Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Net community production and calcification from 7years of NOAA Station Papa Mooring measurements

Filetype[PDF-2.13 MB]



Details:

  • Journal Title:
    Global Biogeochemical Cycles
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Seven years of near-continuous observations from the Ocean Station Papa (OSP) surface mooring were used to evaluate drivers of marine carbon cycling in the eastern subarctic Pacific. Processes contributing to mixed layer carbon inventory changes throughout each deployment year were quantitatively assessed using a time-dependent mass balance approach in which total alkalinity and dissolved inorganic carbon were used as tracers. By using two mixed layer carbon tracers, it was possible to isolate the influences of net community production (NCP) and calcification. Our results indicate that the annual NCP at OSP is 2 1molCm(-2)yr(-1) and the annual calcification is 0.30.3molCm(-2)yr(-1). Piecing together evidence for potentially significant dissolved organic carbon cycling in this region, we estimate a particulate inorganic carbon to particulate organic carbon ratio between 0.15 and 0.25. This is at least double the global average, adding to the growing evidence that calcifying organisms play an important role in carbon export at this location. These results, coupled with significant seasonality in the NCP, suggest that carbon cycling near OSP may be more complex than previously thought and highlight the importance of continuous observations for robust assessments of biogeochemical cycling.
  • Source:
    Global Biogeochemical Cycles, 30(2), 250-267.
  • DOI:
  • Document Type:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1