Inflation-predictable behavior and co-eruption deformation at Axial Seamount
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Inflation-predictable behavior and co-eruption deformation at Axial Seamount

Filetype[PDF-11.20 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Science
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Deformation of the ground surface at active volcanoes provides information about magma movements at depth. Improved seafloor deformation measurements between 2011 and 2015 documented a fourfold increase in magma supply and confirmed that Axial Seamount's eruptive behavior is inflation-predictable, probably triggered by a critical level of magmatic pressure. A 2015 eruption was successfully forecast on the basis of this deformation pattern and marked the first time that deflation and tilt were captured in real time by a new seafloor cabled observatory, revealing the timing, location, and volume of eruption-related magma movements. Improved modeling of the deformation suggests a steeply dipping prolate-spheroid pressure source beneath the eastern caldera that is consistent with the location of the zone of highest melt within the subcaldera magma reservoir determined from multichannel seismic results.
  • Source:
    Science, 354(6318), 1399-1403.
  • DOI:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

More +

Related Documents

You May Also Like

Checkout today's featured content at

Version 3.27.2