| Quantifying the predatory effect of round goby on Saginaw Bay dreissenids - :20885 | Office of Oceanic and Atmospheric Research (OAR) | Sea Grant Publications
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Quantifying the predatory effect of round goby on Saginaw Bay dreissenids
  • Published Date:
    2017
  • Source:
    Journal of Great Lakes Research, 43(1), 121-131.
Filetype[PDF-708.53 KB]


Details:
  • Description:
    Invasive dreissenid mussels (D. polymorpha and D. r. bugensis) have fundamentally altered Laurentian Great Lake ecosystems, however in many areas their abundances have declined since the mid-1990s. Another invader, the benthic fish round goby (Neogobius melanostomus), is morphologically adapted to feed on dreissenids and likely affects dreissenid populations; however, the degree of this predatory effect is variable. In 2009 and 2010, we examined round goby abundances, size distributions, diet contents, and diet selectivity in Saginaw Bay, Lake Huron; a shallow bay that has been subjected to numerous anthropogenic stressors. We further used a consumption model to estimate dreissenid consumption by three different size classes of round goby. Round gobies were found throughout the bay and most were smaller than 80 mm total length. Round gobies of all sizes consumed dreissenids (including fish as small as 30 mm total length), though dreissenids were rarely preferred. The relative proportion of dreissenids (by biomass) present in diets of round gobies increased with fish size, but also throughout the year for all size classes. Despite this, overall consumptive effects of round gobies on dreissenids in Saginaw Bay were low. Many dreissenids present in the bay were larger than those consumed by round gobies. Bioenergetics-based model estimates suggest that the smallest round gobies are responsible for the majority of dreissenid consumption. While our findings are limited to soft substrates and influenced by sampling restrictions, our study design allowed us to put bounds on our estimates based upon these multiple sources of uncertainty. (C) 2016 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.

  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: