| Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer - :18055 | Office of Oceanic and Atmospheric Research (OAR)
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer
Filetype[PDF-9.22 MB]


This document cannot be previewed automatically as it exceeds 5 MB
Please click the thumbnail image to view the document.
Airborne Doppler Wind Lidar Observations of the Tropical Cyclone Boundary Layer
Details:
  • Description:
    This study presents a verification and an analysis of wind profile data collected during Tropical Storm Erika (2015) by a Doppler Wind Lidar (DWL) instrument aboard a P3 Hurricane Hunter aircraft of the National Oceanic and Atmospheric Administration (NOAA). DWL-measured winds are compared to those from nearly collocated GPS dropsondes, and show good agreement in terms of both the wind magnitude and asymmetric distribution of the wind field. A comparison of the DWL-measured wind speeds versus dropsonde-measured wind speeds yields a reasonably good correlation (r(2) = 0.95), with a root mean square error (RMSE) of 1.58 m s(-1) and a bias of -0.023 m s(-1). Our analysis shows that the DWL complements the existing P3 Doppler radar, in that it collects wind data in rain-free and low-rain regions where Doppler radar is limited for wind observations. The DWL observations also complement dropsonde measurements by significantly enlarging the sampling size and spatial coverage of the boundary layer winds. An analysis of the DWL wind data shows that the boundary layer of Erika was much deeper than that of a typical hurricane-strength storm. Streamline and vorticity analyses based on DWL wind observations explain why Erika maintained intensity in a sheared environment. This study suggests that DWL wind data are valuable for real-time intensity forecasts, basic understanding of the boundary layer structure and dynamics, and offshore wind energy applications under tropical cyclone conditions.

  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
You May Also Like: