Improving Flash Flood Forecasts The HMT-WPC Flash Flood and Intense Rainfall Experiment
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.


This Document Has Been Replaced By:



This Document Has Been Retired


Up-to-date Information

This is the latest update:

Improving Flash Flood Forecasts The HMT-WPC Flash Flood and Intense Rainfall Experiment
  • Published Date:


  • Source:
    Bulletin of the American Meteorological Society, 96(11), 1859-1866.
Filetype[PDF-1.96 MB]

  • Description:
    Despite advancements in numerical modeling and the increasing prevalence of convection-allowing guidance, flash flood forecasting remains a substantial challenge. Accurate flash flood forecasts depend not only on accurate quantitative precipitation forecasts (QPFs), but also on an understanding of the corresponding hydrologic response. To advance forecast skill, innovative guidance products that blend meteorology and hydrology are needed, as well as a comprehensive verification dataset to identify areas in need of improvement.To address these challenges, in 2013 the Hydrometeorological Testbed at the Weather Prediction Center (HMT-WPC), partnering with the National Severe Storms Laboratory (NSSL) and the Earth System Research Laboratory (ESRL), developed and hosted the inaugural Flash Flood and Intense Rainfall (FFaIR) Experiment. In its first two years, the experiment has focused on ways to combine meteorological guidance with available hydrologic information. One example of this is the creation of neighborhood flash flood guidance (FFG) exceedance probabilities, which combine QPF information from convection-allowing ensembles with flash flood guidance; these were found to provide valuable information about the flash flood threat across the contiguous United States.Additionally, WPC has begun to address the challenge of flash flood verification by developing a verification database that incorporates observations from a variety of disparate sources in an attempt to build a comprehensive picture of flash flooding across the nation. While the development of this database represents an important step forward in the verification of flash flood forecasts, many of the other challenges identified during the experiment will require a long-term community effort in order to make notable advancements.
  • Document Type:
  • Main Document Checksum:
  • File Type:
No Related Documents.

You May Also Like: