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Abstract

L\ inejthod for simulatina ny.irofoiis performing laree amplitude oscillations in a How with regions of con-
ted vortictty has i»-n weioped. The method is based on iwo-tiimensionai potentionai flow and the

iheorv of functions of a complex vnriable. The shape of the foil profile is obtained as a Joukowski transfor
mation of a circle. There are three main components in the method: (1) Careful formulation of the velocity
potentials for the three degrees of freedom and the point vortices. (2) Anew way of releasing vortices at the
trailing edge to model ihe vortex sheet that constitute the wake of the foil. (3) Closed form expressions for
the force and moment on the foil, facilitating rapid and accurate calculation these and related quantities.
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1 Introduction

The problem of a foil moving in a flow with regions of concentrated vorticity is of interest in several contexts.
In aerodynamics, the vortex wake of one helicopter rotor blade impinges on the following one, resulting in
pressure fluctuations and noise [Booth90, Fujinami86, Panaras87, Straus90]. An example of constructive
interference is the so called Kasper foil, where the ability to trap a vortex in a stationary position above the
foil results in enormous lift coefficients [Saffman77]. In biofluiddynamics, flow visualizations indicate that the
flapping tail of a fish may recover some of the energy in vortices formed over the anterior parts of the body
[Rosen59]. As amodel of the last problem, consider a foil that manipulates the Karman vortex street behind
a bluff body so as to de-energize it. Leaving little kinetic energy behind, the bluff body - foil system is in
effect astreamlined entity, perhaps more streamlined than aconventional hull - propeller combination could
ever be. This mechanism will also reduce the wake signature associated with a bluff body. An application
could be to locate a vortex controlling foil behind submarine bridge, thereby improving stealthworthiness of
the submarine.

This report describes amethod for simulating such problems, assuming that the flow is two-dimensional
and inviscid. These are drastic assumptions, but they enable simulations to be performed at a modest
computational cost, which is is agreat advantage when exploring the rather large parameter space associated
with the applications mentioned above. The assumption of two-dimensional flow limits the scope of the
method to cases with high aspect ratio foils and incoming vortices of high correlation length, although we
expect the! qualitative results to be valid even when this assumption is relaxed. The inviscid flow assumption
restricts the method to cases with high Reynolds number (which is not serious) and absence of stall, or
leading edge separation. Thus there is an implicit assumption of low local angles of attack in order to keep
the flow attached to the foil, otherwise we should have to resort to computationally very intensive methods
or experiments.

As a further simplification, the foil shape is taken to be a Joukowski profile, which is obtained through
a simple transformation of a circular cylinder. This leads to a closed form description of the flow in the
circle plane, where the vortex field is modeled with point vortices. Furthermore, the question of which face
of the foil the wake is tangent to at the trailing edge [Basu78] becomes a moot point, as the trailing edge of
a Joukowski foil is cusped.

In order to evaluate the performance of the foil (mainly the efficiency), it is necessary to calculate forces
and moment experienced by the foil during the simulation. It is possible to numerically integrate the pressure
on the foil at any time, but this is a slow process that requires many function calls involving all the vortices
in the flow. Additional difficulties arise in cases where the foil has zero thickness and a sharp leading edge,
which arejimportant for verification. Therefore, amajor part of this report is devoted to the derivation of
closed form expressions for force and moment, using the fact that the foil shape is a Joukowski profile.

In this report, no examples of actual application of the method has been presented, these will be reported
later in a Ph.D. thesis. The motivation for issuing this report as a separate item, is a hope that the
methodology used will be ofgeneral interest in unsteady foil simulations.

2 Coordinate Systems

In the following we shall need 3different plane coordinate systems to describe and solve for the flow over a
wing profile in surge, heave and pitch. In complex notation, these are (1) z0 = *o + *Vo, (2) z= x+ iy and
(3) z' = x' + it/. They are shown together in Figure 1.

(1) The z0 plane is used to describe the mean flow and the motion of the foil. zQ is fixed in the mean
position of the foil, and an observer in this reference frame will see the foil oscillating in heave and pitch and



Figure 1: Definition of coordinate systems.

a free stream U0 flowing from left to right. The motion of the foil has the following form:

h = hocos(w( + ft) - c*o6sin(wt -f ft)
a = Qosin(w< + ft) (1)

Here, ho and ao are heave and pitch amplitude respectively. The phasing between the two motions is
determined by b, for motions of moderated pitch amplitude, b can also be thought of as the pitch point,
w, t and ft are frequency, time and phase, respectively. The freedom to choose the phase ft is convenient
in certain cases, w = 0, ft = —ir/2 for instance, specifies an impulsively started foil. The above definitions
(with ft = 0) coincides with Lighthill's [Lighthill75] in the limit of small amplitudes. Other motions, like a
foil moving in circles without pitching [Schmidt65], can be simulated with minor modifications.

(2) The z plane coincides with the foil at the instant under consideration, and is at rest in the fluid
at infinity. An observer in this reference frame will see the foil moving in the x- and y-direction with
velocities U and V respectively, sometimes denoted W = U + iV for brevity. Furthermore, the foil is
rotating counterclockwise about z = 0 with angular velocity fi. This is the reference frame in which we solve
the boundary value problem for the oscillating foil. The two coordinate systems are related by

and the velocities are given by

z0 = ih + ze*a

W = (-Uo +ih)e-
Q = Q

(2)

(3)

(3) The z' plane is fixed in the foil at all times and coincides with z at any particular instant. An
observer in the z' system sees the fluid moving over a stationary foil, the fluid motion being everywhere
rotational if fi ^ 0. The fact that the foil is fixed in this frame, makes it suitable for deriving force and
moment expressions from pressure integration.



Figure 2: Mapping between Joukowski profile and circle.

3 Conformal mapping

As Figure 2shows, a Joukowski foil shape can be obtained by mapping a circle of radius re in the <plane
by: ,

. z=F(0=C +Cc +-r^-r <4)
C + Ce

This function is obtained in two steps. First, the foil is mapped to a circle in an intermediate plane, 6, that
has center at C« and goes through the point aon the real axis. Thus, re = \a - <c|. This circle is mapped to
the Cplane by asimple translation, aand <e are parameters which determine the size, thickness and camber
ofthe foil. JThe inverse of the mapping function is given by:1

<=F~\z) =\[z +\/*2-4a2] - Ce (5)

Three quantities of interest are the area, center of area and polar moment of area for the Joukowski foil.
The simplest way to find these is by using either of the following expressions for an arbitrary function of z
and its complex conjugate, f(z,T) over a region R, bounded by dR:

L»—*IIM"'L"-*!L> (6)

These are readily found by applying Stokes theorem in two dimensions to the real and imaginary parts of /
[MilneThomson60]. Replacing dR by 5, we can now write for the area:

Next, the variable of integration is changed to Cand the integral is performed on the circle C:

Here, the prime denotes derivative, F'«)= dF/dC, not to be confused with the coordinate system fixed in
the foil. Using the fact that C= r*/C on C, we obtain an integrand that is analytic except for discrete poles:

iWhen implementing amultivalued expressioiTiike this on acomputer, itis important to choose the proper branch. Asimple
way is touse the expanded form: <= £ [z +\A - 2o -Jz + 2aJ - <e-



Figure 3: Definitions for boundary value problem.

The integrand is then expanded out to 6 terms that are evaluated by the residue theorem, and when they
are added, we arrive at an expression for the area:

A = Jrr? 1
(r? -<52)2J

where (r = CeCe-

Similarly, we have for the center of area, ze, and radius of gyration, rg:

*6CC"A=JL>dA=-hL^= Ce + (r?-52)3j

-2 + 262
•3"~ I /_ - 4i /„ 2'el'e"" " (rl-S2)4

We will need these quantities in the calculation of force and moment on the foil

(7)

(8)

(9)

4 Boundary value problem for translating and rotating section

Consider an arbitrary profile S in the z = x + iy plane, translating with velocity W = U + iV and rotating
with angular velocity fi as shown in Figure 3. The velocity of a material particleat a point (x, y) on S, has
a component vn in the n direction. The boundary condition of no flow through S, can be written:

i.e.

dtl> dip dx dt(> dy
ds dx ds dy ds

where ip is the stream function of the flow. From the kinematics of the body it can be seen that:

„n =(K +fi*)|-(y-fiy)§.
For these expressions to be consistent for arbitrary slopes dy/dx, the stream function must satisfy

dx dy
= U —fiy , on 5

0=t/y-Kz-^fi(x2 +y2) ,onS

(10)

(11)

(12)



We shall see later how vortices can be added to the flow without violating this condition.

Since the flow is assumed irrotational and incompressible, a complex potential can be formed from the
velocity potential and the stream function in the usual manner:

w(z) = <j>(x,y) + iil>(x,y)

The conditions on w is that it must be analytic exterior to 5 (except at the sharp trailing edge) and
have a vanishing derivative as z—oo. The form of the boundary condition (12) indicates that the solution
is a linear superposition of three unit velocity potentials;

w = Uw\ + Vu>2 + fi">3

which must satisfy

Im{u.!}5 =Im{r}s , Im{u>2}s =Im{-iz)s , Im{u>3}s =Im|--2z|
The subscript on the curly brackets refers to the contour at which the relationships must hold.

Since tihe value of xf> must be the same at corresponding points in the physical and the map plane, the
mapping (4) provides a way of solving these boundary value problems in the Cplane. For example, the
boundary condition for w\ may be stated as;

Im{«;i}c =Imj<-Kc+ .+(r|

(13)

(14)

We are looking for a solution that is analytic outside C. One might suggest that Q+ C<= + a /(C + Ce) »s m
fact the solution for t»,. This would be acceptable, except for the first term, which violates the condition at
infinity. However, we have the fact that:

Im{<}c =Imj-^J
Thus, by replacing the < term, the correct solution can be constructed:

(15)

The solution could be written explicitly in the physical coordinate through (5), but that would be an
unnecessary complication. For example, if we need to know the fluid velocity at a point z, we apply the
chain rule: , , ,, , , .

dw dwdC r
u-,v=d7=dCJ7=l d< F'(Ojc=F-.(0

The reason for keeping the constant <e in wu is that the boundary condition (12) is assumed to hold
without any additional constants in the calculation ofthe moment on the profile.

In the same way, wi is found to be:

2 /i*

(16)



For w3, which is somewhat more complicated, we use the intermediate variable ft:

Mile ="»H(<' +£)(<'+91
• M-i[*+'(H)+ar]}.

Now,
<< = r2 onC and Im{i*CeC} = Im{i<cC}>

so that

M*i« = - {-| h'+*«+**2°2lrl+r?+?/+<.<+dI
- '•"{-H^*f'+tf^+^crbcTp]}0 "8)

The only thing preventing the use of the expression inside the curly brackets as a solution for W3 is the
last term, which contains a dipole singularity at < = -r2/Ce- This singularity must be neutralized by
adding another dipole of opposite strength, according to the circle theorem of two-dimensional potential
flow [Batchelor67, MilneThomson60]. It goes as follows: Consider a flow with complex potential /(r), whose
singularities are all at a distancegreater than re away from the origin. A flow with the same singularitiesand
far field behavior, but internally bounded by a circle of radius re centered at the origin, has the potential:

»(*) = /(*) + / (?)
It is straightforward to verify that this potential is purely real on the_circle, \z\ = rc, making the circle
streamline. Now, a dipole of moment q, say, can be put at C = —r2/Ce without affecting the boundary
condition (12):

9 9

C+ r2/Ce~r2/C + r2/Ce
Here,

103 = —»

ia4r2
9 = ~:

(r2--52Xc
We add these terms inside the curcy brackets of (18), and when the terms are combined, the correct solution
for u/3 is obtained:

T +a C+Cc +(C +Cc)(r2+*2)+ 2(r|-«») ' [i">

Figure 4 shows the streamlines associated with the three unit potentials in the case of a profile with
a = 0.5, Cc = -0.05 + 1*0.1.



Figure 4: Streamlines of the unit velocity potentials. From top to bottom: u»i, W2 and u/3.



5 Vortex potentials

An arbitrary amount ofcirculation around the foil is provided by a central vortex potential in the Cplane:

7eu»4 = 7<.ilog— (20)

u>4 is purely real on C and 5, so this term can be added without affecting the boundary condition (12).

Finally, a free vortex at some point z*, say, is introduced by adding a vortex at the corresponding point
in the < plane, Ot = F~1(zk)- According to the circle theorem, this vortex must have an oppositely signed
image at the inverse point, r2/Ct and a same sign image at <= 0. However, the latter can be absorbed in
7cum, and is not considered a part of the free vortex potential. Instead, the value ofyc is determined on
physical grounds when a new vortex is introduced in the flow. Any number ofvortices of different strengths
are incorporated in the flow:

J^lkmiCXk)
k

where .

As with the central vortex potential, u>5 is written such that it is purely real on S, and (12) holds without
any additional constant. In addition, this form of to8 has the desirable property that for |C| = 0(re),

tu5 —• —ilog — as 0t —*• °°

Thus, as a vortex is removed far away from the circle, its image moves toward the center, giving rise to a
potential af the same form as 104.

ATaylor expansion of tu5 about Ct, verifies that it has the correct singular behavior ofa vortex at Zk in
the physical plane. Note that the strength of the vortices differ from what many researchers use by a factor
-2ir. For instance, the total counterclockwise circulation about the foil caused by the free vortex images
and the central vortex, is:

-*(•£»-*)
The flow in the z plane is now completely described by:

w= Uwi(C) + Vw2(0 + fiu»3(0 +t««"4(0 + J^ykwstt; CO
k

and the mapping (4).

6 Vortex convection and vortex shedding algorithm

The vortices convect with velocities given by Rouih's rule [Clements73, Sarpkaya88, Sheen86];

dzk d , , x . , , „ 1 d , ... . . ., . ., ilk F"{Ck)
~dt=Tz [tw(>) " nk &(z " Zk)]'=*> =F(C0 5c[u,(c)"t7k g( " )]<=0* ~~2~[nc*)]2

In the second step the chain rule has been applied, and the last term is a correction due to the difference
between log(z - zk) and log(C - CO- This expression is used to step forward the simulation in a second

(22)

(23)



Figure 5: Vortex shedding algorithm.

order Runge-Kutta scheme. The derivative of the terms in the square bracket can be expressed in closed
form. It will consist ofcontributions from the three unit potentials and all the vortex potentials except for
the one due to vortex it itself. Thus, as the number ofvortices N grows, this 0(N2) effort quickly becomes
prohibitively slow. Amethod based on multipole expansions [Greengard87, Carrier88, Korsmeyer90] that
reduces this effort to O(N) has been implemented, greatly reducing the computational effort when the
number of vortices becomes large.

An algorithm that releases vortices into the flow to satisfy the Kutta condition of smooth flow at the
trailing edge, will complete the simulation. Acertain controversy exists regarding the validity range of the
Kutta condition [McCroskey82], but this question will not be addressed here. We assume that the parameters
offoil motion and inflow conditions are such that smooth flow over the trailing edge is a good model.

In general, there is no obvious way to introduce vortices near the trailing edge in order to satisfy the
Kutta condition. Matters are simplified, however, by the fact that the trailing edge ofthe Joukowski foil is
cusped, and that the wake must leave the trailing edge parallel to it. Avortex shedding algorithm based
on an idea from [Sarpkaya75] is illustrated in Figure 5. The idea is that the location of a new vortex can
be determined from an interpolation between the trailing edge and one or more previously shed vortices.
Each vortex in the wake (solid dots) represents asegment (between tic marks) of a continuous vortex sheet.
When it is time to shed a new vortex, a circular arc tangent to the cusped trailing edge, is fitted through
the location of the previously shed vortex, zn (the trailing edge angle x is given by the conformal mapping).
The center ofthe arc is denoted z0 and the angle ztz0zn is $. The new vortex is put at zn+i such that the
angle z,z0zn+i is 0/4. Consequently, the new vortex will sit approximately in the middle of the segment it
is supposed to represent. The following relations hold:

z0-zn = re**"**")
z0-zt = re''<*-x>

Zo — zn+i — re>a

From these expressions, z„+i can be found in terms of 0:

zn+i-zt 1-e"/4
zn-zt 1-e"

and 0 is determined from:

1 - e"/4
(l-e"/4)(l + e"'/4)(l+e'eV2)

1
1 4. ei9/4 + ei«/2 + ei30/4

lz„-z,l2 l-e-ie

J9i2v 1~ e _ e-»2xe»'«

(24)

(25)



Note that these expressions are well behaved at 9 = 0.

The strength of the new vortex is given by the requirement that dw/dQ = 0 at the point which maps
onto the trailing edge, C= a- Ce- This is necessary for the flow to be smooth at the trailing edge in the
physical plane and constitutes the Kutta condition in the simulation:

*S = U
C2 (C + CO2

+ iV
C2 (C + CO2 J

a\c

n+1

^ t=l

= 0 , at C = a - Ce

C2(C + Cc)2 '" (C + Co)2 (C + Cc)2(r? - 62)
1 1

C-C* C-r\Kk
(26)

Denoting a-Ce = reeie', Cfc = rkei$h and Cc = 6/t+ »'*/. we can solve for 7„+i, and write the answer in terms
of real quantities only:

r; - 2rcrn+i cos(ge + fln+i) + r2+1
7"+! = r2_r2

2rc(U sin 0C +Vcos 0e) +2fi (a2 -a6R-62 °_ 2*J
7*(r2-r2)

+ 7c +E33
t=i e

2r(.rjfccos(fle + 0jb) + ^
(27)

In cases where the foil starts to move from an initial state of rest and the fluid is otherwise undisturbed,
the total circulation around the foil and its wake must remain zero by virtue of Kelvin's circulation theorem.
This implies that -ye = 0 at all times. In the general case, vortices other than those shed at the trailing edge
may be introduced in the flow at any time. Then, fe must change so as to preserve the circulation around
the foil alone. In fact, due to the way the vortex potentials are defined, the total effect on w of such a vortex
vanishes as the point where it is introduced goes to infinity.

We can test this algorithm versus linear theory for a flat plate impulsively pitched to ao = 0.01. This
is a good test, because the the step function response obtained will contain the frequency response for all
frequencies. The effect of the finite angle is vanishing for the steady case, we assume this is true also here.
Figure 6 shows that the vortex shedding algorithm described above yields a foil circulation in close agreement
with linear theory, even for fairly large time steps. Time has been nondimensionalized by c/Uo, where c is
the half chord length.

7 Pressure in a rotating and translating coordinate frame

In order to develop expressions for force and moment, it is useful to express the pressure in terms of coor
dinates that are fixed in the foil, z' in Figure 1. In the z coordinate system, which is an inertia frame, the
pressure is given by

d(j> 1. •> 0\
P=--dl-2^'+V)

where u and v are flow velocity components. Here, as in the rest of this report, fluid density is assumed to
be unity. The z' frame moves with velocities W = U +1IV and fi, as given by (3), and the flow velocities

10
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Figure 6: Circulation around an impulsively started flat plate normalized by its steady state value.

seen by an observer in this reference frame are:

u' = u - U + fiy , v' = v - V - fix

For later reference we note that

«•+*«(£)-*-*« (28)

Furthermore, the time derivative must be adjusted for spatial variation when the moving coordinate system
is used: a a a »

dt dt v dx v dy

Thus, in the foil fixed coordinate system the pressure is given by:

p=-^ - i(«'2 +«/2) + V+ifiz)(W-ifiz)
at l *

(29)

The first term should be though ofas the rate of change of the potential that describes the flow in the z
frame as seen by an observer in the z' frame.

The utility of expressing pressure this way is that the profile 5, over which the pressure must be inte
grated, is independent of time. Thus, the time derivative in the first term may be taken outside the integral
sign.

Figure 7 shows the difference in pressure, calculated by the above expression, between the lower and
upper face of aflat plate in impulsively started motion. We note that the simulation results agree well with
linear theory, except at the trailing edge where our method fails to predict zero pressure loading. This is a
result of discretizing the wake into point vortices, because they cannot represent a flow that is discontinuous
across the trailing edge. If the velocity on the upper and lower side of the trailing edge is denoted u+ and
u_ respectively, it is easy to show that

dV 1.2 2 \
dt

11



Figure 7: Pressure distribution at three different times for an impulsively started foil. Solid line: At = 0.1,
Dashed Line: Af = 0.02, Dotted line: linear theory.
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is necessary for zero pressure loading [Basu78]. From linear theory we know that dYfdt ~ t~1/2 as t —•> 0,
i.e. the velocity discontinuity is arbitrarily large at t = 0. Therefore, it is not surprising that the error in
the simulation is largest initially. Furthermore we note that the discrepancy is confined to a smaller region
when the iimestep is reduced and the trailing edge vortices are more packed together.

8 Force

Representing the forces per unit span A' and Y along the x and y axes as one complex number, it is easily
seen that .

X+ iY = ilpdz (30)

Using (29), we obtain:

X+iY = -ijj <t>dz-1- J\u'2 +v'2)dz +%f(W +itlz)(W - iQt)d.

1• -4lwdz+iWA -H-U
dw — _^1 _ iv + ,fir
dz

dz + iQA(W + iQze)

= _,^. / wdz +\VA +iSlAze - l-j (jf)dz - fi / zdw +iWT +ifi,4(^ +tfize)

dz - iQA{W + iSlze)

(31)

where A, ze and T are given by (7), (8) and (22), respectively. To obtain these expressions, we have made
use of(6)J(28), the fact that the flow is parallel to S:

(u'2 + v'2)dz = (u' + iv'){u' - iv')dz = («' + tv')2dz

and the boundary condition (12):

1,TTTj <j)-=.w-ii> = w— -r(Wz —Wz —ifizz), onS

More details are given in [MilneThomson60].

The three integrals in (31) will be referred to as (I), (II) and (III) respectively. They can be evaluated
by replacing the contour of integration by one that encloses all singularities and branch cuts, as well as S,
and is closed at a large distance from the foil. This method has been used by [Graham80] and [Sarpkaya75]
for flow over stationary objects. It is an extension of Lagally's theorem, which is valid for vortices that are
being held fixed in a steady flow. The contour of integration is shown in Figure 8 for the case of a single
free vortex. Wehavedenoted the vortex position zj*. as a reminder that its time derivative must be taken as
seen by an observer moving with the foil,

z'k =zk =F(0t) •but £*• =^ - W- iQzk =^F(Ct)
In the region within the entire contour, ail the integrands are analytic, so thesum of the integrals evaluated

over the different parts of the contourmust be zero. This yields expressions for the integralsover 5 in terms
of the other contributions, which are easier to evaluate:

L-L-L-L
13



Figure 8: Integration contour for force.

- the direction of integration being counterclockwise. Sj encloses the branch cut between the vortex and its
image, passing through the trailing edge. The integrals in (31) can be evaluated as follows:

(I) In the first integral, uv4 is not suited to integration on the contour in Figure 8, and will be evaluated
later directly on S. Omitting um, the first integral gets a contribution from the cut Sb, where w makes
a jump 2iryk from the upper to the lower bank, and from Soo • The following expression is then true for
arbitrary profiles:

/ wdz = I xodz —2ir-fk(zk —zt)
JS JSeo

where zt is the location of the trailing edge. Limiting ourselves to the previously defined Joukowski profile,
we can readily find the far field behavior of w and identify the terms that go like 1/z. By the residue theorem
we then find the contribution from SOT:

L wdz = 2ir il/(a'-^) + V(a'! + rl) + n (*+<?•-;#0+ *(&-£)]
Then we must add the contribution from 7eu»4 by integrating by parts on S:

I w^dz = [u^zli - / —;—zdz = —2jtzcu, - / F(C)au>4 = —2ir(zcut —Cc)
Js Js dz Jc

The square bracket with limits means that the difference should be taken at opposite sides of the branch cut
associated with the logarithmic potential, with the upper and lower limits corresponding to a counterclock
wise direction of integration. The value of the integral depends on where this branch cut is chosen to be.
The choice is made based on the notion that when an external vortex is introduced, the effect on the total
potential integrated around the foil must vanish as the vortex is introduced further away. This requires that
the zCut —2a,,i.e. the branch cut for uj4 must pass through the trailing edge just like for the free vortices.
Now,

/. wdz = 2tt iU (a2 - rc2) +V(a2 +r2) +fi (V& +a2Ce - j^j)
-7c(2a -Cc) +7k (a "5- - z'k +2a)] (32)

(II) The second integral gets no contributionsfrom the cut S\, where the integrand is continuous, either
is there a contribution from Soo, as w = O(logz) in the far field (this is in contrast to steady flox'. ast a
stationary wing which gets UT from this term). The only contribution is from Sv, this term is writing the
potential with the singularity at z* separated out:

""(*) = fk(z) + 17* 'og(z - zt)
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where A(z) is analytic in the neighborhood of zt. Then

where again, the prime denotes z derivative. From (23) it is seen that f'k(zk) is the convection velocity of
the vortex, as seen in the z reference frame, i.e.

This expression is valid for an arbitrary profile.

(Ill) In the last integral, 7cu;4 also requires special attention. Apart from this term, we have

/ zdw = / —^zdz
is Js dz

which gets! contributions from Sx and Sv. The latter is easily found, and we have the general expression

/ zdw— I -—zdz + 2ir-ykz'k
Js JSoo dz

I

For the Joukowski profile,

/ zdw =2* \iU (r2 -a2) -V(r2 +a2) -fi (r2Ce +a2Cc - JTrJ?) +?* Qf"<*)]
We saw above that

Thus,

/ zdw* = —2irQ
Js

(33)

j zdw =2* [if/ (r2 -a2) -V(r2 +a2) -fi (r2Ce +«2Cc "^Tp) "7cCc +7* (j£"Ct +-'i)]
We have now calculated all the necessary integrals for a closed form force expression. In cases with

je = 0, the following expression may be used to evaluate the force on an arbitrary profile in the presence of
point vortices, requiring only the far field behavior of the velocity potential:

A' + iY

- f ^-zdz +iQA(W +iQze)
Js- dz

wdz - 2a- ^ fk(z'k ~ zt) „ -V- dz'k+ WA + XlAzc - 2ztl^lk-fi-

(34)

We have extended the result to an arbitrary number of vortices simply by summing over k. Two terms
cancelled due to (22). In cases where the number ofvortices around the profile remain constant, the time
derivative may be taken inside the first summation and cancellation with the second sum is obtained. Here
we want to use the above expression when vortices are released every time step into the flow, and we leave
the time derivative outside the sum to take into account the changing number of vortices.
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For the Joukowski foil, we use the results (I) - (III), and collect terms to obtain:

X + iY = -U[2ir(r2e - a2) - A]
-iV[2n(r2 + a2)-A]

-m^f^%+a%--0^j-Azc]
-«-(/fi[27r(r2-a2)-4
+*/fi[27r(r2+a2)-yi]

+fi2[2,(r2Cc+a2Ce-^2-)-ze>l]
+nvr

-il[-2,7c(2a-C0+2,ET,(2a-Cc-i-^:)
dzko -V^ aZk

-2™2--»-3T

-fi (35)

The conventional added mass notation, m,j [Newman77], and the relation (22) provides a compact expression
for the forces:

X + iY = -i/(mii + »'"»2i) - V{mi2 + t"m22) - fl(mi5 + im26)

+fi(/(m2i —imu) + fiV(m22 —""12) + fi2(rri26 —i"»i6)

+i(W +ifiCejr +i£ [2*2, - T(2o - Cc)] - 2jri22 - 2^fiZ,
at

where the added mass coefficients have been identified as:

and

mil = *r~ —2xa + xr

m\2 = 0

17121 = 0

JTI22 = t»"2 + 2xa2 + Ttr

c(r2 - 62)2

e(r2-62)2

{-m16 = Im\ -xr2Ce - 2to2Cc + 2jt

m26 = Re { Tr2Ce + 2Tra2Cc - 2tt

a4Cc ,

«4Cc __2
r2 _ p *r' (r2

* • ^(t<^z)
V^ dzk

22 = l^^sr

a6Cc )

(r2-*2)3/

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

The added mass coefficients have been verified versus Sedov's [Sedov65] expressions, in the special c ^e of a
symmetric profile. Note that there is no added mass coupling between surge and heave even for a cambered
Joukowski foil.
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Figure 9: Typical time history ofsumin brackets in equation (36) for two different timesteps, At = 0.4 and
At = 0.1.

The vortexconvection velocities in 22, given by (23), are expensive to calculate. However, these velocities
are needed to perform the simulation in the first place, so there is no extra effort required for the force
calculation.

Figure 9 shows a typical time history for the expression in square brackets in (36), whose time derivative
we need to calculate forces. At the beginning of every time step, a new vortex is released and this sum
makes a jump, which can be found to be oforder A<3/2. It now becomes clear why it is important to take
the growing number of vortices into account when the time derivative is taken. If we fail to do this, we
effectively Icalculate the slope as marked by "1" in Figure 9, whereas the correct way consistently uses the
values at either the beginning or end ofeach time step, marked "2". Method 1 will still converge as the time
step is reduced, but only at a rate vAt.

Using method 2with a central difference gives the time derivative at intermediate times, t = (n+1/2) At.
Thevalues for I\ Z\, and Z2 areavailable at times that are integer multiples ofthe timestep in thesimulation,
t = nAt. fib form the force we must then linearly interpolate T, Zu and Z2 to t= (n +1/2) A*. The added
mass forces can be exactly evaluated for any t, and are added. This isa more precise calculation than taking
the central difference over two time steps and adding at t = n At.

Figure 10 shows how this calculation compares for an impulsively started flat plate at angle ofattack, ao-
Lift and drag has been nondimensionalized by 2zU2ca0 and U2ca%, respectively. We note that the results
converge everywhere except at t = 0, as could be expected from the analysis of the pressure distribution.
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Figure 10: Forces on an impulsively started flat plate.
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9 Moment

The counterclockwise moment on the foil about the point z = 0 is seen to be

M=Rel f pzdzl (45)

Using the same technique as in the force calculation, we have:

|= Re | -^ [Iwzdz +ZiWzeA +2fir2a\ - Ĵ [^— -W+ifiz1 zdz +QWzeA I

= te\-jf wzdz- iiWzeA - 2Qr2gA - | f (j^j zdz +W f zdw +QWzcA I (46)
where again, we denote the integrals (I), (II) and (III) respectively. Note that additive constants in w will
give a contribution to (I), so it is important to formulate all the potentials w, so that the boundary condition
(12) holds. The first integrand is not analytic, and the contour decomposition that we used in the force
calculation is not applicable here, no general expression equivalent to (34) exists. Instead, the mapping
function will be substituted for z and the integral evaluated on the map circle C, where we may use the fact
that C= "*2/C- But first, (I) is further broken down into 5 parts:

! / wzdz = U / w\zdz + V l W2zdz + fi / w3zdz + ye / UMzdz + 7fc / wszdz

We shall refer to these intgrals as (I a) through (I e).

(la) j

Jvn'zdz = J iBiJ^oncK

5 I - !(-!+-<£:)(—<£) (*-?&)«
• /c(-f+<<+cT<;)(<+<<+cTc)(-?+(^w)«

J.

= 2jrt -aJCc + <Tr.

(lb)

*6r? -r\ - C a6'e C- r-C +'.J (r2_<2^3<»e 'cScT62 ' (r2_£2)2y -(r2_i2)3

In the last step, the integrand was expanded out in 12 terms that were individually evaluated by the residue
theorem.

4 '

(r?-62)2SCJ
(47)

IW2ZdJ=2jr [a^"a^ (jJ-TF +(tT^f) "2(r02Y<e ~r% +
s

(Ic)

W3zdz = 2t

OxO^'(r2-«52)
(48)

^v^-l^I.^ 2a8r262 *a« + r;
+ ——rmr - r

4^4_£4 a4 + r4-64
+ aV

(r2-62)2 (r2-62)2 (r? - 62)4 e 2{r2 - 62) (r2-<$2)3
(49)
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Figure 11: Integration contour for moment.

(I d) is difficult to evaluate, and in fact there is no need to. By arguing that a vortex introduced far
away should not affect the integral (I), we can set (I d)= —lim^_oo(I e).

(I e) Expanding out, this integral can be written

c hQktt-r2Kk)l C
«•&

o 2a-rfe a-r-C, , a2r2Cc aV

L C2(C + C0 (r? + CcC)2 (r2 + CcC)2 (C + Cc)(r2 + CcC)2
dC

Let g(Q denote the integrand. A partial fraction expansion of the 3rd and 6th term in the square
brackets yields, after collecting terms:

_,f» ,.-,. -MC-00 \A B C V S+H
™ gCfc(C " r2/Ck) U + C2 C+ Cc + C+ r2/Cc (C + rc2/Cc)

where

A = -ri + r-c-r
Cc2

B = -rfc-r>

r2a2 r2a4

Q (rj-S2)2

(r2-S2)2
r2d2„4_ 2a2Ce

- + -t2

C = -

V = -

£ = -
(r2-62)C

T =

•» 2

c;

It is now apparent that <j has a pole at C = —re/Ce> m addition to the singularities inside C and at
Cfc. The integration contour in the C plane is shown in Figure 11. The branch cut between the vortex and
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its image runs inside Cj, which intersects C at the point that maps onto the trailing edge, Q=• a —Cc- Cp
surrounds the pole at —re/Cc, and the contour is closed at a large distance by Coo- We have

JC JCoo Jcr JCt,

The vortex at 0t has a logarithmic singularity, which is too weak to give a contribution as C„ shrinks.

The terms of g that go like 1/Cin the far field are easily identified, and we get the following contribution
from Coo-

I </(0<*C =-2?rM +C+P+:F)log^
Jc~, *>*

The contribution from Cp is found from the residue of a first and second order pole:

iL+i.

