Insights into Atmospheric Contributors to Urban Flash Flooding across the United States Using an Analysis of Rawinsonde Data and Associated Calculated Parameters
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Insights into Atmospheric Contributors to Urban Flash Flooding across the United States Using an Analysis of Rawinsonde Data and Associated Calculated Parameters

Filetype[PDF-1.63 MB]



Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • NOAA Program & Office:
  • Description:
    Flooding is routinely one of the most deadly weather-related hazards in the United States, which highlights the need for more hydrometeorological research related to forecasting these hazardous events. Building upon previous literature, a synergistic study analyzes hydrometeorological aspects of major urban flood events in the United States from 1977 through 2014 caused by locally heavy precipitation. Primary datasets include upper-air soundings and climatological precipitable water (PW) distributions. A major finding of this work is that major urban flood events are associated with extremely anomalous PW values, many of which exceeded the 99th percentile of the associated climatological dataset and all of which were greater than 150% of the climatological mean values. However, of the 40 cases examined in this study, only 15 had PW values that exceeded 50.4 mm (2 in.), illustrating the importance of including the location-specific PW climatology in a PW analysis relevant to the potential for flash floods. Additionally, these events revealed that, despite geographic location and time of year, most had a warm cloud depth of at least 6 km, which is defined here as the layer between the lifting condensation level and the height of the -10 degrees C level. A "composite" flood sounding was also calculated and revealed a characteristically tropical structure, despite cases related to tropical cyclones being excluded from the study.
  • Source:
    Journal of Applied Meteorology and Climatology, 55(2), 313-323.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26