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Abstract

A ROBUST DESIGN METHOD FOR IMPEDANCE CONTROL
OF CONSTRAINED DYNAMIC SYSTEMS

by
Homayoon Kazerooni

Submitted to the Department of Mechaaical
Engineering on February 13, 1985, in partial
fulfillment of the requirements for the degree of
DOCTOR OF SCIENCE in Mechanical Engineering

The goal is to develop a method for design of controllers of coustrained dynamic
systems 10 the presence of model uncertainties. The cootroller must carry out flice maneuvers
when the dvpamic system is pot constrained, and compliant motions, with or without
interaction-force measurement when the system is constrained. At the same time stability

must be preserved if bounded uncertainties are allowed in modelling the system.

Dyuamic systems sucb as manipulators are subject to interaction loads (forces and
torques) when they maneuver in a constrained work-space. If we define complianey as a
measure of the ability of a dynamic system to react to interaction loads, we can state our
object as assuring compliant motion in the global cartesian coordinate frame for the class of
dynamic systems that must maneuver in constrained emvironments. Examples of these systems
are manipulators interacting with the environment or underwater vebicles maneuvering while

they are tied to structures by cables.

Stability of the systemn and environment as a whole and the preservation of stability in
the face of changes are two fundamental issues that bave been considered in the design
method. We start with conventional controller-design specifications concerning the treatment
of external loads when the system is not constrained. Generalizing this concept to include
cases when the system is coostrained, we state a set of design specifications to assure the
desired compliant motion in the cartesian coordinate frame and stability in the presence of
bounded uncertainties. This will lead us to select a time-invariant stable target impedance
that both assures the global stability of the system and its environment and fulfils the design
specifications.  The target impedance is specified in terms of certain second order matrix

polynomials,
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In general, the closed-loop behavior of a system cappot be shaped arbitrarily over an
arbitrarily wide frequency range. We prove, however, that a special class of impedances that
represent our set of performance specifications are mathematically achievable asymptotically
through state-feedback and interaction-force feedforward as actuator bandwidths become large,
and we offer a geometrical design method for achieving them in the presence of model
uncertainties. Simple closed-form expressions for the required feedforward and feedback gains
are obtained as the solution to an eigenstructure assignment. This design method reveals a
classical trade-oflf between a system's performance and its stability relative to model
upcertainties. We deal with two classes of such uocertainties. While the first class of model
uncertainties is formed [rom the uncertainties in the parameters of the modeiled dyvamics,
the high frequency unmodelled dynamics form the second class of model upcertainties. The
multivariable Nyquist criterion is used to examine trade-offs in stability robustaess against
approximation of desired target impedances over bounded frequency ranges. When only
output feedback is available, an observer is derived. By exploiting the eigenstructure of the
observer, when loop trapsfer recovery takes place, direct eigenstructure assignment (dual to
the impedance control synthesis) can be used to compute the desired ‘“‘observer” gains.
Finally, the theoreticai results and methodology are illustrated by applications to problems in
planar manipulators and underwater vehicles.
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Chapter 1
Introduction

For a broad class of mechanical sys‘tems under closed-loop control, fundamental
differences in bebhavior and coatroller design complexity can be attributed to two types of
maneuvers: unconstrained and comstrained. In the first case, the dynamic sysiem (eg.. 2
manipulator or an underwater vehicle) is driven in its work-space without comtact with the
environment.  Note that the environment might exist in the system work-space without
imposing any coanstraint on the system motion. In the comstrained maneuvers, the system is
driven in its work-space so the eavironmeat continuously exerts a dynamic or kinematic
constraint on the system’s motion. A dynamic mameuver such as leading a manipulator in a
free environment toward a metal surface and theo grinding the surface may consist of both

types of maneuvers.

Spray painting by a manipulator is apn example of the first class of maneuver. The
end-peint of the manipulator travels through certain points in ita work-space without any
restriction. Other examples of systems with unconstrained maneuvers are space or underwater
vehicles that e¢ap be driven to various points without coming in contact with the
environment. On the otber band, inserting a computer board in a slot (i.e., the peg-in-hole
problem]) or turning a2 crank by means of » manipulator are examples of coastrained
maneuvers; the end-point of the manipulator is in contact with the environment and camnpot
move in all directions. An underwater vehicle that is connected to 3 structure via cables (or
flexible conpectors or mechanical arms) is ab example of a constrained system. Although
such a system will remsin unconstrained as long as the cables are not tensioned, its motion
will become constrained if the vehicle is driven in its work-space such that the cables are
tensioned.  {See Section 2.4.1 for further details.) Our classification of maneuvers as
unconstrained and constrained is similar to the classification introduced by Whitney [55], who
categorized manipulations isto ‘“rearrangemept” tasks and ‘“‘force” tasks. Another slightly
different classification is given by Hogan [22], who classified the manipulations into ‘“‘non-

energetic”” and ‘‘energetic’’ interactions. This thesis deals with constrained maneuvering.

