i
Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: A biophysical modeling study
-
2017
-
-
Source: Limnology and Oceanography, 62(6), 2629-2649.
Details:
-
Journal Title:Limnology and Oceanography
-
Personal Author:
-
NOAA Program & Office:
-
Description:We applied a three-dimensional biophysical model to Lake Michigan for the years 2000, 2005, and 2010 to consider the mechanisms controlling spatial and temporal patterns of phytoplankton abundance (chlorophyll a) and lake-wide productivity. Model skill was assessed by comparison to satellite-derived Chl a and field-measured water quality variables. We evaluated model sensitivity to scenarios of varying mussel filter feeding intensity, tributary phosphorus loads, and warm vs. cool winter-spring climate scenarios. During the winter-spring phytoplankton bloom, spatial patterns of Chl a were controlled by variables that influenced surface mixed layer depth: deep mixing reduced net phytoplankton growth through light limitation and by exposing the full water column to mussel filter feeding. Onset of summer and winter stratification promoted higher surface Chl a initially by increasing mean light exposure and by separating the euphotic zone from mussels. During the summer stratified period, areas of relatively high Chl a were associated with coastal plumes influenced by tributary-derived nutrients and coastal upwelling-downwelling. While mussels influenced spatial and temporal distribution of Chl a, lake-wide, annual mean primary production was more sensitive to phosphorus and warm/cool meteorology scenarios than to mussel filter feeding scenarios. Although Chl a and primary production declined over the quagga mussel invasion, our results suggest that increased nutrient loads would increase lake-wide productivity even in the presence of mussels; however, altered spatial and temporal patterns of productivity caused by mussel filter feeding would likely persist.
-
Source:Limnology and Oceanography, 62(6), 2629-2649.
-
DOI:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: