Welcome to the NOAA Institutional Repository | Shifts in bloater consumption in Lake Michigan between 193 and 2011 and its effects on Diporeia and Mysis prey - :13032 | Office of Oceanic and Atmospheric Research (OAR)
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Shifts in bloater consumption in Lake Michigan between 193 and 2011 and its effects on Diporeia and Mysis prey
  • Published Date:
    2016
Filetype[PDF - 608.61 KB]


Details:
  • Document Type:
  • Description:
    Bioenergetics modeling was used to determine individual and population consumption by Bloater Coregonus hoyi in Lake Michigan during three time periods with variable Bloater density: 1993–1996 (high), 1998–2002 (intermediate), and 2009–2011 (low). Despite declines in Bloater abundance between 1993 and 2011, our results did not show any density-dependent compensatory response in annual individual consumption, specific consumption, or proportion of maximum consumption consumed. Diporeia spp. accounted for a steadily decreasing fraction of annual consumption, and Bloater were apparently unable to eat enough Mysis diluviana or other prey to account for the loss of Diporeia in the environment. The fraction of production of both Diporeia and Mysis that was consumed by the Bloater population decreased over time so that the consumption-to-production ratio for Diporeia C Mysis was 0.74, 0.26, and 0.14 in 1993–1996, 1998–2002, and 2009–2011, respectively. Although high Bloater numbers in the 1980s to 1990s may have had an influence on populations of Diporeia, Bloater were not the main factor driving Diporeia to a nearly complete disappearance because Diporeia continued to decline when Bloater predation demands were lessening. Thus, there appears to be a decoupling in the inverse relationship between predator and prey abundance in Lake Michigan. Compared with Alewife Alosa pseudoharengus, the other dominant planktivorein the lake, Bloater have a lower specific consumption and higher gross conversion efficiency (GCE), indicating that the lake can support a higher biomass of Bloater than Alewife. However, declines in Bloater GCE since the 1970s and the absence of positive responses in consumption variables following declines in abundance suggest that productivity in Lake Michigan might not be able to support the same biomass of Bloater as in the past.