- -H^'^f+:4'>+(£-^>(-^kt+-toe)]
The contribution from Q, can be evaluated using the fact that the logarithmic term in y(C) makes a

jump of 2jt from the upper to the lower bank of C». Thus

-r«(C-C0. d

"M^/Cc + CO

(g+^iog-r;(c-2^1}
Ct(C-r2/Ct)JJ<=_r|/(e

/ <7(cr* = r 2*
JCo Ja-te

A B_ C
C+ C2 +C+Cc +C+r2/Ce ' (C +-i/a2

v _ e + rc
<*c

This is a sum of elementary line integrals in C. running from a —Q to Cfc. The last term is conveniently
evaluated by integrating by parts, and we have:

Cc + Cfc/c/(CHC =2^,og-^-2,*(l-^)+2*C,og^
+ 2x(P + T) log

r2/Cc + a n_ £ + Hk ,„_£ + *•"(« "CO
==- —2tt- ^ + 2a-

a-Cc + r2/Ce Cfc + r2/Cc a - Cc + r2/Cc

Then, all the terms can be collected to find the integral (Ie):

f wszdz = 2*A\og!*—?- +2xB(j l—)-2nC
Js re VCfc a-Ce/

log
•r.Kc + CO

«0fc

+ 2;rP log izji±I£/£< +2,e (—=r+—=- l- -)Sr2/Cc +rc2/Cfc_ Vr?/Ce +r2/Ct a- Q+rf/CJ

+ ^ l'0g rVZe +re2/Cfc +l~CkTZ ~a- Cc +r2/CJ (50)

Upon taking the real part, the logarithmic terms cancel. This shouldcomeas nosurprise, since the logarithm
is a multivalued function. Now, employing the relation

r2 = (a-Cc)(a-Cc)

we get

Re u }-**Hh-7kh<4j^-<&3)+*(&;-%)}WnZdT
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B, £, J7 blow up as Cc — Oi so this expression is not suitable for the special case of a flat plate. With this in
mind, we can substitute and contract terms until we reach the following result:

Re IJwszdz> =2*Rel -re-Cc a-r;
•+ o3-«a-

Ck C*(C* + C0

(I d) Letting Ct —* cc in the above expression yields the integral (I d):

Re (J wAzdz\ =-2xRe (a2 - 62 +aCc +£^ }

«4Cc a2Cc , af ,
(52-r2)(<t +Q C*+Cc Qc+S2

a3Cc 1
2—?J

.51)

(52)

(II) The second integral in (46) can be evaluated by separating out the singular part of w at Cfc the same
way as in the case of force. The result is:

/s(S) ^ =̂ ^^rfffc
dt

(III) The third integral was found in the force calculation:

(53)

js j^zdz =2* [itf(r» -a2) -V(r2 +a2) -fi (r2C< +a2Ce -^rCc) +7cCc +7* (=J -G+='k)]
(54)

The moment can now be written in closed form:

- fiTT [2a4 +2a2(52T- 4*4 + a2(^-g2)-2r262
(r2-62)2

82262- r2 r2a4 9 9 4 0a4 + r4-64j
+a r« (r2 _ ^2)4 r2 _ 62 + r<=* +° rc (r2 _ £2)3 J

6r

*2)+ 2a

+ Vfijr

2a 4- r2 — 2 £i<l +r< %»-«» (r2_52)3

2ai - ri + 2
a

*> 6

r? - 52 (r2 - 62)3
r2a*

+ £^2* r2 +
' (r2-62)2

+ 2ff7ciZe|o2-52 +aC<: +^:^2-|

- 2'3«^i&i-cr-a(a +co+fl ~* "(*2-r2)(Cfc +Cc)"c7+T +aCe +̂ -^/

)^e |TF UcCc +£> (=jj*"<* +**) }+ 2*Re

Si
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In a more compact form:

M — —Um$\ - Vm62 —fim66 - f/2m2i + V2m\2
+UV(mn - m22) - {/fim26 + "/fimi6

+^L r2»5i -r(a2-62 +aCc +-jT^T)] "2,r52 +̂ {W(2t23 - TC,))
where

">61 = m16

7H62 = T126

m66 = "" 2a +2a (bn-bl) + 2a /r2_$2\2

,8.2 2*2 - r2 _ r^_ _, ,,a ^ 4 2a4 + r4 - 64
+*8r2/; '?,- -^tt + •#' + «v-(r?-*2)*. r2-62^ e c (r?-62)3

5, = ^^ei—+c^c7+lo +^2-r2)(Cfc+a +ct+Cc/
S, =2»S-»^{^*} (61)

(56)

(57)

(58)

(59)

(60)

(62)

Figure 12 shows that thiscalculation compares nicely with linear theory for an impulsively started flat plate
at a small angle of attack.

In addition to comparisons with linear theory for a flat plate, the algorithm has also been verified versus
direct numerical integration of the pressure. The results agree to whatever accuracy we are able to evaluate
the integrals.

10 Comments

By evaluating the integrals in the general expressions provided by Milne-Thomson, [MilneThomson60] we
have obtained formulae (36) and (56) for force and moment experienced by a Joukowski foil in a flow with
point vortices. The principal differences from previous work can be summarized as follows:

i

• The profile shape is a general Joukowski foil, compared to a flat plate in [Sarpkaya75], and a general
power series transform in [Graham80].

• The profile is allowed to perform arbitrary motion in a fluid at rest. This is more general than flow
over a stationary profile, which is kinematically equivalent in the case of translation, but precludes
treatment of rotation.

• The influence of a growingnumber of vortices have been retained in the time derivatives, removing an
0(\/A7) error, where At is the time step of the simulation.

• To the author's knowledge, no closed form expression has been published for the moment, even in the
special case of a flat plate.
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