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Abstract

The cut locus C, of a closed set A in the Euclidean space £ is defined as the closure of the set containing
all points p which have at least two shortest paths to A. We present a theorem stating that the complement
of the cut locus i.e. ENC,\A) is the maximal open set in (EM) where the distance function with respect to
the set A is continuously differentable. This theorem includes also the result that this distance function has
a locally Lipschiz continuous gradient on (EM). The medial axis of a solid D in E is defined as the union
of all centers of all maximal discs which fit in this domain. We assume in the medial axis case that D is
closed and that the boundary oD of D is a topological (not necessarily connected) hypersurface of E.
Under these assumptions we prove that the medial axis of D equals that part of the cut locus of 8D which
is contained in D. We prove that the medial axis has the same homotopy type as its reference solid if the
solid’s boundary surface fulfills cerain regularity requirements. We also show that the medial axis with
its related distance function can be be used 1o reconstruct its reference solid. We prove that the cut locus of
a solid’s boundary is nowhere dense in the Euclidean space if the solid’s boundary meets certain regularity
requirements. We show that the cut locus concept offers a common frame work tucidly unifying different
concepts such as Voronoi diagrams, medial axes and equidistantial point sets. In this context we prove that
the equidistantial set of two disjoint point sets is a subset of the cut locus of the union of those two sets
and that the Voronoi diagram of a discrete point set equals the cut locus of that point se  We present
results which imply that a non-degenerate C!-smooth rational B-spline surface pawh which is free of
self-intersections avoids its cut locus. This implies that for small enough offset distances such a spline
patch has regular smooth offset surfaces which are diffeomorphic 1o the unit sphere. Any of those offset
surfaces bounds a solid {which is homeomorphic to the unit ball} and this solid’s mediat axis is equal to
the progenitor spline surface. The spline patch can be manufactured with a ball cutter whose center moves
along the regular offset surface and where the radius of the ball cutter equals the offset distance.

Keywords : CAD, CAGD, CAM, Interrogation, Intersection, Finite Element Meshing

1 Introduction

The Medial Axis Transform in short (MAT) was introduced by Blum in [i] more than 20 years ago.
Since then, a great deal of research has been done on the MAT, see the literature review in section 2.
Initially the research performed on the MAT has mainly been from the vantage point of understanding
how it can be useful for pattern recognition (see [2]). During the past five years the MAT concept has
been employed in Computer Aided Design and Manufacture for:

¢ global shape interrogation
» global shape representation
e automated meshing algorithms

Although there exists extensive literature on the MAT which discusses mainly computational methods in
a variety of practically relevant cases, basic global and even basic local aspects of the MAT concept are
not sufficiently well understood. Here, for instance, the relations between the homotopy properties of an
object and the homotopy properties of its MAT have not yet been systematically analyzed. Although it
has been claimed occasionally (cf. eg. {2)) that the medial axis of a domain bounded by a simple closed
curve is simply connected, there does not seem to exist any proof for this statement. Even in the planar
case, there does hot seem 10 exist any result discussing if the medial axis is in general connected. This is
a severe gap because those topological relations often motivate the relevance of the medial axis for global
shape interrogation and representation. Moreover, intuition frequently offers no immediate clue telling
what conjectures are true. Therefore, in order to deduce correct results and construct proper proofs one
has to utilize tools of topology and global differential geometry. Until now, the research activities
performed in the whole MAT area have mainly focussed on computational techniques, and one misses a
systematical foundational investigation of the concept as a whole. One of the main goals of this paper is
to help fill this gap, and also to supply a systematical analysis of the above mentioned topological



properties. In our effort to make a systematical analysis of the foundations of the MAT concept we
investigate its relation 1o the concepis of cut loci, equidistantial sets, and Voronoi diagrams, We show that
the cut locus concept otfers a common frame work lucidly unifying different but related concepts such as
Yoronoi diagrams, equidistantial sets and medial axes, We want 1o point out that the distance function
and its differentiability properties play a crucial role for many considerations in this paper.

There is one aspect which makes the MAT problem particularty interesting for the research in Computer
Aided Geometric Design, namely the fact that it requires and integrates difficult intersection
computations, offset computations and distance function computations. Therefore MAT computations are
a challenging test bed for the most fundamental tools in geometric modeling.

We give now a summary of the main results of our paper:

The cut locus €, of a closed set 4 in the n-dimensional Euclidean space E" is defined as the closure of the
set containing all poinis which have at least two shortest paths (minimal joins) to A. The medial axis
M(D) of a connected solid D in £" is defined as the union of all centers of all tnaximal discs which fit in
this solid. We assume in the medial axis case that D is closed and that the boundary D of D is a
topological (not necessarily connected) hypersurface of £7 . We prove in Theorem 1 that:
Under these assumptions the medial axis of D equals that pan of the cut locus of 90 which is containad
inD.

This theorem ! as well as the two subsequent results illuminate that the cut locus concept offers a
common framework unifying different concepts such as equidistantial sets, Voronoi diagrams, and medial
axes. Namely we prove and discuss Theorem 6:

The equidistantial set of two disjoint closed sets A, 8 is a subset of the cut locus C g
We also show and discuss Theorem 7;

The Voronoi diagram of any discrete set P of poinis in R" equals the cut locus C,, of the set P.
P

There exists a practically important characterization of the complement of the cut locus of any closed set
A in E” via differentiability properties of the distance function d(4,x) which describes the distance of a
variable point x to the set A. For thig let FAG denote the set theoretic difference of any two sets F,G i.e.
F\G is the subset of F obtained after removing all those elements of F which are also contained in G.
Then by Theorem 2 we have:
The sct £"\(C,uA) is the maximal open subset of E"\A where the distance function d(A,x) is
Cl-smooth. The gradient Va(A, x) is locally Lipschitz continuous on E"\(C L A).
We present several basic topological results on medial axis and cut locus which answer open questions in
this area. We show the Topological Shape Theorem of the Medial Axis (Theorem 8) which says:
If 8D is a C2-smooth manifold or if 3D is a one-dimensional, piece wise C2-smooth manifold then the
medial axis M(D) is a deformation reaact of D, hence M(D) has the same homotopy type as D.
Consequences of this theorem are that M(D) is path connected as D is path connected and M(D) is simply
connected if and only if D is simply connected. The local structure of the cut locus Cyp is addressed by
the next result Theorem 3D which holds under the same conditions for D as in theorem 8:

The cut locus of ¢D (and hence the medial axis M(D) ) is nowhere dense in E”.
This means Cyp, together with its limit points cannot contain any (arbitrarily small) n-dimensional disc.

The preceding result does not hold if 3D is only a CZ!-smooth manifold with Lipschitz continuous first
derivatives. However under those weaker regularity assumptions for D we have Theorem 5 :

The cut locus Cyy, of 3D does not meet the set 3D.
We even show the following stronger result (Theorem 4):



Let fluv): [0,1] % [0,11 > R? be a non-degenerate C!-smooth representation of a surface § which is free
of self-intersections. Non-degenerate means that the Jacobian of f{u,v) has rank 2 everywhere. We assume
also that the partial derivatives d,_f(u, v).d flu,v) are Lipschiz continuous. Under those assumptions the
distance d(S,C,) between S and Cy is larger than some positive number £(S).

In view of the above characterization of the cut locus via differentiability properties of the distance
function, the last theorem proves that the distance function d(S, x) is Cl-smooth in a neighborhood around
§ for all points with 0 < d(S,x) < i(S). This implies the practical property that offsets to § with offset
distance smaller than {(S) arc non-degenerate C l_smooth manifolds. It shows also that a Cl-smooth
non-degenerate rational B-spline patch § which is free of self-intersections avoids its cut locus. This
implies (Corollary 4.1) which says:

For every small enough offset distance the above spline patch S has a regular Cl-smooth offset surface

which is diffeomorphic 1o the unit sphere. This offset surface bounds & solid ( homeomarphic to the unit
ball ) whose medial axis is equal to the progenitor spline surface S.

In practical terms corollary 4.1 states that the spline patch § can be manufactured with a ball cutter whose
center moves along a regular offset surface and where the radius of the ball cutter equals the offset
distance.

The general problem of reconstructing the solid D by using its medial axis M(D) is addressed in the
subsequent result employing the (real valued) maximal disc radius function
r . M(D)-sR. This function assigns 10 any point xe M(D) the radius r(x) of the maximal disc K(x, r(x))
contained in D. We show the Reconstruction Theorem (Theorem 9) which says:

If for a solid D the medial axis M(D) and the maximal radius function r: M(D) — R are given then it is

possible to reconstruct the solid .  Namely D= o K(x,r(x)).
xe M(D)

This paper is structured as follows. In section 2 we give a survey of previous work on the medial axis. In
section 3 we present definitions, characterizations and various various local results for Cut Locus, Medial
Axis, equidistantial sets and Voronoi sets. In subsection 3.2 of section 3 we show that the cut locus avoids
certain reference sets and we draw conclusions from this result among those that offset surfaces of a
spline patch are Cl-smooth for sufficiently small offset distances. In subsection 3.3 we investigate the
relation of the cut locus to equidistantial sets and Voronoi diagrams, We show that the cut locus concept
offers a common framework unifying different concepts such as Voronoi diagrams, equidistantial sets and
medial axes. We show that the equidistantial set of two disjoint sets is a subset of the cut locus of the
union of those two sets. We also prove that a Voronoi diagram is the cut locus of a discrete point set In
section 4 we present global results on the medial axis. We prove in subsection 4.1 that under appropriate
assumptions for a solid’s boundary the medial axis has the homotopy type of its enclosing solid. In
subsection 4.2 we show that the medial axis can be used to reconstruct the engulfing solid. The appendix
contains two lemmata. The first is used as a crucial part for the homotopy result in subsection 4.2, The
second describes propertics of cut locus points if the reference set is a closed surface being the union of
planar facets.

2 Survey of Previous Work on the Medial Axis

The concept of the equidistantial point set with respect to two reference sets is basic for the concepts of
cut locus, medial axis and Voronoi diagrams. The concept of the equidistantial point set is as old as
geometry. Euclid used the concept of the equidistantial point set of two distinct points or straight lines in
the plane. Apollonius defined the parabola as the equidistantial point set of a point and a straight line in
the plane. The concept of equidistantial loci in the context of discrete point sets goes back at least as
early as the work of Voronoi [43], his name being usually associated with the concept of a Voronoi
diagram. The concept of the Cut Locus of a single point on a surface is due to Poincare [32], which he



called in French "ligne de partage”. However prior to Poincare the concept of the cut locus of a point on a
surface occurs at least implicitly in Mangoldt’s paper [22]. There has been a lot of work in Riemannian
Geometry using the cut locus of a single point in particular for the investigation of geodesics and
positively curved Riemannian manifolds, for an overview see e.g. [35],[17], [45] and the lists of
references given there. The concept of the Medial Axis Transform (which is also called symmetric axis
or skeleton) appears to have been introduced first by Blum in {1] as a method to describe and recognize
biological shape, see also Blum's extensive article (2].

There exists a considerable body of literature on algorithms to compute the medial axis of a planar
polygonal domain or of & planar domain bounded by circular arcs and polygons see e.g. Montanari {24],
Preparata [33}, Lee and Drysdale [20], Lee (21], Yap [46], Gursoy [8], Patrikalakis and Gursoy [30]. The
amount of research done in the three dimensional case is smaller. Here we have the work of O'Rourke
and Badler (28]. Motivated by work of Blum and Nagel [3] in the planar case, Nackman was the first to
derive curvature relations between the curvature of the medial axis axis surface and the curvature of the
boundary surface see Nackman [25] and Nackman and Pizer {26]). More recently, Hoffmann [12],
[13) and Dutta and Hoffmann in [6] compute equidistantial curves and surfaces. Nackman and Srinivasan
(27] investigate bisectors of linearly separable sets. Hoffmann and Vermeer {14] present systems of
equations defining equidistantial curves and surfaces where they eliminate extraneous solutions in curve
and surface operations.

The author introduced the concept of the cut locus for arbitrary closed sets in a Riemannian manifold with
and without boundary [45]. Motivated by his work in [44] he could show that even under those very
general assumptions and under the weak requirement of Lipschitz continuity for the Riemannian metric
the cut locus can be characterized through differentiability properties of the distance function, cf. [45]. As
a special case see also theorem 2 in this paper.

During the past five years there has been an increasing interest in the medial axis area by researchers
involved in geometric modelling and computer aided design, analysis and manufacture. There are several
reasons for this. First the medial axis appears to be useful for the extraction of gross features of a two or
three dimensional solid cf. ¢.g. Rosenfeld {36}, Patrikalakis and Gursoy in [29] and [30]. Further the
medial axis appears to be an appropriate preprocessing tool for automated finite element mesh generation
on topologically complicated two and three dimensional domains, cf. e.g. Srinivasan, Nackman, Tang,
Meshkat in {42], Gursoy {8}, Gursoy and Patrikalakis in{9]. This relevance as an appropriate
preprocessing tool for topologically complicated domains is corroborated by the observation that
numerical medial axis computations of complicated two dimensional solids yield objects which have the
homotopy type of the enclosing domain ¢.g. the same number of holes, ¢f. Srinivasan, Nackman {41] and
Gursoy [8]. Held [10] develops and applies the concept of equidistantial point sets and Medial Axes and
Voronoi diagrams in numerical control 2.5 D machining applications. Held’s book [10] as well as the
thesis by Gursoy [8] provide extensive references in this general area and its applications.

3 Definitions, Characterizations and Local Results for Cut Locus, Medial Axis,
Equidistantial Sets and Voronoi Sets

3.1 Review of some Concepts used in the Paper

To make the paper self-contained and more easily readable we review here some concepts from point set
topology, differentiable manifolds and analysis which are used very often in this paper. We don’t give
the most general definitions of the concepts, but explain only the meaning within the scope of this paper.
For more background on point set topology see ¢.g. Hu [15] or Kelley [16], for algebraic topology and
differential topology see eg.  Spanier [40], Massey [23] or Guillemin and Pollack [7], Hirsch



[11] respectively.

An open subset G of R" is characterized by the property that for every point xe G there exists a positive
number ¢ such that the disc {ye R"||x—y| <€} is contained in G. The interval (0,1)={se R |0 <s< 1}
is an open subset of R1.

A point g is a limit point of a set C < R" if there exists a sequence of points x,, e C converging to g. A set
may not contain all its limit points eg. the point 0 is a limit point of the interval (0,1) but O is not
contained in (0, 1). A closed subset C of R" is characterized by one of the two equivalent properties:

1) The set C includes all its limit points.

2) The complement RM\C is an open subset of R”.

The sets {se R1 10 <5}, {(x,)e R2| 0Sx, 05y} are closed subsets of R, R, respectively.

A subset BcR" is called bounded if B is contained in some finite disc [ye R"||0 -~ y| < d} with radius
d. The sets (0,1), {se R |0 < 5} are bounded and unbounded subsets of R! respecively.

A subset X of R"is _compact if and only if X is closed and bounded. Hence the set {se R10<s5<1}is
compact while both of the sets {se R |0<s}, {seR|0=s5<1} are not compact. Compact sets have
the property that continuous real valued functions attain a finite minimal and maximat value on them.

A subset D of § is dense in the set § if every point in § is a limit point of D. The rational numbers are a
dense subset of the real numbers because every real number can be approximated by a sequence of
rational numbers. A set AcR" is nowhere dense in R” if D is not dense in some n-dimensional disc
{xe R"||x—g|<e]. Letthe set A be a subset of R". A function f: A — R" is continuous in some point
g€ A if for any sequence of points g, € A with limit point ¢ the sequence of function values f{g,,) has the

limit point fg). Let A8 be subsets of R™, R™ respectivety. A function f:A— B is a homeomorphism if
the function f is continuous and has a continuous inverse. Two subsets A, B of R”, R™ respectively are
called homeomorphic or are said to have the same homeomorphy type if there exists a homeomorphism
fiADB,

An unbordered. k-dimensional topological submanifold S of R™ (with 0 € k <€ n) is characterized by the
property that for every point ge S there exists a positive number & such that for the disc
K°g.e)=|{xe R"||x - q| < &} the intersection K%{g.&)S containing ¢ ( and being a neighborhood of q
in S ) is homeomorphic to R¥. A _k-dimensional topological submanifold § with boundary 3S_is
characterized by the properties that:

1) For every boundary point p € oS there exists a positive number & such that the intersection K%(p,£)\S
containing p (and being a neighborhood of the boundary point p in S) is homeomorphic to the k-
dimensional halfspace H* = {(x,,...,x,) € R¥|x, 20}.

2) The set S\3S is nonempty and for every every point g€ S$\dS there exists a positive number 8 such that
the intersection K%g, d)S containing ¢ (and being a neighborhood of the non-boundary point q in S ) is
homeomorphic to R*.

The sets Oy = ((x;. 0. 33)€ B3| |x;| <« L, =23 =0}, Op={(x;.x0.03)€ R?| |32+ 2| < 1, %3=0],
O3 = (¥ X0 53 )€ B3 %)% + 1,2 + ;2] < 1 ) are one-, two-, three- dimensional submanifolds of R3

respectively, and all three of those submanifolds have no boundary. The sets
By=((x;. . 53)e R* | |x)| S L xp=x,=01}, By = {(x;, %, %3) € R3| |22 +5,2[S1,13=01},
By = {(xy.x.X3)€ R?| |x;2+ 2,2 + x4%|S 1) define bordered! one-, Iwo- and three dimensional
submanifolds of R3 respectively. Their boundaries are 6B, = {(x,0,0)e R3[|x‘ =1},

1\We are using the terminology bordered manifold as a synonym to manifold with boundary.



0By = {(x},05,0)e R¥[ |x 2+ ;2| =1}, 3By = {(x. x5.03) € R3| |12 + 5,2+ x32] =1} where 38,, 3B,
represent a unit circle and a unit sphere in R3 respectively.

Let A be any subset of R”. Any function f:A—R™ is Lipschitz contiruous on A with some Lipschitz
constant L if for all points x,ye A we have [fx)-fy)|< L|x~y|. It is easily seen that a Lipschitz
continuous function is continuous in all points of its domain of definition. However a continuous function
need not be Lipschitz continuous, an example being the function A(x)= +Vx defined on the interval
[0,1]= (0 < x< 1}. All CO-smooth rational B-spline functions are Lipschitz continuous. A function f is
locally Lipschitz continuous on a domain D if for every point p e D there exists a number € such that the
function fis Lipschitz continuous on DK°(p, £ ).

The notation C¥ - smooth will refer to functions which have continuous partial derivatives of order k.
The notation CEI - smooth will refer to functions which have Lipschitz continuous derivatives of order
k. The function f:R — R defined by fx) =0 for x< 0 and flx) =2 for x 2 0 is Cl-l-smooth but not C2
smooth. All rational B-spline functions (with simple knots) of degree k& in each parameter are
C*1_smooth.

A k-dimensional, C'-smooth submanifold § of R" is a k-dimensional, topological submanifold of R”? with
the property that for every point pe R” there exists a positive number € such that:

There exists a homeomorphism 4: D = (xe R*| |0-x| < 1 } - 8K°%p,e) with p € A(D); the map 4 has
continuous partial derivatives of &k -th orderon D and the Jacobian matrix & (x) has rank & every where
on D . Any C"-smooth k-dimensional submanifold §; of R” can be locally represented by solutions of
(n-k) (generally non-linear) equations described by n—k C'-smooth functions. This means for every point
xe S, ihere exists an open set I/ in R and a C'-smooth function ¢: U — R™* whose differential has rank
n—kon all U and xe UNS, =e~10). Using the implicit function theorem (cf. e.g. [5] } it is easily seen
that for any open set I/ < R” and for any C™-smooth function e: I/ = R"* whose Jacobian ¢ has rank n— k
on all U the preimage set ¢! (0) defines a # — k dimensional C”-smooth submanifold of R".

We also need to explain smooth functions defined on submanifolds which are not open subsets of R™. For
this let §; be any C*.smooth m-dimensional submanifold of R”. A continuous map _f:$; R is
C'smooth  if for every point xe S, there exists a positive number £ and and a C*-smooth
homeomorphisms 4:K(0, 1) - K(x,£)"\S;, xe K(x,£)N\S with the Jacobian h'(z) of rank w on all X(0,1)
such that the composition map foh: K(0, 1)—> R* is C"-smooth on a.l.l K(0,1). The differential of map f has
rank w at x if at the preimage point z=A"1(z) the Jacobian (foh)(z) has rank w. Let S, be any C*-
smooth m-dimensional submanifold of R” and let S, be any C’- smooth m-dimensional submamfold of R4
then amap f:§] 5§, is a_C'-smooth diffeomorphism if fis a homeomorphism and if the map f as well as
its inverse f~! are both C'-smooth. These conditions are already fulfilled if the map f is a C’-smooth
homeomeorphism whose differential has rank 7 on all §;. Two smooth submanifolds S, S, of R",R™
respectively are C”- diffeomorphic if there exists a C-smooth diffeomorphism f:§; = §,. The mappings
w(x,O.l) =(3,1), ¢(x.0,1) = (x,1) define homecmorphisms between the two C™-smooth submanifolds

= [(x0.1)e R¥ | xe R}, S, = {(x,1)e R? | xe R} of R3, R? respectively; here the map ¢ is a C*-smooth
dxffeommphlsm while  is not even a Cl-smooth diffeomorphism. Note that the inverse y— 1 s
continuous but not locally Lipschitz continuous, due to the fact that the Jacobian y'(0,0)=0. Let S!
denote the unit circle being a C-smooth submanifold of R2. Let r(x,y),¥(x,y) be polar coordinates in R2.
The map B:S! — 5! with B(x,y) = (cos(2Y(x.y) ). sin( 2¥(x.y))) is C=-smooth and its Jacobian has maximal
rank on all §'. This map B is locally invertible this means here thar a mapping defined by restriction of B




to any sufficiently small subarc %{Sl yields a diffeomorphism onto the image set of the small subarc.
However B has not the global property to be a homeomorphism. Let Sy={(x0)e RZ|xeR },
Si={(x.fx))e R? |[fxy=0 for x<0, fx) =x2 forx20 }. The map Q(x):S3-S, provides a
¢l-smooth diffeomorphism between both submanifolds of RZ, However both submanifolds are not
CZ-diffeomorphic submanifolds of R2. Note also that the fact that a submanifold is diffeomorphic to some
other submanifold does not say much on how complicated any of those submanifolds has been embedded
in a Euclidean space. For instance a knotted curve K in R3 is a submanifold of R diffeomorphic to the
unit circle in R3, however the curve K may be embedded in a complicated way into the ambient space R3,
Note in this context that a diffeomorphism (or homeomorphism) between two submanifolds S,, S, of R"
need not be extendable to a diffeomorphism (or homeomorphism) of R” to itseif. An example for this
situation is provided by a closed knotted curve X in R3. The curve K is diffeomorphic to the unit circle in
R3, however no homeomorphisms between K and the unit circle in R3 can be extended to a
homeomorphism of R to itself, sce e.g. Hirsch [11].

We shall use also one-dimensional piecewise smooth submanifolds of the Euclidean plane RZ, A
piecewise possibly disconnected one-dimensional Ck-smooth submanifold S is a topological
submanifold of 82 with the subscquent additional property:

For every point peS§ there exists a positive number € and a homeomorphism
3 Ko (-1,00000, 1) 8nK%p,e) such that pe A((-1,0]V[0,1)) and each of the functions
h:(=1,01>R?, h:(0,1]>R2, is C*-smooth and has non-zero first derivative on its respective domain
of definition (-1,0], [0, 1).

Note that, the two paths A( (-1,0] ),A( [0,1) ) will generally not have collinear tangents at the _vertex
point A(0). Polygons which are free of self-intersections can be used to get one-dimensional piecewise
C*=-smooth submanifolds of RZ. Another example covered by the definition is given by the union of the
two subsequent paths {(7,2)e R2) 0<t<oo }, {(50)e RZ| 0< <o }.

3.2 Definitions, Characterizations and Local Properties of the Cut Locus and the Medial
Axis

The MAT of a closed planar region B bounded by a curve has been defined by Blum to be the union of

the centers of all maximal discs (which fit inside B) together with the radius function, defining the radius

of a maximal disc for a point in M(B). Therefore, in the sense of Blum

Definition of the MAT: The MAT of a planar region B is a real valued function
nM@B)>R
together with its domain of definition M(B); the set M(B)} — B is called the medial axis or symmetric

axis or skeleton of B. A point pe B is contained in M(B) if and only if there exists a closed disc

Kip.rp))
with center p and radius r(p)}, which is not contained in a larger disc W with

Kprip)) cWcB.
Blum defined the MAT concept initially for a domain in the Euclidean plane. We will generally assume

that the set B is a bordered n-dimensional submanifold of the n-dimensional Euclidean space. For some of
the results in this paper we need to make specific continuity requirement for the boundary dB like e.g.

ZA subarc of length smaller than 7t is sufficiendy short.

3We shall often use the notation (~1,0], [0,1) for the intervals {se R| -1 <s<0 ), {s€ R| 0S5 < 1) respectively.



being a piecewise C2-manifold.

Redefinition of the MAT: Note that we extend Bium’s MAT definition in the following way:
¢ We include in the medial axis M(B) also all limit points of all centers of all maximal discs,

» We redefine the preceding function r; M(B}— R by r(p) = d(p,dB)} i.e. r(p) is the distance of the
the point p to the boundary 98,

This yields a well-posed definition of the function r(p) also in case the point p is a limit point of centers of
maximal discs in B. This redefinition yields a continuous function r: M(8 ) — R and Lemma 2 below will
prove that this redefinition of r(p) is consistent with the preceding one. Namely this holds by Lemma 2
because if a point p is a center of a maximal disc K in 8 then the radius of K equals the distance of p to the
boundary oB.

We explain now why the redefinition of the function ~: M{B)— R is important, For this note that in case
the boundary 9B is only a C!+!-smooth manifold then a limit point p,, of centers of maximal discs need not
be a center of a maximal disc in B. Hence for such a limit point p, the function value Hp ) cannot be
defined as the radius of the maximal disc in B with center p, as p, need not be center of 2 maximal disc.
However we need to assign a value to r(p,) if we want to include limit points into the medial axis
transform concept.

Example 1: We explain now an example of a planar domain with ¢!l- smooth boundary where a limit
point of maximal disc centers is not a center of a maximal disc in the domain. For this purpose we define
the function f: R — R by fix) = (1/2)¥*sin(1/x) if x 20 and f{x) = 0 for x < 0. The domain B is defined by
all points above the graph of the function fx) i.e. the set B= {(x,y)e R%| ¥ 2 fix) }. The function fx) is
Chlsmooth, For x>0 the fist and second derivative of fx) are given by
£ = 2835in(1/x) - (1/2) Peos(i/x) and 7 (x) = 6aZsin(1/x) + (1/2)sin(1/x) respectively. The function
fix) has infinitely many local minima on each interval between 0 and any positive number. Let x,, be
such a minimum. Let Ra be a ray which starts at (x,,,f(x,)). We assume that Ra is parallel to the y-axis
and that Ra points into the domain B. The ray Ra contains a curvature center ¢, which is located
arbitrarily close to the axis {(x,y)|y = 1/2} if x, is sufficiently small; the point ¢, is a curvature center
respective the point (x,.,fx,.)) on the curve x — (x,f{x}). It can be shown that those curvature centers ¢,
are centers of maximal discs respective the domain B. This ¢laim can be verified by elememary
estimations®.- With x,, converging to 0 the corresponding sequence of maximal disc centers has a limit
point { on the y-axis precisely {=(0,1/2) . This point { cannot be a center of a maximal disc in B because
the (candidate) disc K(I,0.5) (with center ! and radius 0.5 ) is subset of the larger disc K((0,1),1) (with
center (0,1) and radius 1 ) which is easily shown 1o be contained in B. Similarly if X((0,1),1) is subset
of B then no point in {(0,y) | 0<y< 1) can be center of a maximal disc in B. The claim that the disc
K((0,1),1) is subset of B follows from the subsequent inequalities which can be easily verified:

For0sx<1 is 1-V1I-x22/20x22 12 A sin(1/0) (1)

Therefore the two-dimensional bordered submanifold B<RZ (with 98 being C!l-smooth) contains
centers of maximal discs with some limit point 2ot being center of 2 maximal disc in B. This establishes
the properties claimed for our example.

As we shall see later in theorem 1, the medial axis is a special subset of the cut locus concept studied in

“Note that the ray Ra carmot be a distance minimai path to 958 after the ray has passed through c,,. Therefore the segment seg
of Ra bounded by the two points ¢,_, (x_,f{x_)) must contzin a non-extender point explained in the definition below. By lemma
1 below, a non-extender is a center of a maximal disc. Therefors the segment seg contains a center of a maximal disc, Those
centers of maximal discs must have some limit point on the y-axis between the two values 0, 0.5 .



[45]. Therefore, we can successfully apply results from [45] in this context. For this we introduce the
following notaton:

Definition: A point p € R" is called non-extender relative to the closed set A, if there exists a minimal
join from A to p which cannot be extended as a minimal join beyond p.

Example: The midpoint of the unit circle S! is a non-extender relative to S! in the Euclidean plane R2,

Using a simple estimation employing the triangle inequality it is easily seen that the preceding definition
of a non-extender point yields immediately the subsequent corollary.

Corollary 1: If a point ge R" is a non-extender with respect to some closed set A R”™ then no minimal
join from A to g can be extended distance minimally beyond q.

Using the concept of non-extender points we define next the cut locus with respect to a reference set.

Definition : The cut locus C, of a closed set A cR™ is then defined as the set of all non-extenders
relative 10 A together with ail limit points.

We want 10 give a result which relates the cut locus with the medial axis. For this purpose, we need to
explain for what kind of sets B in R™ we want to define the medial axis. Note while we have defined the
reference set A for the cut locus to be very general namely any closed set’ we shall be more restrictive for
the reference set B of the medial axis. Unless stated otherwise, let us from now on assume that B is
always a closed bordercd n-dimensional topological submanifold of R™ assume that the non-empty
boundary 0B of B is a a—1-dimensional topological manifold.

The preceding conditions imply

Proposition 1: The boundary 98 separates B and its complement R*\8. This means if we join any point
p € B with any point ¢ € (R™\B) by a continuous path ¢(t) : [0,1] - R"

where c(0) = p, c(1) = q, then there exists at € [0.1] such that c(t )€ 35.

Proof of Proposition 1 : We argue by contradiction. Therefore we assume that the whole path ¢{0,1] does
not meet the boundary 98. Hence ¢[0,1] is contained in R™dB. Thus ¢{0,1] c(BBXAR™B). Therefore
the interval [0, 1} is represented by the subsequent union of two preimage sets c~1(BOBY U~ (R™B). As
(B\3B), (R™B) are both open sets in R their preimage sets ¢~ 1(8\9B), ¢~1(R™B) are open sets as well
because the map c(f) is continuous. Clearly those two preimage sets are also disjoint ie.
cUBOB)~c~(RMB) = @ because (BNIB)N(R™B)=. The two preimage scts are both non-empty
because Oe ¢~ 1(B\9B) and 1 ¢~ {(R™B) as by assumption ¢(0) e (B\dB) and c(1) e (R™\B). This means
that the interval (0,1} can be represented by the union of two open, disjoint, non-empty sets
c~1(8\9B), c-1(R™B). This implies that the interval [0,1] is disconnected (cf. eg. [15]), a contradiction.
This proves proposition 1.

Under the above stated assumptions for B, we can conveniently characterize the medial axis as a subset of
the cut locus. Namely we have:

Theorem 1: (Medial Axis as Interior Cut Locus of a Solid’s Boundary)

5A closed set may be completely disconnected and may have many components being isolated points, isclated curves and
surface pieces.
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Let B be a closed bordered n-dimensional topological manifold of the n-dimensional Euclidean
space and assume that dB is a topological #—1-dimensional manifold. Then the medial axis
M(B) equals the subset of the cut locus Cyp which is contained in B, i.e. M(B}=C;pNB.

In other words, the medial axis of a solid B is that subset of the solid’s boundary cut locus which is
contained in the solid. Theorem 1 is a consequence of the combination of the subsequent Lemmata 1 and
2.

Lemma 1: (A non-extender is a center of a maximal disc )
If 38 is a topological n—1-dimensional manifold being boundary of a closed solid body B in R then a
point Q € B being a non-extender respective d8 is a center of a maximal disc contained in B.

Proof of Lemma 1 : There exists a minimal join s, from 98 to q. This segment s, is distance minimal
from the boundary 98 to q and s, and joins some boundary point P € 0B with ¢q. Thus,

d(q,08) = d(q.py) (2)

By assumption of the lemma 1 s, cannot be extended distance minimally beyond q. We claim that
the disc K(q, d(p, .q)) is a maximal disc contained in B. 3)

In order to show (3) we first prove
K(q.d(p.q))cB @

In order to prove (4) we argue by contradiction. Namely assume K(q,d(p,,qQ)) contains a point we R™\B.
Join q with w by an arc-length parametrized Euclidean segment c(t) with c¢(0)=q, c(d(q,w))=w. By
proposition | the segment c¢(t) necessarily meets the boundary 0B in a point ¢(z,). The point

c(t,) #c(d(q.w)) =waswe R™\B is not on the boundary dB. Therefore
d(q,0B) < d(q,c(t,)) < d(q.w)<d(q,p,) (5)

a contradiction with (2). This proves (4). The next claim we want to establish is that:

K(q,d(p,.q)) is a maximal disc contained in B. {6)
To prove (6) we have 10 show that:
K(q.d(py.q)) is not contained in any disc

K(7.r)cB (N
with 7 > d(p;.q).

To prove (7) we argue by contradiction. Namely assume that (7} is not true. Then there would exist a disc
K(q.r)cB with r > d(py,q) .
andK(q.d(p.q))<K(q,r) (8)

We show now first that in this case
r=d(q.py) 9

Clearly r 2 d(§,p)) because otherwise (i.e. if r < d(g,p, ) ) the point p; would not be contained in X(7,7)
and this would yield a contradiction with the assumption
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made in (8). Therefore in order to establish (9) it remains to show
r<dg.p,) (10)

In order to show (13) we need the subsequent assertion:

Any arbitrarily small disc K(p,.€)contains points of R"\ B (an
The claim (11) holds because p; is in dB. To make the latter reasoning for (11) formally precise we derive
now a contradiction from the negation of (11) which will prove (11). For this note if K(py,€)c<B then
Ko(py.&f2)={xe R*| |x-p | <&/2} would be a neighbourhood around p, in B. Now Ko(p,,ef2)is

homeomorphic to R and not homeomorphic to the halfspace H™ = { (x},....x / x! 20 }5. However (if B
is a bordered manifold then ) a boundary point p, € 0B cannot have a neighbourhood &/ <8 with U being

homeomorphic to R™. This yields a rigorous argument for (11).

Using (11) it is now easy to cstablish (10). Namely assuming r > d(gq,p;) we conclude that there exists a
positive number £ such that:

K(py.e)cK(q,r) (12
Thus, by (11) X(g, r) must contain points of R*"\B a contradiction with the assumption K(gq,r) <B in (8).
This shows (10) and completes the argument for (9).

After this intermediate step we proceed now with the proof of (7). Denote with S(§ ), S(q) the spheres
being the boundaries of the discs K(§,r), K(g,d(p;.q)) respectively.

Assume now that the center of X(g.r) is not contained in the extension of the ray z which starts at p,

and passes through q.” Then the two spheres S(q), S(@ ) either intersect transversally at p, or they have
only the point p; in common. In both cases there exist points on §(g) CK{q.d(p,,q)) which are not in

K(g,r), hence a contradiction with the assumption K(q,d(p,.q)}<K(q,r) in (8). Thereforc § must be
contained in z. Let the ray z be paramelterized by arc length z(t) with z(0)=p,. There must exist a number

T such that z(i) =7 . Clearly T = r . We want to prove that

r=dp1.q) (13)
Now if F < d(p,q) then K(g.r) could not include all points of K(q.d(p,.q)) a contradiction with (8).
Therefore T 2 d(p,, q). Thus, it remains to exclude the possibility that

r>dp,.q) (14)

For this we argue again by contradiction and we assume that (14) is true, hence there exists a positive
number 9 such that

Now K(z(T),r)=K(q,r)cB. Therefore with considerations similar to the one proving (11) above we
find that the open disc

K%(z(d(py.q)+3).r)={x e R*/|x = z(d(py.q) + 0) | < d(p{,q) + &}
contains no points of the boundary dB. Thus

St is a well known result from algebraic topology that R” and H™ are not homeomerphic, see e.g. [39], [40]

The ray z is an extension of the interior normal of the sphere 5(q).
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d(3B,2(d(p,,q) +8) ) 2 d(p;.q) +8 (16)

Therefore the segment z; = { 2(0)/0 <t < d(py,q) + 0} is distance minimal from § = z(d(p;,q)+ 3 ) to the
boundary dB. This segment Z contains ¢ =z(d(p,,q) ) as an interior point. Thus the minimal join
;= (/0 <t<d(p;.q) } going from from dB to q can be extended as a minimal join beyond q. This is
a contradiction with the assumption stated in lemma 1 that q is a nonextender with respect to the
boundary dB. Therefore it disproves (8) and shows (7). This proves (6) and completes the proof of lemma
1.

Lemma 2: Let B be a closed solid body in R" with boundary 98 a topological (n-1) dimensional
manifold. Let K(gq,), r >0 be a maximal disc contained in B. Then the center g of this disc is a
non-extender respective 08 and the radius 7 = d(q, 3B ).

Proof of Lemma 2 : The proof is performed in two steps. In the first step we prove that there exist
boundary points nearest (o q and that all those points are located on the boundary of the dis¢ K(q,r), i.e.
they all have distance r to q.

Therefore in the first part of the proof of step 1 we show that:

There exists a point p € dB with d(g,p)=d(q,08). a7
The second claim in step 1 can be rephrased by the conclusion:
If g € dB with d(p,q) =d(p,dB)then d(p,g)=r (18)

In the second step of the proof of lemma 2 we shall show that the assumption g being an extender
respective @8 can be used to disprove the maximality condition in lemma 2. In other words we show if g
is an extender respective dB then we can find a disc D contained in B where D contains also K(q,r) as a
proper subset. Thus, step 2 will establish lemma 2.

We show now the claims of step 1. The distance function x — d(q,x) is continuous and the boundary 38
is compact. Therefore the distance function attains its minimum in some boundary point p € dB. This
proves (17).

We show now (18). For this we first prove that

dp.qrzr (19

Assume the contrary of (19) then there exists a point of 9B in K%q,r)={ye R*/ly-¢q|<r}. This
implies using the argument for the proof of (11) that there exist points of R\ B in K%q,r). This yields a
contradiction with the assumption of the lemma that X(g,7)cB . This shows (19). Next we prove

dpg)sr 20

For this assume d(p,q) > r; then there exists a positive number € such that K(q,r+ £) contains no points
of ¢B. This implies that

K(q.r+ €} contains no point e R"\8 (21)

because otherwise by Proposition 1 the Euclidean segment joining g € B with ee R"™\B would meet dB
in K(g,r+ €). This would yield a contradiction with the preceding statement that K(q,r+ €) contains no
points of 8B. This shows (21). Now (21) implies that K(q,r+ €) is contained in B. This is a contradiction
with the assumption of the lemma that K(q,r) is a maximal disc contained B. Thus we disproved
d(p,q) > r and have shown (20). This completes the proof of (18) and establishes the claims contained
in the first part of the lemma’s proof.

We give now the argument for the second siep of the lemma’s proof. For this let ¢(f) be an arc length
parametrized Euclidean ray which stans at the boundary point p described by (17) and passes through q,
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hence c(0)=p and c(r)=q. It follows from (18) that the segment c([0,r]) is a distance minimal join from oB
to the point q. Assume now that q is an extender with respect to 4B. Then there exists a positive number
8 such that ¢([0,r+ 8) is a distance minimal join to dB. This implies obviously that

D =Ko(c(r+8),r +8) = {y € R/ |c(r+8) —y[<r+3 }
contains no poinis of 9B (22)

for otherwise ¢([0,r+ 8]) could not be distance minimat to ¢B. Using the argument which proved (21)
together with (22) one finds that

D = K(c{r+5),r + §)contains no points of R"\ B (23)

Note if D would contain a point w of R®\ B then an arc-length parametrized segment g joining c(t+6)
with w would meet 9B in an interior point x of g because x# w as x is not in R"\B. Since the boundary
point x is an interior point of g this point x must be in D® a contradiction with (22). This consideration
vields a formally complete argument for (23). Therefore D is contained in B. Also D obviously contains
K(q,r). This yields a contradiction with the lemma’s assumption that K(q,r) is a maximal disc contained in
B and completes the proof of lemma 2.

Remark : Analyzing the preceding proof one finds that the key properties used in the arguments are :
« that the boundary 9B separates the interior of the solid 8 from its complement R™\5B;

 subsets of the boundary 8 which are contained in any closed bounded disc are compact.

We used in our lemmata 1 and 2 that Both of those itemized properties wilt hokd not only if B is compact
but also in case the solid B is a unbounded, closed, bordered n-dimensional submanifold of R”, with the
boundary 98 being an n-1-dimensional topological manifold which may even have infinitely many
unbounded components.

Based on these considerations cne can obviously define the concept of an exterior medial axis with
respect 10 the solid B as the centers of all maximal discs which are contained in (R*\B)udB. Analogue to
theorem 1 this exterior medial axis can now be characterized also as that subset of the cut locus Cyp which

is contained in (R™\B).JdB.

Next we give a series of results which explain mainly local properties (or the local nature) of the points in
the cut locus (which agrees in B with the medial M(B) by Theorem 1). To simplify some of the
statements in the results below, we introduce a name (notation) for a specific non-extender called pica.

Definition : A pica q with respect to a closed set A is a point which has at least two nearest neighbors on
A, see Wolter [45).

The proofs of results in this paragraph as well as the proof of our global topological shape theorem in the
next section makes use of the subsequent Theorem 2 which holds under very weak general assumptions.
We state now a simplified (weakened) version of this result in {45]. In this version, we require the set A
to be a closed, possibly disconnected, subset of R". Under these assumptions, we have:

Theorem 2: {Characterization of the Cut Locus of a Closed Set A in RY)

e A) The picas with respect 10 A are dense in C4. Hence the cut locus C, consists of
those points and their limit points.

* A" R"\ C, is in R" the maximal open set of points, which have a unique minimal join
to A.

¢ B} The complement of the cut locus Cj, i.. precisely R YA U C,) is the maximal
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open set in R"\ (A U C,) where the distance function d(A, . )® is C!-smooth, and its
gradient V d(A, . ) is locally Lipschitz continuous on R™NA W C,). At any point
ge R™NAUC,) the gradient Vd(A,q) equals the unit direction vector of the minimal join
fromthe set A0 q.

In order to illuminate the preceding statement A’) we mention here.

Remark: That there exists always a unique minimal join from every point pe A to C, does not hold in

general if A is only a piecewise C2-smooth submanifold of R™. It holds however if A is a regular
Cl-smooth submanifold of R™. To illuminate the statement in the piecewise C2-smooth case take a planar
polygonal domain then it easy to construct examples where a concave vertex has more than one minimal
join to the cut locus of the boundary polygon.

The next result describes local properties of points in the cut locus and also local aspects of its topological
structure:

Theorem 3: Local Properties of Points in the Cut Locus Let A be a closed n—1-dimensional
submanifold of R™ In case n > 2 we assume the manifold A to be C2-smooth. If n=2 we only
require A to be piccewise C2-smooth. Under those assumptions the following statements hold

® A) A limit point of non-extenders with respect 10 A is a non-extender with respect 1 A,
All points in the cut locus C 4 are non-¢xtenders respective the set A.

» B) In the piecewise linear boundary case, all non-extenders are picas. A limit of picas
is here a pica’.

¢ C) In the C2-smooth boundary case, if a non-extender is not a pica, then it is a curvature
center of the boundary A it may be both, e.g. the center of a circle.

» D) The set C, is nowhere dense in R,

Proof of Theorem 3: The parts A), B), C} of theorem 3 are are shown in lemma A.l contained in the
appendix of this paper. It remains to prove pant D).

Proof of Theorem 3 D) : Assume that the set C, were some where dense in R". Then (4 being defined as

a closed set would contain some solid n-dimensional disc K(q,r7)={xe R" ||x-q|<r]}, r>0.
Obviously A being an n—1-dimensional submanifold of R* cannot be dense in any n-dimensional disc.
Therefore, we can find some n-dimensional disc K(p,w)={xe R"| [x-p|sw]}, r>w>0 with
K(p.w) cX(q,r) such that

K(p,r)nA=0 (24)
There must exist a distance minimal segment g(¢) from the set A to the point p. Let g(t) be arc-length
parameterized and assume that g{ d(A,p)) = p with d(A,p) being the distance of the point p to the set A.
Then the point g(d(4,p) ~w/2) being contained in K(p,w)<C4 must be a non-extender by theorem 3

A). This yiclds a contradiction with corollary 1 because the path g(t) is distance minimal beyond
g(d(A,p)—wji2}up o the point p. This proves theorem 3 D) and completes the proof of theorem 3.

84A,) being the Euclidean distance function with respect to the closed set A.The point "." in the expression d(A..) is a place
holder for the variable of this function. Evaluating the function d{A,.) for a specific variable value ie. for a specific point p yieids
d{A,p) which is the distance of the point p 1o Lhe set A.

%1f this limit is on A we have a degenerate case, which we allow.
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In order to illuminate the subteties in the preceding theorem 3, we want to point out:

Remark: If we require the boundary dB above to be only Cl-smooth manifold (even with Lipschitz-
continuous derivatives), then a limit of picas may be an extender. Thus here a limit of non-extenders may
be an extender, cf. also example 1; moreover, here the picas (with respect to dB) may be dense in some
open subregions of B, thus here the cut locus and hence the medial axis M(B) will be dense in some open
sub-area of B. Note that also if dimension n > 2 and if the boundary d? is piecewise linear then statements
A) and B) in theorem 3 are violated because a limit of picas may be a nonextender in this case, ¢f. also
lemma A2 in the appendix. In the general C*-smooth boundary case, e.g. in the plane with 0B being a
simple closed curve, the medial axis M(B) may have infinitely many end points which are caused by
infinitely many curvature centers of d8; hence here M(B) may not be the union of finitely many arc
pieces.

3.3 The Cut Locus Avoids Certain Reference Sets

There exists one important result which holds under very weak regularity assumptions. This result says
that the cut locus stays away at least a certain positive distance from a set if that set fulfills certain
regularity requirements. This result implies that the cut locus stays away at least a certain positive
distance from a Cl-smooth rational spline patch defined over a rectangular domain, This holds if the
surface patch is free of self-intersections and if the surface map has a Jacobian of rank 2 at all points. We
shall actually prove a more general result which includes spline patches as a special case.

Theorem 4: Cut Locus avoids certain reference  surface  patches. Let
q(s.):D=[0,1] % [0,1]>R> be a regular C' - smooth surface S which is free of self-
intersections. Regular means that the Jacobian ¢ =(d,q,0,4) has rank 2 everywhere. We
assume further that the partial derivatives of q(s,t) are Lipschitz continuous. Under those
assumptions there exists a positive number A such that the cut locus Cg stays away farther than
distance A from the surface S.

Note the requirement that the partial derivatives of q(s,l) are Lipschitz continuous is weaker than C2
smoothness and it is already fulfilled if the surface is a C!-smooth rational B-spline patch.

Remark: The requirement of Lipschitz continuity of the first partial derivatives can not be left out in
theorem 4, it follows from [45], p. 65. that this Lipschitz continuity is also a necessary condition to
prevent the cut locus from coming arbitarily close o the surface S. It is easy o construct non-degenerate
Cl.smooth planar curves which have their cut locus coming arbitrarily close. Namely define a planar
curve [(x(r).?'(:))l —1S151 )} by x(¢)=¢ and y(&} =0 if 1< 0 otherwise y(1) =2 . This yields a non-
degenerate C}-smooth curve which has infinitely large curvature at (x(0),y(0)) = (0,0) and the cut locus
of this curve approaches (and contains) the curve peint (0,0).

We give now a proof of theorem 4. For this purpose we shall need the following

Lemma 3: Let D be a compact, convex set in R" and assume that D is n-dimensional i.e. D contains an
n-dimensional disc. Let m be any positive integer number and assume that the function fx) : D - R""" is
Cl- smooth and regular i.e. | £ (x)h|#0if h=0. We assume further that the Jacobian f'(x) is Lipschitz
continuous in the variable x. Under these assumptions there exist two positive numbers r,, h, such that
for any unit vector N(x)

f(x+h)=fx)—rN@x) | >|ri (25)
forallrwithO<|r|<r, if{h| < h,and if f'(x)h is orthogonal on the unit vector N(x).

Proof of Lemma 3: In this proof we shall use a first order Taylor development of f(x+h) with a Lipschitz
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continuous remainder term. Namely representing f(x+h) by approximation with its Jacobian f(x) we get
fix+h) =fx) +£(x) (h) + R(x. )| k| (26)

where R(x,h) k| is a remainder term and f (x)(h) means that the linear map £ (x) is applied on the vector A
c.f. e.g. Dieudonne (5].

We show next the Lipschitz continuity of the remainder term R(x,h) precisely we shall estimate the norm
of R(x,h) by a product built by the norm of A multiplied with a constant number M, where M is
independent of x. For this observe the Lipschitz continuity of the differential f (x) in the variable x means
that there exists a number M such that

Fa+h-f @Mk 27
tf (x+h),x are points in D.
If the points x, (x+h) arc in D then using (26) and (27) the remainder term fulfills
Rx+ 1) =) = F O B) |

R(x,h)| =
[R(x,A)| i
_Ux+h) = £ 0O) - fix +0) - £(0) |
| A
1
< sup W) — (28)
0<s<1 [A]
< sup  |f(x+shy—=f (%) (29)
0<s<1
<M|h| (30)
if we define
y(s)=fx+sh)—f()(sh) (31)
then (28) follows from a generalized mean value theorem sce Dieudonne [5] as (31) implies
Yy =1 (x+sh)h) —f (k) (32)
Now (32) implies
W @I O+ sh) = £ (0] |41 (33)

and (33) yields (29) and (27) yields (30). In summary the remainder term for the first order Taylor
development of the function f(x) fulfills

IR(x,h)| < M|hj ‘ (34

where the number M is independent of the point x in D.

We proceed now with the proof of lemma 3, For this inserting a first order Taylor development for f(x-+h)
yields -
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LA+ h) = fx) = r NGO = LAX) +F ()(A) + RGR) B[ = fx) — r N(x) |

2{f (x) (k) = rN(x)| = | RxA) || A

>V R+ M= A 35)
where

e=:min{{f ()(W)|/xe D]hi=1}

note 10 get (35) we use (34) and we exploit that (by assumption of the lemma 3) £ (x)(h) is orthogonal
on N(x). Applying now the mean-value theorem on the square root function (expression) in (35) we find
that there exists a number & € (0,1) such that

2| h|?

Az —Mlh{¥+r
282 + Eel |
21 h12
L L VTR
NP+ el h)

Now choose two positive numbers r_, h, so small that

&2

— > M
24r,2 + e3 k|2

then (25) obviously holds. This completes the proof of the lemma.
Proof of Theorem 4 :

We shall prove :
That there exists a number A > 0 such that every minimal join
emanating from S is distance minimal to S for a length A. (36)

The proof of (36) follows from the two subsequent assertions namely asscrtion 1 and assertion 2.
Assertion 1: There exist two positive numbers 8, R such that the following holds:

Let x be any point in D and let g (1) be any arc-length parametrized segment with £,(0) = q(x). Assume
there exist two (arbitrarily small) positive numbers @, 1| such that the segment g [0,n] is distance minimal
to the subser (U ) of S where U, = {ye D/lx~y| < ®}.

Then for all points

ye Ug(x)\{x} we have lgN—gDl<t 1SR

This means a segment g, (1) which starts as a locally distance minimal join at any point q{x) is distance
minimal to the (whole) subset g(Uj) if the length of g (1) is <R.

10Note & exists because D is compact and € > 0 because here £ (x)(k) # 0 as f(x) has maximal rank.
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Proving this assertion 1 is the difficult part of the theorem's proof. We shall give the proof of assertion 1
further down.

The other assertion used to complete the proof of theorem 4 is the following

Assertion 2: For any positive number & there exists a number (8 ) such that for any two points x,y in
Dwith|[x-y]26 wehaveig(x)—q()Izad).

Proof of Assertion 2: Assertion 2 holds bacause the surface S is free of self intersections and because it
is defined over a compact parameter domain D,

Namely define
8) =min{|gx) - g/ (xy)e Dx D, |x-yj28}. (37)

The set D x D is a compact set in R and ({(xy)e R4/ |x -y|2 8’] is a closed set in R4, Therefore the set
W= (D x D)nB is a compact subset in R%. The function (x,y) > a(x,y): =|g(x) — q(y)| is a continuous
function on R*. This function a(x,y) is positive on W because x # y and because the map gfs,1) is free
of self-intersections. The function arx.y) being a continuous function defined on a compact set W must
attain its minimum which must be positive here. This shows that oc(S') > 0 and proves assertion 2.

Combining assertion 1 and assertion 2 we finish now the proof of theorem 4. This will prove the theorem
4 by using the still unproven assertion 1 which we will show further down,

Completing the proof of theorem 4 by using assertion 1 and assertion 2: Let §,R > 0 be the numbers
described in assertion 1 and let o 6 ) be the number described in assertion 2. Then the claim of theorem
4 will hold if we define

A = minf{ %(1(5). R}.

This means any minimal join g (1) starting at any point q(x) in S remains distance minimal®!to the surface
S over the length A. This holds because by assertion 2 no point q(y) in D with {x — y} < & can have have a
distance less than A to the point g, (A). Therefore at most a point q(y) with [y - x| > & may have a distance
smaller than A to the point g (A). However this is impossible because by assertion 2 for points with
lx-yl2dis |gx) — q(y}| 2 (). Thusif{x—yj28and 0<¢<A then:

2L 2 () < 1g(y) — g0 | S 190 — gD + | g(x) — 2.0l
2AS)gO) —g (D] +1

A<1g() — g0l

Thus for points y outside Uz(x) a point ¢(y) is not closer than distance ¢ to the point g,() if 0S¢ <A
This proves theorem 4 using the unproven assertion 1.

We finish now the proof of theorem 4 by giving a proof for assertion 1

Proof of Assertion 1: The Lemma 3 implies assertion 1 in most but not all cases where a minimal

"To specify our notation we say here that we assume that g (t) is arc-length parametrized.
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segment g (t) starts on a surface patch S. (Note we assume that g, (t) is arc-length parametrized.)

It covers all the cases where the segments initial point q(x)=g (0)
is not on the boundary of the patch, because in such a case the
initial direction of the segment g, (t) must be normal to the patch S. (38)

The lemma covers even more cases. Namely if the minimal join g (t) starts in the interior of one
boundary edge b then it must be orthogonal to that boundary edge b. Here now the lemma 3 implies that
£,(0) remains to be (locally) a minimal join to the boundary edge b. In other words in this situation lemma
3 shows that:

all points in @(Ug(x)nb) are further from g (1) than the point q(x) if

t< R and if we assume that R stands for the number r_ in lemma 3. (39)

Note assertion 1 is equivalent with the statement:
forall xin D the distance d(g(U5(x)).C Ua("}) 2R (40)
As the picas are dense in the cut locus by Theorem 2, (40) is equivalent to the statement

for all x in D the set q(Ug(x)) has no picas
coming closer to it than distance R. 41

The preceding conclusions so far drawn from lemma 3 show that Cq(Us(x» contains no pica p in distance
closer than R to q(Ug(x)) such that one of the foot points of p12 is either an
interior point of the patch (42)
or a vertex point of the patch “43)

Clearly the case {(42) is excluded by the above statement (38) and (43) is excluded by the combination of
(38) and (39). Namely if one foot point is a vertex point v then (under our neamess assumptions) the other
foot point of the pica must either be an interior patch point or must be on a boundary edge containing the
vertex v. Therefore the only remaining case which needs to be treated i.e. shown to be impossible is the
one :

where a pica point p has two oblique minimal joins to S which have two foot
points g(x) and q(y) in two adjacent boundary curves and where |x —y| < d. 44)

Indeed case (44) is actually the situation which allows the cut locus to come arbitrarily close to a
boundary vertex in case the vertex is concave. Before we start a detailed discussion of the oblique pica
case {44) we show now first that

any comer part of the patch S can be locally
approximated by a convex planar subset. (45)

Proof of (45): Let
L=(04(0,0)34(0.0))
be the differential related to the vertex point q(0,0) of the patch S. Let

Co(e) = ((s,) e (O] % [0,1] /(5.1 < €}

Co(e) is obviously a convex set and the linear map L (preserving convexity ) will map Co(g) onto a
convex set L{Co(e ) L(R?) .

124 foot point of p on q(U 4(x)) is defined as a point nearest of g(U(x)) to p.
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The set L(Co(g)) must be contained in a proper sector in the Euclidean plane with an opening angle
w<m This term proper holds because L(Co(g)) cannot contain a straight line segment g passing
unbroken through L((0,0)") because otherwise we could find two vectors X1, X, € Co(g) such that L(x,),
L(x4) would be collinear to g. This would yicid a contradiction with the facts that Xy, X, are linear
independent and that the linear map L having maximal rank preserves linear independence.

Exploiting the approximation properties of the differential L. we find that D¢ = g(Co(g)) is contained in a
a set Ap(e) which can be described as follows!?

D.c{L(s.0)+ R /L(s.)e L(CoE), | R(s,b) | < %m(s.:) )

Yywhere

B=min{ ) L{s.0) 2/ 1(s.0)[=1)
and M is defined by (27), (34).

Obviously for sufficiently small € > O the set D, can be shown to be contained in a convex set say

D, (L(s,t)+ R(s.) /L(sp)e L(Coe)), | R(s.0) | S ae) M| LLs,0)12)

where a/€) can be made arbitrarily small if € is shrinking to zero. This completes the proof of (45).

We continue now the discussion of (44) that is we continue to show why (44) is not possible if the
number 8 in (44) is chosen sufficiently small. For this pick any point p, = ¢(s,.0) on a boundary curve [ R
where b,={q(s0)/0<s<1}.  The surface nomnal N(q(s,0) and the two tangent vectors
344(s,.0),9,4(s,.0) span the 3-space R:"pra at q(s,,0). The plane spanned by N(q(s,,0), d,4(s,,0) separates
the 3-space R3p into two half spaces. The vector d4(s,,0) points into the half space H*P corresponding
to the interior of the patch at p,. The vector — dg4(s,, 0) points into the half space H, corresponding to
the exterior of the patch at p,. Let v, be any unit vector vector in H*, and let
g(s)= {p0+sv*’p f0Ls51}

be a segment starting at p, and pointing into the direction v+p . Then :
for sufficiently small numbers s the orthogonal projection of g(s) onto S

will be contained on the patch S in a neighborhood of the point p,,. _ (46)
Here (46) holds because the projection p-r(v+p ) of v"p into the tangent planec spanned by
d44(5,,,0).9,4(s,,,0) is transversal to the boundary curve at p, and points into the patch interior if v+p is

not collinear to the surface normal at p,,. (In case v+p is collinear to the surface nommal at p, then (46)

holds anyhow.) Using (46) it is not difficul: to see th‘;u for arbitrarily small values of s there are points

!3Moreover this set Ap(g) yields also a quadratic spproximation of D,

_ M
14For fixed given values (s,1) the vector R{s,1) attains all points in a disc of radius —|L{s,5) |2 .

B
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x(s) on S such that | x(s) — g{s)| is smaller than 5.15 Therefore g(s) cannot be (2 locally) minimal join to S

if the inigal direction Vo, is chosen from H*‘ and if v, is not collinear to the surface normal at p,,. Thus
[+]

in order 1o have an oblique minimal segment g(s) at the boundary point p, we must choose an initial
direction v°, € #~, . We can now assume that v, is not collinear to the surface nomal at p, because
that case had already been settled in the preceding discussions essentially as a consequence of lemma 3.
Let now g(s) = [p, +sv~ P /0<ss1).

Now if g(s) is locally distance minimal to S then :

g'(O) must be orthogonal to the boundary edge b, as
P, * ¢(0,0), hence 3 is orthogonal to dg(s,.0). “n

Let §(s) be an arc-length parametrized distance minimal segment emanating from the boundary edge b,
adjacenttob, i.e.

={g(0n/0<r< 1]

The segment Z(s) is oblique to the boundary edge in a way analogue to 2(s), i.e. Z(0) points also into the
corresponding (exterior) half space H'yq). We want to show that:

there exists a positive number R such that is) # g(s)forallss R
if the initial points g(0), {0) are sufficiently close. (48)

Now let gp(s), Br{s) be projections of g(s), ¥s) into the tangent plane T spanned by d,4(0,0), 9,4(0,0) at
q(0,0). If g(s), ¥s) are supposed to intersect then also their projections. We are essentially interested in
the case where g(0), §0) are located arbitrarily close to the vertex g(0,0). We have established above
below (45) that 4.4(0,0), 3,4(0,0) build a convex vertex angle B smaller than ®. For positive sufficiently
small numbers s,t say 0 < 5, < &, the angle between 3.4(s,0), 3,4(0,1) comes arbitrarily close to B and is
therefore also smaller than x as well. Using clementary planar geometry it can be shown that the

segments g[0,%<), §0,o) will not intersect if the initial points g(0)=q(s,0), ¥0)=q(0,t) arc chosen such that
st< 8 Therefore in order to have minimal joins which start oblique from the boundary edges

bo\{q(0.0)}, b\q(0,0)} intersect one has to choose the initial points g(0)=q(s,0), E0)=qg(0.1) such that

S.t> 6’0. This proves that (44) is not possible if & is here smaller than 8'0. The same considerations can be
applied for the corresponding situations at the remaining three vertices. It is now obvious that for an
appropriately small chosen & the case (44) is impossible. This finishes the proof of assertion 1.

As we have now established assertion 1 we have also compieted the proof of the theorem 4.

Analyzing the preceding proof of theorem 4 one finds that theorem 4 holds also in the more general case
if the domain D is chosen to be any set in RZ which has the property that there exists a
Cl-diffeomorphism ¢ from D to a compact convex set in R? with the derivative of ¢ being Lipschitz
continuous. The preceding theorem is useful in studying surface intersections, see Kriezis, Patrikalakis,
Wolter [19] and Kriezis [18]. Another result being essentially a consequence of the preceding theorem 4
is the subsequent corollary.

Corollary 4.1: Using notations and assumptions of Theorem 4 then for any positive number €S A

A) The offset O (S) = {x€ R31d(x.5) =€} is a CV!-smooth manifold, diffeomorphic to the embedded

15This is obvious in case S agrees with its tangent plane at p, - [n the general case it follows because this tangent plane yields a
first order approximation of the patch § in a neighborhood of the point p and because the difference berween s and the distance
of g(s) to the tangent plane at p_ is given by a positive linear function ¢(s) in the variable 5 say ¢{s) = m s,



22

two-dimensional unit sphere and the offset region OR (S} = [xe R"[d(x.S) < &] is a solid homeomorphic
to the 3-dimensional unit disc [x€ R| [x|< 1 J.

B) The surface S is the medial axis of the solid OR ().

Proof of Corollary 4.1 : Our proof of part A) will be sketchy and we will omit some detailed steps which
are not difficult to carry out. Let 0= {(u.v.w)e€ R w=0, (u,v)e [3,1]x[0,11} be the unit square
embedded in R3. Let OR(Q) = (ye R®| d(y.Q)sSe} , OQ) = (ye R3| d(»,Q) =€) be offset region
and offset surface respectively for the progenitor set ¢ and offset distance €. It is not difficult 10 show that
OR.(Q). O(Q) are homeomorphic to the closed three-dimensional unit disc and the two-dimensional unit
sphere respectively with O(Q) being the boundary surface of the bordered manifold OR (). We prove
part A) by defining a homeomorphism y:OR(Q) — OR(S). This homeomorphism ¥ which also
induces a homeomorphism between 0 (Q) and O(S) is constructed such that

y maps distance minimal segments between Q and O.(Q)
on distance minimal segments between S and O(Q). 49

We give now a detailed description of the map w. For this we denote the parametric surface map
representing S by flu.v):{0,1] % [0,1] -3 R3. The surface nommnal of S at a point f{g) € § is denoted by N(q)
and depends continuously on the variable point ge Q. Let e ={(uvw)eQ|v=0},
ey={wvw)e Q|u=1}, e3={(uvw)e glv=1}, e,={(uvwye Q|u=0} be the four edges of 30.
These edges can also be viewed as paths depending on the variables u or v respectively, in this context
they are denoted by e,(k), ex(v), e3(4), e,(¥). For any of those four edges ¢;, 1 <i<4 we define the
exterior boundary normal n; in the tangent plane of S say at a point e;(u) by a unit tangent vector n,(x) of
S at the point ¢,(w) ; the exterior boundary normal vector n,(it) must be chosen orthogonal on the tangent
vector d, fu,0) and the sign of n,(4) is determined by the condition that the angle between — d Au,0)
and n,(x) must be smaller than n/2. Note that the line parallel to the tangent vector Dfe’{w)) (or
Dfe ',{v)) respectively ) separates the related tangent plane into two half planes and #; is chosen to point
into the exterior half space which does not contain the “interior” tangent vector d fx,0), —dA1.v),

-d fu,1), 3,A0,v) respectively for the cases i=1,2,3,4. These considerations together with the
condition that »; must be orthogonal on the tangent vector Df(e',-(u)) (or Df(e',{v)) respectively ) give
the complete definition of the exterior boundary nomal n;. To simplify the description of the map y we
need also to introduce the subsequent definitions

If u,ve [0,1] then Au=Av=0
If uve (0,1) then

Au= -y if us0, du=u-1ifu21
(50)
Av=—vif v<0, Av=v-1lifvzl
With these notations we define now the map wy(g) with g=(uvw) . If () e [0,1]X[0,1] then
y(g) = wiN(u,v) + Ru.v).

I[fv<0and u>0andif v (Au)2 +(Av)2 >0 then
y(g) =flu - Au,v+Av) + wN(u — Au, v+ Av) +

—_—— Aun,+Av
Vaw? + (Av)? SamTovm ) (51)
|Asemy + Avny|
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On the other three rectangular strips around the boundary of the unit square Q the map y(q) is defined
analog to the definition given in (51). The map v is obviously continuous and ¢lementary considerations
show that the map y has property (49). It is not difficult to verify that the preimage under the map y of
any shortest segment between § and O(S) is a shortest segment between ¢ and O (0). All these
considerations together show that y: OR.(Q)— OR(S) is a continuous, injective map onto OR(S), where
the injectivity follows because & < d(§,Cs) i.e. the distance of § to its cut locus is larger £, This shows
that y defined on compact set and being a continuous, injective map onto its image set is a
homeomorphismi%, This fact in conjunction with theorem 2 essentially impljy part A of the corollary.
Note the claim that O(S) is a C1-smooth two-dimensional submanifold of R* follows with the implicit
function theorem (c.f. [5]) from the fact that the distance function d(5..) is Cll—smooth with a non-zero
gradient on O,(S) which holds by theorem 2B because d(S,C¢)>e€. Finally the claim that O(S) is

diffeomorphic to the the unit sphere 2 follows because 0(S) has the homeomorphy type of the unit

sphere!7 and because smooth, compact two-dimensional homeomorphic manifolds are diffeomorphic cf.
Hirsch [11].

Proof of corollary 4.1 B) : it has been established in the proof of part A) that the homeomorphism
maps disjoint shortest segments between O (Q) and @ on disjoint shoriest segments between Oy (S) and §
and that the inverse map of y maps disjoint shortest scgments between O (S) and S onto disjoint shortest
segments between O(Q) and Q. The homeomorphism W provides a one io one correspondence between
the intersection points of minimal joins in both sets OR(Q) and OR.(S); those intersection points are
given in OR(Q) by the intersection of minimal joins between O.(Q) and Q and in OR(S) by the
intersection of minimal joins between 0.(S) and §. Clearly those intersection points of minimal joins are
picas with respect to either one of two reference sets O (Q), O (S). Therefore and because Q is the set of
picas in OR(Q) respective O (Q) it is obvious that the image set y(Q)=S is the set of picas in OR($)
respective Oy(S). This proves part B) in view of theorem 1 and employing the fact that the picas are
dense in the cut locus by theorem 2 A). This finishes the proof of corollary 4.1

In practical terms this corollary 4.1 states that any regular Cl.smooth regutar spline surface patch which is
free of self-intersections can be manufactured (modelled) with a ball cutter of radius € where the center of
the ball cutter moves along a compact Cl1-smooth offset surface 3,(S) being diffeomorphic to the unit
2-sphere. This offset surface O (S) bounds a solid OR.(S) whose medial axis equals the surface S. In
other words, if the offset distance is smaller than the distance of the progenitor surface S to its cut locus
then the progenitor surface is the medial axis of the offset region, see also figure 1 illustrating a surface S
and a related offset surface OR(S). Another engineering application for the discussed offset surfaces and
offset regions arises within the context of tolerancing where one wants to determine if a manufactured
object fits within a specified tolerance region (offset region) of an ideal design surface, see Rossignac
[37], Rossignac and Requicha [38] and Patrikalakis and Bardis [31].

Analyzing the preceding proof of theorem 4 one can derive another conclusion interesting enough to be
called a theorem. Namely we have

Theorem 5; Cut Locus aveids compact unbordered submanifolds of B*. Let A be any compact
unbordered C'-smooth submanifold of R". We assume that all local parametrizations of A have

16Note that it is a well known fact from point set opology that 1 continuous, injective map defined on a compact domain yields
a homeomorphism onto the image set of the compact domain cf. e.g. [16], [15].

""Note that (,(S) is homeomorphic to 52 because O,(S) is via y homeomorphic to 0 (Q) and because it is easy to construct a
homeomorphism between 52 and O (Q) as this construction may empioy convéxity properties of the solid OR D).
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Figure 1: The Progenitor Surface S as Medial Axis of the Offset
Region OR_(S)

locally Lipschitz-continuous first derivatives. Then there exists a positive number B such that
the cut locus C, stays away further than distance f from A.

Proof of Theorem 5 : This proof exploits essentially that lemma 3 is formulated for any function f{x)
defined on any convex solid in R” and that the range of the function f{(x) is the space R*"™, m any integer
larger than zero. This lemma 3 proves case ( 38 ) of assertion 1 the only case needed if the reference set A
is an unbordered C!-smooth manifold. Exploiting also that A being a submanifold is free of self-
intersections it easy o generalize assertion 2 to local parameterizations of a compact submanifold A of
R Applying these considerations together with the arguments used while completing the preceding
proof of theorem 4 using assertion 1 and assertion 2 on a finite number of local parameterizations which
cover A then employing compactness arguments it is not difficult to show that C, cannot come arbitrarily
close to A. This completes the proof of theorem 5.

3.4 The Relation of the Cut Locus to Equidistantial Sets and Voronoi Diagrams

We want to explain how the concept of cut locus is related to two other related concepts in computational
geometry and geometric modelling. Those related concepts are the concept of a Voronoi diagram of a
discrete point set and the concept of an equidistantial set (surface) or mid set of two disconnected sets.
We hope that our subsequent results will help to clarify possible confusions in this area. It will tum out
that the cut locus concept introduced by us offers a common framework unifying apparently different
concepts such as Voronoi diagrams, equidistantial sets and medial axes.

Let A, B be closed and disjoint subsets of R™. The disjointness condition means that
ANB=0Q. (52)
The equidistantial set with respect to the pair of sets A, B is denoted by V(A,B) is defined by
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V(A,B) = {xe R*d(Ax) =d(B.x)) (53)

Under these assumptions we have

Theorem 6: Egquidistantial Sets as Subsets of the Cut Locus. The equidistantial set of two
disjoint closed sets A, B is a subset of the cut locus C, z of the union AUB i.e. with the
notation iniroduced above we have

VAB)SCypp

Proof : Let x be a point in V(A,B). Then by (45], p. 38 there exists a point X, being nearest on A to x and
there exists a point xg being nearest on B 1o x. Because of (53) the two minimal joins seg{x, x], seg[xg,x]
are both distance minimal from x to AUB. Therefore and because x, # xp as (52) the point x must be a
pica respective AwB. Thus x is in C, |, g which proves the theorem.

We want o point out that the relations between equidistantal sets and cut loci become much more
complicated in case one removes the disjoinmess condition (52). To illuminate this we describe the
following example. Consider two half circles S,, S, the union of which builds the planar unit circle and
we assume that $;1S, = {x; = (0,1),x, = (0,-1)}. In this situation V(S,,S,) contains the whole y-axes
while Cslusz contains only the point (0,0).

Another quite instructive example is the following one being a modification of the former example : Here
S, is defined 10 be the circular arc {(x.»)/(x+0.75)% +y?> =1, x50} and S, the circular arc defined by
{xlx =075 +y2=1,x20}. In this example S,, S, intersect transversally while in the former
example the intersection was tangential. Here now V(S,,S,) equals the y-axis while the medial axis of S,
U S, equals the segment {(x.y)fy =0, |x] $0.75}. The cut locus C51 Us, contains the latter medial axes

together with the set {(x,y)/ x=0, [y|2 N7/16}.

In order to state our next theorem we need to review some definitions related to the concept of Voronoi
diagrams. We follow here essentially Preparata and Shamos {34].

Let P={p;e R"ie!} a set of discrete points in R", with the set / being used as a set of indices to
distinguish the points in P, This set may even be infinite we assume however that the points in P do not
have a cluster point. /n order to explain the concept of a Voronoi diagram we define first for every p; in P
the locus of proximity V(i) containing those points which are closer to (or at least not farer from) p;
than to any other point of P\{p;]. Clearly the set V(i) can be characterized as

V(i) = (xe RY dlxp) < dx.P\[p;})} (54)
Obviously the set V(¢) can also be characterized by the equation

V(i) = (xe R d(xp)) < d(x.pj)for all pj€ A{p;}} (55)
The set

Hij)=(xe R"/dx,p) s d(x,pj) ) (56)

defines a closed half space in R™. The boundary of this half space is given by the plane containing all
points which are equidistantial to the two points p;,, p. Or with the notation introduced above the
boundary of H(i,/) can be described also as the medial set V({ p; }, { p; } ) with respect 1o the two point sets
{p; 1 {pj } each of which containing a single point. With (56) and (éS) we can obviously redefine V(i) as
an intersection of half spaces i.e.



V(= H()) (57)
i(#j

This redefinition of V(i) also shows that
V(i) being an intersection of convex sets is convex. (58)

Using concepts and notations introduced above in (54), (55) we give now the following definitions:

Definition : The boundary dV(i) of the locus of proximity V(i) is the Voronoi polygon (polytope)
respective the point p; of the given set P.

It is obvious that a point in dV({) is contained in a boundary plane of some H(i ).

Definition : We call the union of all the polytopes oV(i),p;€ P is the Voronoi diagram V(P) respective
the point set Pin RMie.

ViP):= u V() (59)
pEeP

We shall use the subsequent characterization of dV(i) i.e we need that

V(i) = (xe R" d(x,p) = d(x,P\p;}) } (60}
Proof of (60) : Let xe dV(i). Then in view of (57) there must exist a point p,e P\(p;} such that x is
contained in the boundary plane of H({). This boundary plane is equidistantial between between p; and p; g
hence d(x,p;) = d(x.p ) for some j # i, Thus
dixp)= d(x-Pj) 2 d(x.P\{p;}) (61)
The point x being contained in gV(§) is also in V(i). Therefore (54) together with (61) imply
d(xp) = d{x.P\{p;}). Thus the point x must be contained in the set given by the right hand side of
equal:ion (60). This proves the inclusion " <" claimed by (60). It remains to show the converse inclusion
"5* which is also claimed by (60). For this let x be a point contained in the set described by the right
hand side of (60). Then by (54) the point x is contained in V{i). Let P; be a point nearest in P\{p;} to x.
Then x is in the boundary plane of H(i,). Thus the half space H(l,f) cannot include any open
n-dimensional disc D containing x. Therefore V(i) being ( by (57) ) a subset of H(i) cannot include such

a disc D either. This proves that x cannot be an interior point of V{(¢) and thus x must be a boundary point
of V(i) . This shows the inclusion " 2" and completes the proof of (60).

We give now our description of the Voronoi diagram by the cut locus i.e. we have the following result.

Theorem 7: The Voronoi Diagram as Cut Locus of a Discrete Point set. For any discrete set
of points P = { p;€ R™ ie {}1® is the related Voronoi diagram characterized by the relation

Vi) =Cp (62)

Proof of theorem 7 : We show now (62). This means according to our definition of a Voronois diagram
stated in (59) we have to prove

v WVDO=Cp (63)
p,EP

18The set J serves here as a set of indices used to distinguish the points in P.
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For this we show first that a point x in V(P) must also be contained in Cp. Let xe V(P). Then there exists
a point p; € P such that xe dV(@). Clearly for any p;e P is d(x,P) = min{ d(x,p),d(x.P\(p;}) }. Thus using
{60) we find that

d(x,P) = d(x,p;) = d(x.P\{p;}) (64)

Therefore and because {p,;}r(P\[p;]) =40 there exist two distinct distance minimal joins from x 1o
P. One of those joins ends in {p,} the other ends in P\{p,}. Thus x is a pica respective P. Therefore x is in
Cp. This proves the desired inclusion,

We show now the other inclusion claimed by (63). For this let X be a point in Cp. As by theorem 3 A) the
picas are dense in Cp it is easily seen that x must be a pica respective P. Thus there exist at least two
distinct minimal joins from x to P. Those two minimal joins end up in two distinct points p;, p; in P. Thus
we have

dix,P)=d(xp;) = d(xvpj) (65)
Now using that pje P\{p;} we get
d(x.P) < d(x.P\(p;}) € dlxp)) (66)

The combination of (65) and (66) yields
d(xp) = d(x.P\p,]) 67

Therefore (60) implies that the point x is in dV({). This proves that x is in V(P) and finishes the proof (63).
This completes the proof of theorem 7.

4 Global Results on the Medial Axis

4.1 The Medial Axis has the Homotopy Type of its Reference Solid
The fundamental global topological shape relation between a solid B and its medial axis M(B) is stated in
the following:

Theorem 8: Global Topological Shape Theorem for the Medial Axis: Let B be a compact
bordered n—dimensional submanifold of R*.'” Let us assume that ¢8 is C*-smooth submanifold
if BCR™ in case B c R? the weaker boundary regularity namely 9B being piecewise C2-smooth
(possibly disconnected) submanifold is sufficient. Under these assumptions the medial axis
M(B) is a deformation retract of B,

Proof of the Shape Theorem:
The proof of the global shape theorem consists in constructing a retrac?® ;

R:B\dB — M(B)\dB (68)

'9This means in practical terms that B is a compact solid in R”.

203ee ¢.g. Massey [23] for the definition and discussion of a deformation retract.



and a homolopy
f(x,) : (B\dB) x 1 = B\dB

with =1{01],

such that
f(x,0) = x, fix,1) =R(x) forallx € B\oB
and

fiyt)=y forall (y1) € (M(B) x I).

The retract map R must be continuous and must satisfy
R(x)=x forall x € M(B)\dB.

In order 1o construct the deformation retract we define the homotopy f(x,t) by

f(x,0) = x + 1d(x,¥(x)) V d(98 x)

with Vd(dB, x) being the gradient of the
distance function x — d(dB.x) at the point x
for x & M(B) we dcfine f(x.t) = x;

Here in (73)

y(x) is defined to be the point where the extension
of the minimal join from 0B 10 x meets M(8) = Cyg NB.
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The solid B in figure 2 is a rectangle with a circular hole. The curve drawn as

indicates the

medial axis M(B). The arrows indicate the vector field x— Vd(dB,x). Any dotted curve -~

traces the orbit f{x, £) of some point x during the homotopic deformation t—fAx.0), t€ {0,1].

Figure 2: Dcformation Retract

See also figure 2 illustrating the deformation defined by (73), (74). The proof for the continuity of the
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map y(x) makes use of part A) of theorem 3. We shall show the continuity of the map y(x) later. To
prove the continnity of f{x,t) we need o expioit also part B) of theorem 2 which in view of theorem 1
guarantees the continuity of the gradient function

x— Vd(@B.x) on B\ (dB w M(B)).

Note the range of the homotopy f(x.t) is indeed in B\ B for any (x.f) € (B\3B) x /

ie f(x,t) € BYB (75)

because obviously  d(f(x.t), 9B) > d(x.8B) >0 forallt € I and because (by Proposition 1) 3B separates
B\dB from R™B. These two condidons imply (75). Namely assume there exists a point xe F\3B with
flx.1)e (R™BUIB). Then there would exist a number :* with 0 <" <# such that Rx,f*)edB,

d(fx.1"),a8)=0 a contradiction. The reason why we defined fx,£) on B \ a8 is that Vd(aB,.) can
generally not be extended continuously to the boundary 98 if 2B is not smooth,

We need to make the preceding proof formally complete. For this we we must show that:

the map f{x.7) is well defined and continuous. (76)

We also need to verify that

R(x)=x for x e M(B). an
In view of the definition of R(x) in order to show (77) cne needs to prove

fix,D=x forx € M(B) ¢L))
To prove (76) and (78) we shall use that

the map y(x) is :

well defined, 79

continuous, (80)

and

y(x)=x forx € M(B). 1)

We shall prove (79), (80). (8 1) later. Let us for the time being assume that those three claims are correct
and and let us use them o establish (76) and (78). To do this we use also theorem 2B) and theorem 1.
Namely by theorem 2B) the gradient of the function describing the distance to 08 i.c. Vd(9B,x) is
continuous on B\ (BBuCaB ) and by theorem 1 we have M(B) = CypMB. Therefore

Vd(0dB,x) is continuous on B\ (0BUM(B)) _ 82)
Using (82) together with (80) and (79) it is cbvious that the map fAx,?) is continuous and also well defined
if x is outside of M(B) . Thus to complete the proof of (76) it remains to show that

fix.1) is also well defined and continuous if x is in M(B). (83)
Clearly by (81) we have fx.f)=x for x in M(B). This shows (78). Let now be x, be any point in M(B) , ¢,
any point in {0,1] and let (x,.;)) be any sequence in (B\dB) x [0,1] converging to (x,.¢,). For proving
the continuity of Rx.f) for any point x in M(8) we have to show that fix,..z,) converges to fx,,#,). Using
(81) and (80) we find that the sequence 1,d(x,, y(x,)) is converging to 0. This together with the fact that
the nomm of the vectors Vd(dB,x) is bounded by 1 proves that the sequence t,d(x,, y(x,))Vd(05,x,)

must converge to 0, hence fx,,7,) must converge to x,. This proves that f{x,?) is also continuous at any
point x, in M(B) thus it completes the proof (83) and finishes the proof of (76).

It remains to show ( 79), (81) and (80). Clearly the claim of (81) can be viewed to be a consequence of
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the definition of yw(x). This proves (81). We have to show (79). For this we have to prove that for every
point x in B\dA the definition given for the function y describes a unique point y(x). Let x be any point in
B\@B. The case where x is in M(B) has already been settled before. Let us therefore assume that x is not
in M(B). By theorem 2A ~we know that there exists a unique minimal join g, from 9B to x. This segment
g, has length larger than 0 because x is not on dB. Extending g, beyond x the extension must eventually
meet 08 by Proposition 1 because x is in 8\dB. This means that the latter extension segment fails
eventually to be distance minimal to @8. Thus the extension must meet C;5n\B = M(B) before leaving
B\dB, say it meets C,p not closer than in distance & > 0 to 0B. The extension segment say extended up to
distance /2 to the boundary is compact and contained in B\dB. Denote this extension segment by seg.
The intersection of the compact set seg with the closed set M(B) is compact, recall M(8) was defined 10 be
closed as it includes ali limit points. is compact because M(B) is closed. Therefore rhere exists aunique
point nearest to x on the intersection of M(B) with the extension segment seg. This proves (79).

It remains to show (80). We do this now. For this we show that:
If x, is any sequence in B\@B is converging to any point x, in B\dB

then y(x,) converges 1o y(x,). (84)
To prove (84) let us discuss first the case that x is outside M(B) i.e.
o =d(x,.M(B)) >0 (85)

The minimal join g, from dB to x can by (79) be extended until it meets M(B) in a point y(x,) # x,,. The
segment g, starts in a boundary point &, and g, contains x, as an interior point. Let g, be the minimal
join from 6B 10 x,. Then the segment sequence g, must converge to the segment g because otherwise

the point x, would be a pica contradicting the assumption that x, is not in M(B).2! Therefore the sequence
of of segments defined to be the extensions of g, until y(x,)e M(B) has all its limit points in an
extension of Bx - As M(B) is closed any limit w of tht; sequence ¢(x,) must be contained in M(8). Such a
limit point w of Ww(x,) cannot be an interior point of the segment joining x, with ¢(x,) as this segment
(being the extension par of the minimal join from the boundary 28 to x, ydoes not meet M(B) before it
reaches y(x,). We want to show that

w = Y(x,) (86)
It remains to exclude the possibility that w is located on the extension of seg[b,, y(x )] after the point
y(x,). Assume the latter happens. The sequence of minimal boundary joins yields a subsequence
converging to a minimal segment g, from w to 0B. This minimal segment would now include y(x,) as an
interior point contradicting the assumption that y(x )€ M(B) is a nonextender because all points in M(8)
are nonextenders by theorem 3 A) under the continuity assumptions stated above for d8 in theorem 8.
22 This proves (86) for the case that x,, is outside of M(B). Let us therefore discuss now the case that x,, is
in M(B). Again we have to prove (86). Letnow x,, be a sequence converging 1o x,,x, a point in M(B). Let
d, = seg[b,, y(x,)] be the segments defined by extending the minimal join from the boundary B to x, up
to the point y(x,); we assume here that b, is the point where the segment d,, starts at the boundary. Letw
be any cluster point of the sequence w(x,). We must prove (86). Assume that d, denotes aiso the
subsequence of segments whose end points y(x,) converge against w. The sequence d, contains a

21 is well known that any sequence of minimal joins contained in a compact set conrains a subsequence converging against a
minimal join, c.f. {4], this result is applied here and will be applied ofien in proofs without explicit reference.

22Note 1o establish the continuity of wix) we use at this point that all points in M(B) are nonexienders. As we also use the
property that M(8) is closed we need in this proof sufficient conditions under which theorem 2 A) holds i.e. we need that a limit
of nonextenders must be a nonextender itself,
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subsequence which converges o a minimal join 4, from 2B to w, c.f. [4], p. 20 or [45]. As all d, contain
the corresponding x,, the limit segment d, must contain the limit point x, of the sequence x,. Note by
definition of the map y we have y(x) = x, by (81) because x,, is now in the set M(8) which contains only
nonextenders. Therefore the segment &, being a minimal join from the boundary to the point
w = limy(x,) contains the nonextender point x, = y(x,). Clearly this is only possible if w=(x,). This
shows (86) in case x,, is in M(B)\dB and completes the proof (84), hence the proof of (80) is finished.
Thercfore the proof of Theorem 8 is now complete.

We now draw some conclusions from the fundamental shape theorem by applying standard results of
homotopy theory cf. eg. [40):

Corollary 8.1: Under the assumptions of Theorem 8 the medial axis M(8) is path-connected because B
is path connected and it has the same homotopy type as B; hence all homotopy groups of & and M(B)
agree, hence M(B) is simply connected if B is simply connecied.

Note that although the medial axis is connected under the assumptions stated in theorem 8 the cut locus is
gencrally not connected as we cxplain in the subsequent

Remark : Even if 9B is a C*-smooth simple closed planar curve bounding a topological disc B then the
cut locus Cy, is generally not connected unless B is convex. Moreover the cut locus Cyp may even have

arbitrarily many connected components in R2\8, each of which may start in a curvature center of the curve
C;3p- Those components being unbounded will proceed to infinity.

4.2 The Reconstruction of a Solid by its Medial Axis

The preceding theorem explained the relations between the topological (global shape) structure of a
bordered manifold 8 and its medial axis M(8). Next, we are going to discuss how it is possible to
reconstruct 8 via M(B) . Before that, note that the maximal disc radius function:

rM(B)—R

which was defined by r(x) : = d(dB,x) is obviously a continuous function, because d(4,.) is continuous
for any closed set A in R™ d(A,.) is even Lipschilz continuous and its restriction 10 M(B) is Lipschitz
continuous as well,

The result of this section is the

Theorem %; (Reconstruction Theorem:)
Assume we know the medial axis transform M(B), r. M(B)— R of a domain B, then we can
reconstruct B. Namely, we have:

B= o  K(r(x)
xe M(B)

where the union is taken for all discs with center x € M(B) with
Kxr(x)y = {y € R"/|x=y| S r(x)}.

Proof of the Reconstruction Theorem:

We wani (0 prove that
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B= v K(xrx) 87
xe M(B)

For this we show the following assertions

B> v  Kr(x) (88)
xe M(B8)

Bc v Kxrx) (89)
xe M(B)

Clearly (87) is a consequence of (88) and (89).
Assertion (88) is true as

B o K(x,r(x)) for all poinis x € M(B) (90)

We show (90). Namely by definition r(x) =d(x,dB). Now in case K{(r.”(x)) would contain any point
e R™\B then by proposition 1 the segment connecting x and y would contain a boundary point z with a
Jistance smaller than ~(x) to x a contradiction. This proves (90).

In order to prove (89) we show that:
Forevery point y € B there exists a point x,

such that y € K(x,r(x )). oD
If here ye M(8) then the claim (91) is obviously true because y € K(y,7(v)) even if A(y) is zero.
Therefore assume v « M({B) thus

dyM(B)) >0 (92)

because M(B) is a closed subset of R". Nuw as B is a manifold with boundary dB it is possible to
approximate y with a sequence of points y, € (8\d8). For every point ¥, in this sequence there exists a
minimal join s, to the boundary 9B , see [45). It is possible to extend any of these minimal joins 5, 10 get
a minimal join 5, from the boundary 0B (0 a point g, in M(B). Recall by theorem 1 is M(B) = BnCyp .
Therefore employing the definition of Cyp any minimal join from the boundary 9B to a point be (B\dB)
can be extended as a minimal join o until it hits M(8) in a point ¢. Thus « yields then also a minimal join
from q to 8. We can choose a subsequence s‘nk of 5, which converges against a minim*! join §, see [45],

Busemann.23 The segment T is a minimal join from 9B to a point in M(B). Note the sequence of
segments § n contains a sequence of points Yn, (being a subsequence of y_) which converges against y.

Therefore the limit segment ¥ contains y. As all s‘nt meet .M(B) also the limit segment ¥ meets M(B) in

some point. Let x(y) be the point where the segment § meets the first time M(B). The point x(y) is not on
the boundary 38 because
d(y,M(B8)) >0 hy (92); note that

d(x(y),9B)2 " “).y) 93)

beciuse § being a minima, join from ¢F  x(y) contains v .

231 is here necessary to choose a subsequence because there may exist several distinct minimal joins all being cluster points of
the sequernce .
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To finish the proof of (91) we choose in {91) x, = x(y). Now (93) and the definition of the maximal disc
radius function (. ) imply

K(x, d(x(y).y)) © K(x, d(x,0B)) = K(x,,r(x(y})) (94)

Therefore as ye K(x,, d(x(y}),y)) wehavey € K(x,, r(x)).
This proves (91) and finishes the proof of the reconstruction theorem.

5 Appendix

We supply here in the appendix several lemmata used by us in the proofs of major theorems in the
preceding sections. Some of those lemmata may be considered to be of technical character while others
may be of geomeltrical interest per se.

Lemma A.l: Let B be a compact solid in R? and assume that o8 is piecewise CZ-smooth or let B be a
compact solid in R® and assume 98 is C2 - smooth. Then the following claims hold:

= A) A limit of picas respective dB is a non-extender respective dB. Specifically a limit of picas
is a pica or a curvature center of 85; it may be both e.g. a center of a circle,

» B) A limit of non-extenders respective dB8 is a nonextender respective o8,

» C) A nonextender is either a pica or a curvature center respective aB. It may be both e.g.
center of a circle. If a nonextender is not a pica then it must be a curvature center respective
dB.

e D) If the boundary 98 « B < R? is piecewise linear then every nonextender is a pica.

Proof of lemma A.1: We first prove lemma A.1 A),B),C) in case dB is a C2-smooth hypersurface of R™.
In this case lemma A.1 A),B),C) are contained in theorem 5.3 of [45]. Indeed the latter theorem 5.3 covers
the more general case where R™ can be replaced by any complete n-dimensional Riemannian manifold.
Thus for the proof of lemma A.1 A),B),C) in case 0B is a C2-smooth hypersurface of R" it is sufficient to
refer to thecrem 5.3 in [(45].

Thus it remains to prove lemma A.1 A).B),C) in casc 98 is only piecewise C2 here however employing
the additional assumption that R2oBDIB. We first prove now part A) of lemma A1.1. The other parts
B) and C) will further below be shown to be easy conclusions of part A).

Proof of lemma A.1 A): We want to prove that
a limit of picas respective 0B is a nonextender respective a8 95)

We argue by contradiction and assume for this purpose that

there exists a sequence of picas q, respective 08
whose limit is an extender respective 0B (96)

Each q, being a pica has at least two distinct nearest points p_;, p,, on dB. If now the sequence q,
converges against a point q, being a pica then there is nothing more to prove because then the limit q is a
nonextender. Let us therefore assume the case that q is not a pica. In that case the foot point sequences
Pn1s P CONVErge against a (unique) point p, being the foot point of g, this foot point is characterized by
the subsequent distance property
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d(3B.q,) = d(Pyrq,) o7

We show now first that
the segment seg[p,.q,/ is normal on ¢8 (98)

The point p, must be contained in a boundary edge. This edge is represented by a path b(t):[0,1] ~>R2
being a regular C? parametrization, with b(0), b(1) being vertex points. This means each of the points
b((), b(1) is contained in an edge adjacent to b[0,1]. Now

if p,= b(t,) is not a veriex point then it is easily seen that

the segment seg[q,,.p,] being a minimal join to b(0,1) must be normal on K0,1). 99)
Let us therefore assume that p, is a vertex point of b[0,1] say p,=b(1). The sequences p,;.p,, converge
against p,. Therefore there exists a disc K(p,,8) which contains no other boundary vertex except p,2* and
all p,;. Py for # larger than a certain number N(8) are contained in K(p,,d). For each given n not both
points p,;, P, ¢an coincide with p,. Thus we can assume that p,; #p,, for all n > N(8)Z. Therefore p,,
must be contained cither in &(0,1)= {b(f)/0<t< 1} or in the adjacent edge c(0.1)= {c()/0<t< 1)
where b(1)=c(0). In any case

we find a sequence of points p,; which is contained say in t(0,1)%%

and p,,; converges toward p,,. (100)
Now

by conclusion (99) for n > N(8)

the segment seg{q_.p,,;] must be normal on b((,1). (101)

As the nomal vector of b(0,1] is continuous up to the boundary also the limit segment seg[q,.p,] is
normal on b[0,1] in b(1). This proves (98).

Note further down we shall make use of the property that every boundary edge can be viewed to be a
subpart of an enclosing open regular C2 smooth path. Thus say b[0,1] is subpath of a C2 regular path
B(—€, 1+e). This subpath property can be shown by extending the path 5[0,1] C2-smooth and regular
beyond the boundary points. We can define the extension B(¢) of the path b(t) by:

B =b(fort=<1

and for r 21 by
BO=bN+6)¢-1+ Q2D )¢ - 12 (102)
The extension beyond the point b(0) can be defined analogous.

1t is easily seen that this extension B ~g, 1+£] is C2.smooth, regular and
free of self intersections if £ is chosen sufficiently small. (103)

Let the segment seg(q,.p,] be represented by an arc length parametrized path w(s) with w(0)=p, and
w(lp, - q,1)=q,. Now if the point q, were a curvature center respective the foot point p, and the arc
b[1-¢,1] then we could show that q is a nonextender respective the boundary arc b[1-,1]. This means for
any > Q it is possible to construct a path starting in b{1-£,1] and ending in w([p, — ¢,,] + ¥} and this path

24This holds because the number of boundary vertices is finite.
PThis can be achieved by swapping Pqy With p,, as far as this is necessary,

28[f necessary we swap the notations for the edges ¢{0,1] and b{0,1)
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is shorter than |p, — ¢, + . The latter claim follows e.g. from a more general result in [45] which gives
an extension of a theorem of Jacobi. Therefore and because seg(q,.p,]) is a minimal join from dB1o g, :

the assumption that g, is a curvature center respective the peint
P,=b(1) and the arc b(1-£,1] implies that q, is nonextender. {(104)

Therefore our initial contradiction assumption (96) saying that q,, is an extender respective dB leads us to
conclude that the point q, is not a curvature center respective the arc b(1-¢,1}. Now if q,, is not a curvature
center of b(1) then:

the normal map
$(r1) = b(D) + r N(b() Y
yields for sufficiently smail numbers 3,00 > 0
a diffeomorphism
0:Uy=[r,-B.r,+Bl x [1-@,1] = Dy={o@./ (rt) e Uy} %
with o(r,, 1) =¢q, (105)
Now choosing some sufficiendy small p then in view of (100) we can assume that all picas g, in K(q,.p)
have their foot point p,; in b(1-A,1) and the points g, must be in Dy, if p is sufficiently small. Therefore
and because of the diffeomorphy property (105) the other foot point p,, of q, must be in the adjacent
boundary arc ¢{0,1)%. Next we show that p., cannot agree with c(0)=b(1)=p,. This follows from a
sublernma which we state now:
Sublemma A.1A’: Let £:(0,1]" >R™! be a regular C2-smooth hypersurface patch. Denote the surface
normal at f(x) by N(f(x)) and assume that for some x, in (0,1)" and for some r, >0 the segment
{Ax,)+rN(flx))/0<r<r | does not contain a curvature center respective the point f(x,) on this
surface patch. Then there exists a disc K(x_.€) in R" around x, and an interval (r - 8. r+ ) such that for
all (xy)e D, =(K(x,¢e)x{r,~8r,+38)) the normal segments g(xs} = {f{x) +sN(flx)) /0Ss<r)
are distance minimal to the subpatch P_ = {f{x) / x€ K(x,,€) }. This implies that for any (x.r}€ D, any

segment g joining the point f{x)}+rN{f(x)) with P, is longer than g(x,r) unless g agrees with glxsy0.

A proof of this sublemma is not very difficult and can be given by exploiting the local diffeomorphy of
the normal map onto the neighborhood of a point which is nor a curvature center. This sublemma can
also be viewed as a special case of a combination of two results saying that geodesics emanating normal
from a C2- smooth hypersurface are locally distance minimal up to their first focal point and that if y is
not a focal point respective some submanifold S then a whole open neighborhood of y stays free of focal
points respective § c.f. [45]. Therefore we don’t give here a proof of this sublemma,

The sublemma implies in our situation that if for sufficiently large indices n the foot points p, ;. ps are
both on b[1,1-A) then p,,=p,,. This yields a contradiction because p,, # p,,. This implies in our situation
that for sufficiently large a the point p,,, is unequal to ¢g,=c(0), hence p,, is in the open interval ¢(0,1).

2Tt ere N(b(1)) denotes the normal vector of the curve b() at the foot point b(t),

ZNote that this diffeomorphism is defined using the restriction of a diffeomorphism which is originally defined on a larger
open set Ug=(r -Br +f) x (1- 2 o,1+ 2 @) where &{r.!) is now defined for r>1 is now defined by using the extension 5(%)
described in ( 102).

29Note we use here that (105) guarantees that the normals emanating from £(1-2¢,1] do not intersect in D,

%This implication holds because of the following argument: First we observe that the sublemma implies with the interval (r —8,r_+5) being
open that for any (xr)€ D the point g r)=ATHrN{f(X)) is an extender with respect 1o P,. This excludes that there exists some other
minimal join from ¢(¥,7) to P, besides g(x,7).
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Now recall g, converges to q,, therefore for sufficiently large numbers # the point ¢, must either be an
interior point of the topological disc D, or g, is on the segment {¢(r,1)/r,Sr<r+p }. Clearly for
large enough » the foot point p,, € c(0,1) is outside D, and the segments w,=seglq,,,p,,] must meet the
boundary of the topological disc D, in some point z,. Using that p,, is in ¢(0,1) and that w, converges
toward the segment seg(b(1),q,l={®{(r,1)/0<r<r ] it is not difficult to see that for large enough
numbers n the the intersection point z, must be located or the segment {$(r,1) /0O<r<r +3}. Using
that the segment seg[z,,p,,] is a minimal join to the boundary 9B it is also not hard to prove that the
segment seg[b(1),z,] cannot be extended as a minimal join to the boundary dB beyond the point z, .
Therefore and because z, must converge to ¢, with g, it follows that the point g, must be a nonextender
respective 08, Thus we get a contradiction with our assumption that g, is an extender. This shows that a
limit of picas must be a nonextender and proves the first part of lemma A.1A).

It siill remains to show that q, must be a curvature center respective its foot point if it is not a pica. Let
us assume that q_ is not a curvature center respective its foot point &(1) on any of both adjacent arcs
BO1=[b(5)/0<s<1)c{0, 1) =[c(s)/0<5s< 1) and let us derive a contradiction. Precisely we shall
show that g,, is the first curvature center (on the segment seg(b(1), qq ] ) respective the foot point 5(1) on
at least one of the two arcs &0,1], c[0,1). For this we need.10 retum to the considerations in the
preceding proof. he preceding proof used 3 assumptions

1) q, is a limit ot picas

2) q, itself is not a pica

3) q, is an extender

We still need assumption 1) and 2) for the proof of the second part of lemma A.1A). The only locations
in the preceding proof where we uscd the assumption that q, is an extender was (except at the very end)
when we used it to conclude that q  is not a curvature center respective p, on b[0,1] and p, on c[0,1]. In
this proof we can now assume directly the non-curvature center property of q, and we don’t need the
nonextender property. Recall th: picas 4, are related 0 minimal joins (segments) segip.,.q,l
seg[p,0+qn3] Which converge to a minimal join being the segment seg( &(1),4,]. Because of this minimal
length property the open segment seg{b(1),q,) which does not include g, cannot contain any curvature
center respective the foot point ¢, on any of the arcs 5(0,1], ¢[1,0) by (104). Arguing by contradiction we
assume now also that g, is not a curvature center respective the point b(1) = ¢(0) on both arcs b(0,1],
¢[0.1). Therefore analogue to (105) we ~an now describe a diffeomorphism y(r.s): U, — D employing
the normal map with normals of the path c(s). Note that here now y(r ,0) = g, and also like ir. proof of
(98) we getnow {y(r,0}/0<r<r 1} =seg[b(1),q,]. Inthe proof above ( with ¢, converging to q,) the
segmenls seg{p,;.q,] being subparts of normmals on the curve ¢[0,1) were shown to inmersect
{w(r.0)/r,~B<r<r,+B]. This yields a contradiction ‘ith the assumption that y: U .—D_ is a
diffeomorphism. This proves that g, must be a curvature c¢ ~2r of its foot point respective at least one of
the arcs 5(0.1),¢[0.1). This completes the proof of lemma A.i1A).

Proof of Lemma A.1B): Let g, be a sequence of nonextenders converging against a limit point q,. We
have to prove that g, is a non-extender. By theorem 2A) every nonextender is limit of a sequence of

picas. Therefore for every n we can find a pica g, within distance 1/n to q . Together with the sequence g,

also the sequence of picas g js converging to q,. Thus by lemma A.1A) the limit q,, is a nonextender. This
proves lemma A.1B).

Proof of Lemma A.1C): By theotem 2A) every nonextender is a limit of picas. Lemma A.1A) states that
a limit of picas has the propenies claimed by lemma A.1C) for any nonextender. Therefore the
combination of lemma A_1A) and theorem 2A) prove lemma A.1C).
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Proof of Lemma A.1D): Lemma A.1D) is a special case of lemma A.2B). Therefore lemma A.1D)
follows from lemma A .2 given below. This proves iemma A.1D) and completes the proof of lemma A1,

We finally present a result which pertains to the practically important special case where the solid B is
contained in R3 and where 38 is piecewise linear. This means the solid’s boundary consists of planar
facets with edges being straight line segments. The subsequent lemma A.2 characterizes nonextenders
and it also describes properties of limit points of nonextenders.

Lemma A.2: Let B be a compact solid in R? and assume that 9B is piecewise linear. Then the following
statements hold :

e A) If a limit of picas is not a pica then its nearest point q on 9B is a veriex point of 98 i.e. q is
contained in more than two boundary planes.

» B} Every nonextender respective 0B is a pica.

Proof of Lemma A.2: Every boundary plane P; has a unique interior nomal N;. The number of those
normals is finite. Let £ > 0 be the smallest angle built by any two distinct (interior) boundary normals of
aB.

Proof of Lemma A_2 A: We first show part A) of lemma A.2. For this we show that:

If a limit of picas is not a pica then its foot point on 4B is a vertex point i.e. the foot (106)
point is contained in more than two boundary pianes.

To prove (106) we assume that its negation is true and derive a contradiction. Therefore assume there
exists a sequence of picas g, converging to a non-pica qq and the foot point p, of q, is contained in at

mostL two hyperplanes“. Clearly as q, is not a pica

the minimal joins from q_ 1o the boundary must

converge against the segment joining q,, with p,,. (o
As p, is not a vertex there exists a small disc K(pg,6) such that K(p,,8) meets at most two hyperplanes Py,
P, and there is no vertex in K(po,ﬁ). It is obvious that K(po.ﬁ) must meet at least two boundary planes
with distinct normals because

the foot point p, of q, cannot be an interior
point of a boundary plane piece Py with normal N;. (108)

As otherwise (for sufficiendy large numbers n) the minimal segments g joining q, with 9B are either
paraliel to Ny or built an angle ang, larger than some positive number  with N, where N, is parallel to
the segment g, joining q, with p,. This would yield a contradiction with the assumption (107) because
the fact that the q, are picas together with (107) implies that the angles ang, attain arbitrarily small
positive values. This proves (108). Therefore we can now assume that K(p,.0) meets precisely two
hyperplanes P, P, with normals Ny, N, respectively. Let v be the angle built by the two normals Ny, N,
As the limit of the picas q, is not a pica and as the foot points p,;, p,; must converge against p, there
exists a disc K(g,,.€) and a disc K{p,,n) such that:

For all q, in K(q,, £) the foot points p,,,, p,, are in K(p,, ) and all pairs

of segments seg{q,,.p,,1]. seg(q,.p,,) build an angle smaller than /10. (109)
It can also be arranged that € in {109) can be chosen so small that :
The convex hull CO of K(p,n)wK(q,£) meetsonly the planes P, P,. 110y

3To simplify our notztion we shall call a nearest boundary point of any point q the foot point of q.
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Here (110) holds because seg(p,.a,]M p, } does not meet aB. Let us take any pica g, in K(q,.e). The
point q, has (at least) two distinct foot points in K(p,,,n). At most one of the two segments can be normal
on a boundary hyperplane because of the angle provision (109). Assume that say p,,; is an interior point
of one of the two planes say of P;32 The other foot point p_, can not be an interior point of P, because of
the angle provision (109). Therefore p,, € Py P,"K(p,.Nn) . Thus

length(seglq,p o)) = Vg, —pua P+ 1y —Pra? > length(seg{p,p.ppn) (111)
a contradiction with the assumption that p,;, p,, are both foot points of g,,. These considerations imply
that both points p,,, p,; must be edge points thus

(Pa1 Pt e PNPyT K(p,.M).
Now

The segment seglp,.Py; | is contained in D = PN Pyc NK(p,M) (112)
because D is convex as an intersection of convex sets. The planar triangle W with the vertices p,, P2
q,; is contained in the convex set CO defined in (110). The triangle W has two edges seg[q,.p;].
seg(d,.Py) Of equal length. Clearly by (112) the mid point m of seg(p,;.Py,) is in dB8. Therefore the
segment segim,q ] yields a boundary join shorter than say seg(q,,.py;}. a contradiction. This shows that
the foot point p, must be vertex point i.e. p, meets more than two boundary planes. This proves part A)
of lemma A.2.

Remark: Acually we also proved above that if the segment angle of a pica is smaller than some
positive number then the foot points of this pica must be located close to a veriex point. Morcover
analyzing the preceding geomerric considerations it is not difficult to derive an esimation for the distance

of a pica ‘oot point to the nearest boundary vertex. This estimation would incorporate the segment angle of
the pica.

Proof of Lemma A.2 B: Using lemma A.2 A) we show now lemma A.2 B). That is we prove that a
nonextender is necessarily a pica if d8 is piecewise linear. For the proof we argue by contradiction.
Namely we derive a contradiction from the negation of lemma A.2 B). For this purpose we assume that
there exists a nonextender q, which is not a pica. By theorem 2 the picas are dense in the set of
nonextenders, thus q,, is limit of a sequence of picas q,. By lemma A.2 A) the foot point p, of q, is 2
boundary vertex. As q, is a nonextender respective dB we know that for any € >0 the extension of
seglp,.q,] by length € to a point q; (beyond q,) is not a minimal join to the boundary. Therefore there
exists a minimal join g, from q, to the boundary which meets 0B in a point p,. The point p is different
from p, as otherwise the extension of seg{p,.q,] would be minimal join to the boundary. Asq,isnota
pica the segment g, is converging towards seg[p,.q,] and p, converges toward p, if € converges to 0.
Since the number of boundary vertices is finite there exists a positive number  such that K(p,,,0) contains
only the boundary vertex p,. Every segment joining a point of 9B K(p,,8) with the vertex p, is
completely contained in d8BK(p,,5)33. Now choose the € for the extension of seg{p,.q,] so small that
the foot point p, of q, (defined above) is contained say in aBr\K(po,SIIO). The segment seg[p,,pe] as
well as its extension by length 8/3 beyond p, are contained in 9BNX(p,,8). Let p, be the end point of

R Py is an interior point of P, we swap the names of the two planes.

33This holds because dBMK(p . §) is built by a finite union of planar pieces S, each planar piece S, being a sector bounded by
two segments (starting at p_) and a circular arc with radius §. Now any pointp € dB8nK(p,, §) must be contained in some S,. As

8, is convex S, contains seg([p.p,]. Therefore 0BK(p,, 8) being the union of the sectors S, must contain seg[p,p]. This proves
our claim.
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this extension of e=seg{p,.p.]. If ¢ is not normal on seg(p, p, then it is easily seen that ¢ contains a point
py such that segf{p,q.] yields a shorter join to the boundary than the minimal join seg(p..q.] a
contradiction. Thus seg(py.q,] must be orthogonal on e. Now the points p..p,,qg built a triangle with a
rectangular angle at vertex p.. This triangle contains a segment g which joins q with e and g is parallel to
seg(pg-qcl- Clearly g is shorter than the minimal join seg(q,,,p,] unless g and seg[q_.p,] agree. Thus g and
seg(q,.p,] must agree. However this not possible because the assumption g being a nonextender implied
that p,, and p, are distinct ¢.f. above. Therefore we get a contradiction with our assumption of the proof of
lemma A.2 B). This completes the proof of lemma A.2 B).
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