The rejection of external loads is an important design specification wben the dynamic
system is not constrained. Once the system crosses the boundary of the unconstrained

eovironmeat (ie, the dynamic system interacts with the environment), the dymamics of the
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system will change and stability will no longer be guaranteed with the same controller. The

compegsator tries to reject the interaction Joads, causing more interaction forces and torques.
Saturation, large aod undesirable contact forces, limit cycles in the motion of the system, and
possible instability are the result of this type of maneuvering. Figure 6-14 in Chapter 6 is
the result of a simulation of such behavior. Plot b in Figure 6-14 in Chapter 6 shows the
position of an underwater vebicle in 8 constrained maneuver using a position controller
designed for mapeuveriog in an unconstrsined eavironmeat. Plot s is the reference input
position to the controlled system. Region 1 in plot b shows the successful maneuver of the
system when the vebicle is not constrained, while region 2 exhibits the position of the vehicle
when the system encounters the eavironment. The limit cycle evident in this region shows
that controllers that guarantee positioning capabilities in usconstrained maneuvering do not,

in general, permit desirable behavior in constrained maneuvering.

In coostrained mabeuvering, the interaction loads must be accommodated rather than

resisted. If we define “compliancy” as a measure of the ability of a dynamic system to react

to interaction forces and torques, we can state our object as assuring compliant motion in the

global cartesian coordinate frame for dypamic systems that must maneuver in coostrained
environments. Previous researchers have suggested two approaches for assuring compliant
motion for dynamic systems. The first approach is aimed al controlling force (torque) and
position (otientation) in a mon-conflicting way. In this method, force (torque) is commanded
along (about) those directions constrained by the eaviroument, while position (orientation) is
commanded along (about) those directions in which the system is unconstrained and free to
move. The second approach is aimed at developing a relationship between interaction loads
(forces and torques) and system motion (position and orientation). By controlling the position
and orientation of the dynamic system and specilying this relationship, s designer can ensure
that a system will be able to maneuver in a constrained epvironment while maintaining

appropriate contact [orces and torques.

The first approach was motivated by several studies. Paul and Shimano [43] partitioned
the motion of a system into position- and force-control in a global cartesian coordipate frame.
Then, with the belp of a decision-making “logic” hidden in a supervisory computer program,
they arrived at the two sets of actuators that could best contribute to the position control
loop and the force control loop. Railbert and Craig [46] also partitioned the motion of the
system in a global cartesian coordinate frame. They used a position controller to move the
system in uncoostrained directions and a3 force costroller to push the system against the

epvironment with the desired contact force. They then arrived at input values for the
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actuators {without assuring stability} such that all actuators wouid contribute to both
partitions. Whitney [55] arrived at a single-loop velocity-control scheme with the net effect of
controlling the contact force. Similar work in the generation of compliant motion has been
done by Mason [38] and Wu and Paul [61]. Common to all such methods for ensuring
compliaot motion is' the dependence of the coamtroller’s structure on both the kinematics and
dynamics of the system and of its environment. For example, if the end-point of a
manipulator travels from one constrained point to another such that the epvironment at the
new poiat exerts constraints that differ from the constraints at the first point, then a new

controller with a different structure must be designed to accommodate the new constraints.

In the second approach toward generating compliant motion, a3 relationship is defined
between the motion (position and orientation) of the system aod the interaction loads.
Salisbury [50] started by defining a linear static function that relates interaction forces and
torques to epd-point position and orientation via a stiffaess matrix in a cartesian coordinale
frame. Monitoring this relationship by means of a computer program ensures that the system
will be able to maneuver successfuily in a constrained envirooment. Ip his seminal work,
Salisbury justified the stiffness matrix as the representative of a behavior that maaipulators
must exhibit whiie they are used as positioning systems. The method of stiffness control
offers neither assurance of global dynamic stability nor a guarantee of a specified frequency

range of operation.

This thesis addresses the problem of closed-loop control of dynamic systems such as
manipulators that operate in comstrained environments, with or without interaction force
measurement, in the presence of bounded model uncertainties. Central to the approach is the
notion of mechanical impedance as a parametrization of a rational wset of performance
specilications to generate the compliant motion while preserving stability in the presence of
bounded model uncertainties. Preservation of the stability of the dynamic system and the
environrnent taken together as a whole is also a [fuadamental issue in coostrained

maneuvering. The proposed impedance guarantees this global stability also.

In Chapter 2 of this thesis, we explain (without getting involved i mathematics and
design methodologies) peints of practical importance in geperating the compliant motion of a
dynamic system. We start with conventional controller design specifications concerning the
"accommodation of interaction loads when the system is not constraiped. Then we generalize
this concept to apply to situations ip which the system is constrained. Next, we parametrize
the necessaty performance specifications in a simple mathematical form. This will take us to

ao ‘“impedance control” strategy for gemerating compliant motion. The coscept of impedance
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control is defined by Hogan [IT, 18, 19, 20, 21, 22] independent of aby specific design
methodology. Impedance control is an in-depth approsch of Salisbury's stiffness control:
therefore, it is considered to be part of the second approach toward developing compliant
motion.  After defining and justifying impedance control in Chapter 2, we derive the
eigenstructure properties of the proposed impedance in Chapter 3. We also address the
stability of the target dynamics and their global stability with the environment in Chapter
3 and Appendix A. la Chapter 4, we present a dynamic model for a manipulator with
actuators suitable for impedance control. We consider two classes of uncertainties in the
modelling of the dyoamic system. While the lirst elass of model uncertainties involves the
upcertainties in the parameters of the modelled dyoamics, the high frequemcy ummodelled
dypamics form the second class of model uncertainties. We deal with both uncertainties in

the design method.

Chapter & explains the design methodology for impedance comtrol. The design method
is simply a computation of state-feedback and force-feedforward gain based on the
eigenstructure assignment of the closed-loop system. The achievement of the target dynamics
and preservation of the stability robustness in presence of bounded model uncertaioties are
the key issues in the design method. State-feedback and force-feedforward gains are chosen
to guarantee the achievement of the target dynamics while preserving stability in the presence
of model uncertainties. In Chapter 6 we give examples, simulations and some experimental
results of the design methodology. Chapter 7 stands by itself as a techpical paper; this
chapter is not necessarily a part of the design technique for impedance control, but provides
a new geometrical method for designing an observer for estimating the unmeasurable states of
a system. Using the material of Chapter 7, ao output feedback controller can be designed to
achieve the target dypamics. The work presented in this document makes extensive use of
the concepts and methods of control theory. While every effort bas been made to explain
the application of this material to impedance control, this document (except Chapter 7) is not

an exposition of control theory generally.

Throughout this thesis, we take our dynamic system to be a serial-link manipulator.
The theory of impedance control can equally be applied to constraized underwater or Bpace
vebicles. A vebicle can dynamically be assumed to be s ome-link manipulator with 6 degrees

of (reedom.



Chapter 2
Fundamentals

2.1 Background

For the classes of dynamic systems that are used as positioning systems, control
compensators traditionally have been designed eo tbat the system’s outputs {position and
orieptation) follow the commands, while rejecting the external loads (forces and torques). The
two specifications (command-following and external-load rejection} typically require large open-
loop gaips for the frequency range in which the command inputs and the external loads
contain the most power. Since commands and external loads usually contain low-frequency
signals, command-following and externalload rejection properties taken together establish a
design specification at low frequencies. To achieve the above properties over a large frequency
range is not trivial; loop gains caonmot be made arbitrarily large over an arbitrarily wide
frequency range. A designer is always faced with certain performance trade-offs: these involve
command-following and external-load rejection versus stability robustness to bhigh-frequency
unmodelled dynamics. The conflict between these two sets of objectives is evident iz most

positioning systems.

If the above controller design procedure were successful for constrained dynamic systems,
such as manipulators tbat must cope with the environment or underwater vehicles connected
to structures by cables, there would be little to complain about. Io general, manipulation
may fall into one of two categories. In the [irst category, tbe manipulator end-point is free
to move in all directions, as in spray painting. In the second, the manipulator ead-point
ioteracts mechanically with the environment. Most assembly operations aad underwater
manipulations require mechanical interactions with the envirooment or with the object being
manipulated. Such interactions imply constraiots on the system’s states. At this stage, the
pature of the environmental constraint (which is the result of the interaction between the
dynamic system and the environment) does not matter. The epvironment could exert a

kinematic or a dynamic constraint ouv the system.

I one designs a model-based compensator for an unconstrained dyvamic system. bearing

in mind the objectives of disturbance rejection and robustness to model uncertainties, then
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the closed-loop system will operate according to the specified criteria as long as the system
travels inside the unconstrained environment. The system will try to reject all external loads
and reach the assigned reference inputs. However, once the system crosses the boumndary of
the unconstrained environment (i.e., the dynamic system interacts with the environment), the
dyoamics of the system will change and stability will no longer be guaraateed. In fact, the
system is now likely to become unstable. Even if stability is preserved, large contact forces
may result. (See Reference [55] for a design method in which stability depends on the

characteristics of the envirooment.)

In traditional controller-design methodology, external-load rejection is an important
consequence of the design specifications. This property is useful as long as the system is
unconstrained. Once the system is copstrained, the compensator treats the interaction loads
as disturbances and tries to reject them, thus causing more interaction forces and torques.
Saturation, instability, and physical lailure are the consequences of this type of interaction.

But, in many applications such external loads should be accommodated rather than resisted.

An alterpative to exterpal-load rejection arises il it is possible to specify the interaction

loads generated in respobse to imposed motion. The design objective is to provide a

stabilizing dynamic compensator for the system such that the ratio of the motion of the
closed-loop system to an interaction load is constant within a given operating frequency range.

The above statement can be mathematically expressed by equation (2.1).

AD(jw) = K AY(jw) for all 0w, (2.1)
where:

AD(jw) = 0oX1 vector of deviation of the interaction load (forces and torques)
from equilibrium value in the global coordinate frame

AY(jw} == pX1 vector of deviation of the interaction-port position and oriestation
from an equilibrium point in the global coordinate frame

K s pXn real-valued non-singular stiffness matrix with constant members
W, = frequency range of operation
i = complex number motation, \/-1

The stiffness matrix [50] is the designer's choice that, depending on the application, contains
. differeat values for each direction. By specilying K, the designer goveras the behavior of the

system in constrained maneuvers. Large members of the K.matrix imply large interaction
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forces and torques. Small members of the K-matrix allow a considerable motion of the
system to interaction forces and torques. Stiffpess values, in one sense, represent the type of
behavior a designer may wish a stable positioning system to exbibit. For example, if the
system is expected to epcounter some physical constraint in a particular direction, a stiffness
value must be selected such that the desired contact force is ensured in that direction; in
directions in which the system is not likely to meet any pbysical coostraints, a stiffness value
with a proper position set-point must be selected such that the system follows the desired
reference inputs. Therefore, 2 K-matrix can be formed to contain stiffmess values appropriate
for different directions. Even though a diagonal stiffness matrix is appesaling for the purpose
of static uncoupling, the K-matrix is not restricted to any structuzre at this stage. Selection

of the K-matrix is considered as the first item of the set of performance specificationa.

The system must also reject the disturbances (if there are any). If disturbances {e.g.,
force measurement noise) and interaction loads both contain the same frequency range {or
even if the frequency spectra of both signals overlap), then the system in gewmeral cannot
differentiate between the disturbances and the interaction loads. Hete we assume that the
disturbances and force measurement noise act on the system at frequencies greater than w,
(see Section 2.4.2 for an example). An analogy can be observed in tracking systems: if
measurement noise and reference inputs share some frequency spectrum, the system will follow
the noise as well as the reference inputs. The refereace inputs must contain components with

frequency spectra much smaller than the spectruin of the measurement noise.

Mechanical systems are not genmerally responsive to external loads at high frequencies; as
the frequency increases, the effect of the feedback disappears gradually, depending on the
type of controller used, until the inertia of the system dominates its overall motion.
Therefore, depending on the dynamics of the system, equation (2.1) may mot hold for a wide
frequency range. [t is necessary to consider the specification of w, as the second item of the
set of performance specifications. In other words, two independent issues are addressed by
equation {2.1): first, a simple relationship between AD(ju) and AY(jw);, second, the frequescy

range of operation, w_, such that equation (2.1) holds true.

Besides choosing an appropriate stiffoess matrix, K, and a vigble w,, 8 designer must
also guarantee the stability of the closed-loop system. Therefore, stability is comsidered to be

the third jtem of the performance specilications.

The stiffness matrix, K, the frequency rasge of operation, w, and the stability of the

closed-loop system form the set of performance specifications. Note that this set of
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performance specifications (stiffness, frequency range of operation, and stability} is just a
contemporary and practical way of formulating the properties that will epable the closed-loop

system to handle constrained maneuvers.

