| Aerosol Measurements at South Pole: Climatology and Impact of Local Contamination - :18364 | Office of Oceanic and Atmospheric Research (OAR)
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Aerosol Measurements at South Pole: Climatology and Impact of Local Contamination
  • Published Date:
    2016
  • Source:
    Aerosol and Air Quality Research, 16(3), 855-872.
Filetype[PDF-1.86 MB]


Details:
  • Description:
    The Atmospheric Research Observatory (ARO), part of the National Science Foundation's (NSF's) Amundsen-Scott South Pole Station, is located at one of the cleanest and most remote sites on earth. NOAA has been making atmospheric baseline measurements at South Pole since the mid-1970's. The pristine conditions and high elevation make the South Pole a desirable location for many types of research projects and since the early 2000's there have been multiple construction projects to accommodate both a major station renovation and additional research activities and their personnel. The larger population and increased human activity at the station, located in such close proximity to the global baseline measurements conducted at the ARO, calls into question the potential effects of local contamination of the long-term background measurements. In this work, the long-term wind and aerosol climatologies were updated and analyzed for trends. Winds blow toward the ARO from the Clean Air Sector similar to 88% of the time and while there is some year-to-year variability in this number, the long-term wind speed and direction measurements at South Pole have not changed appreciably in the last 35 years. Several human activity markers including station population, aircraft flights and fuel usage were used as surrogates for local aerosol emissions; peak human activity (and thus likely local emissions) occurred in the 2006 and 2007 austral summer seasons. The long-term aerosol measurements at ARO do not peak during these seasons, suggesting that the quality control procedures in place to identify and exclude continuous sources of local contamination are working and that the NSF's sector management plan for the Clean Air Sector is effective. No significant trends over time were observed in particle number concentration, aerosol light scattering coefficient, or any aerosol parameter except scattering Angstrom exponent, which showed a drop of similar to 0.02 yr(-1) over the 36-year record. The effect of discrete local contamination events in the Clean Air Sector is discussed using one well-documented example.

  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
No Related Documents.
You May Also Like: