Welcome to the NOAA Institutional Repository |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
Clear All Simple Search
Advanced Search
Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress
  • Published Date:
  • Source:
    Soil Biology & Biochemistry, 116, 237-244.
Filetype[PDF-2.24 MB]

  • Description:
    Recent work suggests that metabolic activation and deactivation of microbes in soil strongly influences soil carbon (C) dynamics and climate feedbacks. However, few soil C models consider these transitions. We hypothesized that microbes' capacity to enter and exit dormancy in response to unfavorable and favorable environmental conditions decreases the sensitivity of microbial biomass and cumulative respiration to environmental stress. To test this hypothesis, we collected data from a rewetting experiment and used it to design and parameterize dormancy in an existing microbe-based soil C model. Then we compared predictions of microbial biomass and soil heterotrophic respiration (RH) under simulated cycles of stressful (dryness) and favorable (wet pulses) conditions. Because the influence of moisture on microbial processes in soil generally depends on temperature, we collected data and tested predictions at different temperatures. When dormancy was not taken into account, simulated microbial biomass and cumulative microbial respiration over five years were lower and decreased faster under lengthening drying-wetting cycles. Differences due to dormancy increased with temperature and with the length of the dry periods between wetting events. We conclude that ignoring both the capacity of microbes to enter and exit dormancy in response to the environment and the consequences of these metabolic responses for soil C cycling results in predictions of unrealistically low RH under warming and drying wetting cycles.
  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: