Intercomparison of selected fixed-area areal reduction factor methods
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Intercomparison of selected fixed-area areal reduction factor methods

Filetype[PDF-2.65 MB]



Details:

  • Journal Title:
    Journal of Hydrology
  • NOAA Program & Office:
  • Description:
    The areal reduction factor (ARF) is a concept used in many hydrologic designs to transform a point precipitation frequency estimate of a given duration and frequency to a corresponding areal estimate. Various methods have been proposed in the literature to calculate ARFs. Proposed ARFs could vary significantly, and it is unclear if discrepancies are primarily due to differences in methodologies, the dissimilar datasets used to calculate ARFs, or if they originate from regional uniqueness. Our goal in this study is to analyze differences among ARFs derived from different types of fixed-area ARF methods, which are suitable for use with precipitation frequency estimates. For this intercomparison, all the ARFs were computed using the same, high-quality rainfall-radar merged dataset for a common geographic region. The selected ARFs methods represent four commonly used approaches: empirical methods, methods that are based on the spatial correlation structure of rainfall, methods that rely on the scaling properties of rainfall in space and time, and methods that utilize extreme value theory. The state of Oklahoma was selected as the study area, as it has a good quality radar data and a dense network of rain gauges. Results indicate significant uncertainties in the ARF estimates, regardless of the method used. Even when calculated from the same dataset and for the same geographic area, the ARF estimates from the selected methods differ. The differences are more pronounced for the shorter durations and larger areas. Results also indicate some ARF dependence on the average recurrence intervals. (C) 2016 Elsevier B.V. All rights reserved.
  • Source:
    Journal of Hydrology, 537, 419-430.
  • Document Type:
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26