The effect of stable thermal stratification on turbulent boundary layer statistics
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Add terms to the query box

Query box

Help
Clear All
i

The effect of stable thermal stratification on turbulent boundary layer statistics

Filetype[PDF-2.21 MB]



Details:

  • Journal Title:
    Journal of Fluid Mechanics
  • Description:
    The effects of stable thermal stratification on turbulent boundary layers are experimentally investigated for smooth and rough walls. For weak to moderate stability, the turbulent stresses are seen to scale with the wall shear stress, compensating for changes in fluid density in the same manner as done for compressible flows. This suggests little change in turbulent structure within this regime. At higher levels of stratification turbulence no longer scales with the wall shear stress and turbulent production by mean shear collapses, but without the preferential damping of near-wall motions observed in previous studies. We suggest that the weakly stable and strongly stable (collapsed) regimes are delineated by the point where the turbulence no longer scales with the local wall shear stress, a significant departure from previous definitions. The critical stratification separating these two regimes closely follows the linear stability analysis of Schlichting (Z. Angew. Math. Mech., vol. 15 (6), 1935, pp. 313–338) for both smooth and rough surfaces, indicating that a good predictor of critical stratification is the gradient Richardson number evaluated at the wall. Wall-normal and shear stresses follow atmospheric trends in the local gradient Richardson number scaling of Sorbjan (Q. J. R. Meteorol. Soc., vol. 136, 2010, pp. 1243–1254), suggesting that much can be learned about stratified atmospheric flows from the study of laboratory scale boundary layers at relatively low Reynolds numbers.
  • Source:
    Journal of Fluid Mechanics, 812, 1039-1075.
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

Version 3.18