Retrieving vertical ozone profiles from measurements of global spectral irradiance
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Retrieving vertical ozone profiles from measurements of global spectral irradiance

Filetype[PDF-1.02 MB]



Details:

  • Journal Title:
    Atmospheric Measurement Techniques
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Abstract One-second wind data on the West Florida Shelf were used to examine turbulent scales from large eddies to small eddies in the atmospheric surface layer within a frequency band from 0.02 to 0.3 Hz (periods from ~1 min to ~3 s). Data were collected at two at-sea locations spanning 6.5 months. Three events in three wind ranges were examined in exploring the one-dimensional turbulent power spectra: >14 m/s, wind range I; those between 10 and 14 m/s, wind range II; and those between 5 and 10 m/s, wind range III. Events consisted of ensembles of abutting 30-min subsets spanning 5.5 to 23 hr. The mean vector wind time scale of T0 = 30 min was found to be reasonable for the West Florida Shelf region. The first wind range provided the best results, more or less in line with a Kolmogorov −5/3 power law whose mean vector wind speed over 21 subsets (10.5 hr) was nearly 15 m/s. The one-dimensional turbulent power spectra provided an estimate of the dissipation rate (ε) from which other turbulent quantities could be computed: u*, τ, and Cd (the frictional velocity, the surface stress, and the drag coefficient, respectively). The salient point here is that these quantities were larger than those from previous observational studies. Where the power law was not operant intrinsic turbulent spatial scales ranged from 1 to 0.1 m and provide evidence of anisotropy for frequencies greater than 0.1 Hz.
  • Source:
    Atmospheric Measurement Techniques, 10(12), 4979-4994.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1