An operational marine fog prediction model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

Filetype[PDF-770.17 KB]



Details:

  • Personal Author:
  • Corporate Authors:
  • NOAA Program & Office:
  • Description:
    A major concern to the National Weather Service marine operations is the problem of forecasting advection fogs at sea. Currently fog forecasts are issued using statistical methods only over the open ocean domain but no such system is available for coastal and offshore areas. We propose to use a partially diagnostic model, designed specifically for this problem, which relies on output fields from the global operational Medium Range Forecast (MRF) model. The boundary and initial conditions of moisture and temperature, as well as the MRF's horizontal wind predictions are interpolated to the fog model grid over an arbitrarily selected coastal and offshore ocean region. The moisture fields are used to prescribe a droplet size distribution and compute liquid water content, neither of which is accounted for in the global model. Fog development is governed by the droplet size distribution and advection and exchange of heat and moisture. A simple parameterization is used to describe the coefficients of evaporation and sensible heat exchange at the surface. Depletion of the fog is based on droplet fallout of the three categories of assumed droplet size. Comparison of three months of model results over the Atlantic seaboard with ship data show realistic forecasts of fogbound areas. The MRF initial conditions are used to update the fog model boundaries, thus supplying "perfect forecasts" for the fog model boundary conditions. Liquid water droplet concentrations are used to infer the relative intensity of fog and compare well with visibility reports from ship locations. It should be noted, however, that the verification of fog at sea is hampered by the limited amount of routinely available ship observations. The model also successfully predicted situations in which no fog was present when similarly verified with ship data. These results show that diagnostic models can be developed for specific regional applications based on numerical weather forecasts made with large scale global models.
  • Content Notes:
    Jordan C. Alpert, David M. Feit.

    This is an unreviewed manuscript, primarily intended for informal exchange of information among NWS staff members.

    "June 1990."

    System requirements: Adobe Acrobat Reader.

    Includes bibliographical references (pages 17-18).

  • Keywords:
  • Series:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Public Domain
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1