Comparing 1-D sediment transport modeling with field observations: Simkins Dam removal case study
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Comparing 1-D sediment transport modeling with field observations: Simkins Dam removal case study

Filetype[PDF-3.36 MB]



Details:

  • Journal Title:
    International Journal of River Basin Management
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The effects of multiple stressors on the early life stages of reef-building corals are poorly understood. Elevated temperature is the main physiological driver of mass coral bleaching events, but increasing evidence suggests that other stressors, including elevated dissolved inorganic nitrogen (DIN), may exacerbate the negative effects of thermal stress. To test this hypothesis, we investigated the performance of larvae of Orbicella faveolata and Porites astreoides, two important Caribbean reef coral species with contrasting reproductive and algal transmission modes, under increased temperature and/or elevated DIN. We used a fluorescence-based microplate respirometer to measure the oxygen consumption of coral larvae from both species, and also assessed the effects of these stressors on P. astreoides larval settlement and mortality. Overall, we found that (1) larvae increased their respiration in response to different factors (O. faveolata in response to elevated temperature and P. astreoides in response to elevated nitrate) and (2) P. astreoides larvae showed a significant increase in settlement as a result of elevated nitrate, but higher mortality under elevated temperature. This study shows how microplate respirometry can be successfully used to assess changes in respiration of coral larvae, and our findings suggest that the effects of thermal stress and nitrate enrichment in coral larvae may be species specific and are neither additive nor synergistic for O. faveolata or P. astreoides. These findings may have important consequences for the recruitment and community reassembly of corals to nutrient-polluted reefs that have been impacted by climate change.
  • Source:
    International Journal of River Basin Management, 17(2), 185-197.
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2