The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.


This Document Has Been Replaced By:



This Document Has Been Retired


Up-to-date Information

This is the latest update:

The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity
  • Published Date:


  • Source:
    Peerj, 4, e1495.
Filetype[PDF-5.62 MB]

This document cannot be previewed automatically as it exceeds 5 MB
Please click the thumbnail image to view the document.
The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity
  • Description:
    Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), activate transcriptional regulator PqsR to promote the production of quinolone signals and virulence factors. Our the most abundant quinolone produced from the Pqs system, 2,4-dihydroxyquinoline work focused on (DHQ), which was shown previously to sustain pyocyanin production and antifungal activity of P. aeruginosa. However, little is known about how DHQ affects P. aeruginosa pathogenicity. Using C. elegans as a model for P. aeruginosa infection, we found pqs mutants only able to produce DHQ maintained virulence towards the nematodes similar to wild-type. In addition, DHQ-only producing mutants displayed increased colonization of C. elegans and virulence factor production compared to a quinolone-null strain. DHQ also bound to PqsR and activated the transcription of pqs operon. More importantly, high extracellular concentration of DHQ was maintained in both aerobic and anaerobic growth. High levels of DHQ were also detected in the sputum samples of cystic fibrosis patients. Taken together, our findings suggest DHQ may play an important role in sustaining P. aeruginosa pathogenicity under oxygen-limiting conditions.
  • Document Type:
  • Main Document Checksum:
  • File Type:
No Related Documents.

You May Also Like: