Reply to "Comments on 'Incorporating the Effects of Moisture into a Dynamical Parameter: Moist Vorticity and Moist Divergence'"
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Reply to "Comments on 'Incorporating the Effects of Moisture into a Dynamical Parameter: Moist Vorticity and Moist Divergence'"

Filetype[PDF-70.35 KB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Mathematical derivation, meteorological justification, and comparison to model direct precipitation forecasts are the three main concerns recently raised by Schultz and Spengler about moist divergence (MD) and moist vorticity (MV), which were introduced in earlier work by Qian et al. That previous work demonstrated that MD (MV) can in principle be derived mathematically with a value-added empirical modification. MD (MV) has a solid meteorological basis. It combines ascent motion and high moisture: the two elements necessary for rainfall. However, precipitation efficiency is not considered in MD (MV). Given the omission of an advection term in the mathematical derivation and the lack of precipitation efficiency, MD (MV) might be suitable mainly for heavy rain events with large areal coverage and long duration caused by large-scale quasi-stationary weather systems, but not for local intense heavy rain events caused by small-scale convection. In addition, MD (MV) is not capable of describing precipitation intensity. MD (MV) worked reasonably well in predicting heavy rain locations from short to medium ranges as compared with the ECMWF model precipitation forecasts. MD (MV) was generally worse than (though sometimes similar to) the model heavy rain forecast at shorter ranges (about a week) but became comparable or even better at longer ranges (around 10 days). It should be reiterated that MD (MV) is not intended to be a primary tool for predicting heavy rain areas, especially in the short range, but is a useful parameter for calibrating model heavy precipitation forecasts, as stated in the original paper.
  • Source:
    Weather and Forecasting, 31(4), 1397-1405.
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1