Analysis of Ice-to-Liquid Ratios during Freezing Rain and the Development of an Ice Accumulation Model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Analysis of Ice-to-Liquid Ratios during Freezing Rain and the Development of an Ice Accumulation Model

Filetype[PDF-2.36 MB]


  • Journal Title:
    Weather and Forecasting
  • NOAA Program & Office:
  • Description:
    Substantial freezing rain or drizzle occurs in about 24% of winter weather events in the continental United States. Proper preparation for these freezing rain events requires accurate forecasts of ice accumulation on various surfaces. The Automated Surface Observing System (ASOS) has become the primary surface weather observation system in the United States, and more than 650 ASOS sites have implemented an icing sensor as of March 2015. ASOS observations that included ice accumulation were examined from January 2013 through February 2015. The data chosen for this study consist of 60-min periods of continuous freezing rain with precipitation rates >= 0.5 mm h(-1) (0.02 in. h(-1)) and greater than a trace of ice accumulation, yielding a dataset of 1255 h of observations. Ice:liquid. ratios (ILRs) were calculated for each 60-min period and analyzed with 60-min mean values of temperature, wet-bulb temperature, wind speed, and precipitation rate. The median ILR for elevated horizontal (radial) ice accumulation was 0.72:1 (0.28:1), with a 25th percentile of 0.50:1 (0.20:1) and a 75th percentile of 1.0:1 (0.40:1). Strong relationships were identified between ILR and precipitation rate, wind speed, and wet-bulb temperature. The results were used to develop a multivariable Freezing Rain Accumulation Model (FRAM) for use in predicting ice accumulation incorporating these commonly forecast variables as input. FRAM performed significantly better than other commonly used forecast methods when tested on 20 randomly chosen icing events, with a mean absolute error (MAE) of 1.17 mm (0.046 in.), and a bias of -0.03 mm (-0.001 in.).
  • Source:
    Weather and Forecasting, 31(4), 1041-1060.
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26