Historical Dynamical Downscaling for East Asia with the Atmosphere and Ocean Coupled Regional Model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Historical Dynamical Downscaling for East Asia with the Atmosphere and Ocean Coupled Regional Model

Filetype[PDF-8.51 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of the Meteorological Society of Japan
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The atmosphere-ocean-coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System (RSM-ROMS) was used to improve the downscaling simulation accuracy, particularly of coastal areas, and a dynamical downscale of the historical global reanalysis data for the East Asian region over 25 years was conducted. The results showed that in the coupled run, the sea surface temperature (SST) tended to show large-scale discrepancy from reality, basically because the models remain imperfect. On the other hand, for net heat flux, precipitation, and surface air temperature, the coupled run showed positive improvement compared with the uncoupled run. The improvement in these three variables and the degradation in SST were also apparent for event-based (one-month) averages. This inconsistency between the impacts on SST and the other variables may indicate that there is room to improve the model system further, particularly in the coupling and/or boundary layer processes for both the atmosphere and ocean.
  • Source:
    Journal of the Meteorological Society of Japan, 94A(199-208.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2