Improving Arctic Sea Ice Prediction Using PIOMAS Initial Sea Ice Thickness in a Coupled Ocean-Atmosphere Model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Improving Arctic Sea Ice Prediction Using PIOMAS Initial Sea Ice Thickness in a Coupled Ocean-Atmosphere Model

Filetype[PDF-2.22 MB]


  • Journal Title:
    Monthly Weather Review
  • NOAA Program & Office:
  • Description:
    Because sea ice thickness is known to influence future patterns of sea ice concentration, it is likely that an improved initialization of sea ice thickness in a coupled ocean-atmosphere model would improve Arctic sea ice cover forecasts. Here, two sea ice thickness datasets as possible candidates for forecast initialization were investigated: the Climate Forecast System Reanalysis (CFSR) and the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). Using Ice, Cloud, and Land Elevation Satellite (ICESat) data, it was shown that the PIOMAS dataset had a more realistic representation of sea ice thickness than CFSR. Subsequently, both March CFSR and PIOMAS sea ice thicknesses were used to initialize hindcasts using the Climate Forecast System, version 2 (CFSv2), model. A second set of model runs was also done in which the original model physics were modified to more physically reasonable settingsnamely, increasing the number of marine stratus clouds in the Arctic region and enabling realistic representation of the ice-ocean heat flux. Hindcasts were evaluated using sea ice concentration observations from the National Aeronautics and Space Administration (NASA) Team and Bootstrap algorithms. Results show that using PIOMAS initial sea ice thickness in addition to the physics modifications yielded significant improvement in the prediction of September Arctic sea ice extent along with increased interannual predictive skill. Significant local improvements in sea ice concentration were also seen in distinct regions for the change to PIOMAS initial thickness or the physics adjustments, with the most improvement occurring when these changes were applied concurrently.
  • Source:
    Monthly Weather Review, 143(11), 4618-4630.
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26