be deployed in dense networks to capture small-scale spatio-temporal variations in ozone, a pollutant known to cause negative human health impacts. This study deployed a network of seven low-cost ozone metal oxide sensor systems (UPods) in both an open space and an urban location in Boulder, Colorado during June and July of 2015, to quantify ozone variations on spatial scales ranging from 12 m between UPods to 6.7 km between open space and urban measurement sites with a measurement uncertainty of ~5 ppb. The results showed spatial variability of ozone at both deployment sites, with the largest differences between UPod measurements occurring during the afternoons. The peak median hourly difference between UPods was 6 ppb at 1:00 p.m. at the open space site, and 11 ppb at 4:00 p.m. at the urban site. Overall, the urban ozone measurements were higher than in the open space measurements. This study evaluates the effectiveness of using low-cost sensors to capture microscale spatial and temporal variation of ozone; additionally, it highlights the importance of field calibrations and measurement uncertainty quantification when deploying low-cost sensors.
  • Source:
    Sensors, 17(9), 2072.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:2650d37e2f1f986d2d023eb1610f3dd2447f5a7b8dc030afa38a7fb44c96fc0b
  • Download URL:
  • File Type:
    Filetype[PDF - 2.33 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.