Influence of Different Foreign Emissions Inventories on Simulated, Ground-Level Ozone in the Seoul Metropolitan Area during May 2014
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Influence of Different Foreign Emissions Inventories on Simulated, Ground-Level Ozone in the Seoul Metropolitan Area during May 2014

Filetype[PDF-3.82 MB]



Details:

  • Journal Title:
    Aerosol and Air Quality Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study examines the effects of different foreign anthropogenic emissions inventories on predicted ozone concentrations in the Seoul Metropolitan Area (SMA), South Korea, and estimates changes in ozone due to emissions reductions. We ran the Community Multi-Scale Air Quality (CMAQ) model using the High-Order Decoupled Direct Method with three inventories of foreign anthropogenic emissions: (1) the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B) 2006; (2) the Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment (CREATE) 2010; and (3) the Model Inter-Comparison Study (MICS)-Asia 2010. All three inventories have different spatial distributions of emissions, yielding different modeled ozone concentrations. However, the ozone concentrations modeled for the SMA differ less than those modeled for large, foreign cities in the modeling domain. The simulations using INTEX-B 2006 and CREATE 2010 suggested greater reduction in ozone with NOx control than with VOCs control. All simulations show that (1) simultaneous reduction in NOx and VOCs leads to less ozone reduction than the sum of ozone reductions for individual NOx and VOCs controls and (2) ozone reductions are stronger for high ozone days than for low ozone days. Comparing the modeled reductions in the relative sense yields smaller differences between high and low ozone days than comparing the modeled reductions in the absolute sense. With a 20% reduction in only NOx emissions, the differences in MDA1O3 among the three inventories were between 0.3 and 0.7 ppb. Because air-quality planning often leads to defined tonnage reductions, we examined the model's response to such a defined emissions reduction. Using the NOx reduction in China estimated by Zhao et al. (2013), we estimated that the differences in MDA1O3 among the three inventories were between 1.50 and 1.78 ppb. Based on these results, we recommend using different foreign anthropogenic emissions inventories to test future scenarios for air-quality control.
  • Source:
    Aerosol and Air Quality Research, 17(12), 3179-3193.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1