Early Dynamics of Deep Blue XBT Probes
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Early Dynamics of Deep Blue XBT Probes

Filetype[PDF-2.24 MB]



Details:

  • Journal Title:
    Journal of Atmospheric and Oceanic Technology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Expendable bathythermographs (XBTs) are probes widely used to monitor global ocean heat content, variability of ocean currents, and meridional heat transports. In the XBT temperature profile, the depth is estimated from the time of descent in the water using a fall-rate equation. There are two main errors in these profiles: temperature and depth errors. The reduction of error in the estimates of the depth allows a corresponding reduction in the errors in the computations in which XBTs are used. Two experiments were carried out to study the effect of the deployment height on the depth estimates of Deep Blue XBT probes. During these experiments, XBTs were deployed from different heights. The motion of the probes after entering the water was analyzed to determine the position and the velocity of the probes as a function of time, which was compared to that obtained using the Hanawa et al. fall-rate equation. Results showed a difference or offset between the experimentally observed depths and those derived from Hanawa et al. This offset was found to be linked to the deployment height. To eliminate the offset in the fall-rate equation for XBTs deployed from different heights, a methodology is proposed here based on the initial velocities of the probes in the water (or deployment height). Results indicate that the depth estimates in the profiles need to be corrected for an offset, which in addition to having a launch height dependence is time dependent during the first 1.5 s of descent of the probe in the water, and constant after that.
  • Source:
    Journal of Atmospheric and Oceanic Technology, 32(12), 2253-2263.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1