Analyzing the Grell-Freitas Convection Scheme from Hydrostatic to Nonhydrostatic Scales within a Global Model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Analyzing the Grell-Freitas Convection Scheme from Hydrostatic to Nonhydrostatic Scales within a Global Model

Filetype[PDF-6.71 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The authors implemented the Grell-Freitas (GF) parameterization of convection in which the cloud-base mass flux varies quadratically as a function of the convective updraft fraction in the global nonhydrostatic Model for Prediction Across Scales (MPAS). They evaluated the performance of GF using quasi-uniform meshes and a variable-resolution mesh centered over South America, the resolution of which varied between hydrostatic (50 km) and nonhydrostatic (3 km) scales. Four-day forecasts using a 50-km and a 15-km quasi-uniform mesh, initialized with GFS data for 0000 UTC 10 January 2014, reveal that MPAS overestimates precipitation in the tropics relative to the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis data. Results of 4-day forecasts using the variable-resolution mesh reveal that over the refined region of the mesh, GF performs as a precipitating shallow convective scheme, whereas over the coarse region of the mesh, GF acts as a conventional deep convective scheme. As horizontal resolution increases and subgrid-scale motions become increasingly resolved, the contribution of convective and grid-scale precipitation to the total precipitation decreases and increases, respectively. Probability density distributions of precipitation highlight a smooth transition in the partitioning between convective and grid-scale precipitation, including at gray-zone scales across the transition region between the coarsest and finest regions of the global mesh. Variable-resolution meshes spanning between hydrostatic and nonhydrostatic scales are shown to be ideal tools to evaluate the horizontal scale dependence of parameterized convective and grid-scale moist processes.
  • Source:
    Monthly Weather Review, 144(6), 2285-2306.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1