U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Fine-scale spatial variation in ice cover and surface temperature trends across the surface of the Laurentian Great Lakes



Public Access Version Available on: January 01, 2030, 12:00 AM
Please check back on the date listed above.

Details

  • Journal Title:
    Climatic Change
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The effects of climate change on north temperate freshwater ecosystems include increasing water temperatures and decreasing ice cover. Here we compare those trends in the Laurentian Great Lakes at three spatial scales to evaluate how warming varies across the surface of these massive inland water bodies. We compiled seasonal ice cover duration (1973-2013) and lake summer surface water temperatures (LSSWT; 1994-2013), and analyzed spatial patterns and trends at lake-wide, lake sub-basin, and fine spatial scales and compared those to reported lake- and basin-wide trends. At the lake-wide scale we found declining ice duration and warming LSSWT patterns consistent with previous studies. At the lake sub-basin scale, our statistical models identified distinct warming trends within each lake that included significant breakpoints in ice duration for 13 sub-basins, consistent linear declines in 11 sub-basins, and no trends in 4 sub-basins. At the finest scale, we found that the northern- and eastern-most portions of each Great Lake, especially in nearshore areas, have experienced faster rates of LSSWT warming and shortening ice duration than those previously reported from trends at the lake scale. We conclude that lake-level analyses mask significant spatial and temporal variation in warming patterns within the Laurentian Great Lakes. Recognizing spatial variability in rates of change can inform both mechanistic modeling of ecosystem responses and planning for long-term management of these large freshwater ecosystems.
  • Source:
    Climatic Change, 138(1-2), 71-83.
  • Series:
  • DOI:
  • Document Type:
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:c54a0e9b285d4bc0b1222dfe8e75907c427fc1d430b7e16a9b5ed5fa6a03e868
  • File Type:
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.