Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I: Comparison and Analysis
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I: Comparison and Analysis

Filetype[PDF-2.31 MB]


  • Journal Title:
    Journal of Hydrometeorology
  • NOAA Program & Office:
  • Description:
    Soil moisture observations from seven observational networks (spanning portions of seven states) with different biome and climate conditions were used in this study to evaluate multimodel simulated soil moisture products. The four land surface models, including Noah, Mosaic, Sacramento soil moisture accounting (SAC), and the Variable Infiltration Capacity model (VIC), were run within phase 2 of the North American Land Data Assimilation System (NLDAS-2), with a ?degrees spatial resolution and hourly temporal resolution. Hundreds of sites in Alabama, Colorado, Michigan, Nebraska, Oklahoma, West Texas, and Utah were used to evaluate simulated soil moisture in the 0-10-, 10-40-, and 40-100-cm soil layers. Soil moisture was spatially averaged in each state to reduce noise. In general, the four models captured broad features (e.g., seasonal variation) of soil moisture variations in all three soil layers in seven states, except for the 10-40-cm soil layer in West Texas and the 40-100-cm soil layer in Alabama, where the anomaly correlations are weak. Overall, Mosaic, SAC, and the ensemble mean have the highest simulation skill and VIC has the lowest simulation skill. The results show that Noah and VIC are wetter than the observations while Mosaic and SAC are drier than the observations, mostly likely because of systematic errors in model evapotranspiration.
  • Source:
    Journal of Hydrometeorology, 16(5), 1962-1980.
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26