The achievement of the set of performance specifications is not trivial; the stiffpess of
the system cannot be shaped arbitrarily over an arbitrary frequency range. A designer must
accept a certaio trade-off between performance specifications and stability robustness to model
ugcertainties. The conflict between the performance specifications and slability robustness
specifications is evident in most closed-loop control systems. The sets of performance
specifications and stability robustness specifications taken together establish » complete set of

controller design specifications. Figure 2-1 shows how this set is categorized.

1) Stiffness matrix, K
1) Performance Specifications ¢ 2) Frequency raoge of operation, w,

Controller Design 3) Closed-loop stability
Specifications

2) Stability Robustness Specifications

Figure 2-1: Controller Design Specifications

Establishing the set of performance specifications (K, w, and stability) gives designers a
chance to express (at least to themselves} what they wish to have happen during a
constraiced manipulation via a manipulator. Note that the set of performance specifications
does not imply any choice of control techmiques. We have mol even said how one might
achieve the set of performaoce specifications. Such a set oaly allows designers to transiate
their objectives (after understanding the mechanics of the problem) into a form that is

meaningful from the standpoint of coatrol theory,
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2.2 Performance Specifications

We are looking for 3 mathematical model that will enable us to parametrize the three
items of the set of performance specifications (K, w, and stability). The parametrization must
allow the designer to specify the stiffness matrix, K, asd the frequency range of operation,
w,, independently, while guaranteeing stability. All such performance specifications can be

mathematically expressed by equation (2.2).

AD(s) = [K + Cs + J 62 | AY(s}, s=jw for all 0<w<u, (2.2)

[ K+ Cs + Js®| = impedance

K, C aod ] are nXn real-valued non-singular matrices. Note that it is still pecessary to
achieve equation (2.2) for all 0Cw<w, . Since equation (2.2) can give s etable eigenstructure
for the closed-loop bebavior, it is preferable to equation (2.1). We use the Laplace operators
in equation (2.2}, to emphasize that the entire set of performance specifications can be shown
by a linear dynamic equation in the time domain. (See Section 2.5.) Proper selection of the
K-matrix_allows the designer to express the desired stiffmess, while judicious choice of the

inertia_matrix. J. and the damping matrix, C, assyres the achievement of w_ and stability of

the system. To clarify the contribution of J, C and K, consider Figure 2.2, the plot of

AY{jw)/AD(jw) from equation (2.2) when na=1 and the system is slightly uﬁderdamped.

14 T i { o
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Figure 2-2: Plot of AY(jw)/AD(jw) whea o=1

AY(jw}/AD(jw) remains very close to 1/K for some bounded frequency range. In other

words, the plot of AY{jw)/AD{jw) approximately exhibits the relationship in equation (2.1) for
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some bounded frequency range. Therefore, K in equation {2.2) parametrizes the {irst item of
the set of performance specifications. Let the frequency range for which inequality (2.3} is

true be Wy

[l +Cs | < 8 |K| s = juw (2.3)

where 3 is a positive pumber less than one which measures bow close the proposed impedance
is to K. Note that our only purpose for introducing [ is to say that for the bounded
frequency raoge (0, w,), the impedance in equation {2.2) behaves spproximately like the
K-matrix. [ represents tbis approximation and is not a design parameter. If K is given,
then w, and the stability of the system (the second and third items of the set of performance
specifications, as given by equation (2.2)) depend oo J and C. In other words, a designer can
change eitber J or C to affect w, and the stability of the system. For example, for a given
K and C, decreasing J causes the corner frequency, \/Ia, and consequently w,, to increase.
Changing J also moves the eigenvalues of the system. For a given positive set of K and C, a
pegative J locates one eigenvalue in the right half complex plane, while a positive J
guarantees that both eigenvalues always stay in the left balf complex plane. The dependence
of w_ and the stability of the system on C can be investigated in a similar way. Because of
the dependence of w  and the stability of equation (2.2) on J and C, it can be shown that
for a given K, there exist many J and C such that two eigenvalues of the system are always
in the left half complex plane and AY(jw)/AD(jw) remains arbitrarily close to 1/K for all
0<w<w,. We consider J and C as two factors that parametrize the second and third items
of the performance specifications. If we consider C as a parameter that only guarantees 2
stable and slightly over-damped {or slightly under-damped) system, then we can claim that J
is the only effective parameter in increasing or decreasing the frequency range of operation,
w,, for a given K. Sioce a heavy system is always slower than a light system, a large target
inertia, J, implies a slow system (narrow uo), while 2 small target inertia implies a fast

system (wide uo).

The parametrization of the set of performance specifications in the case of more than
one dimegsion is similar to the case when p==1. Matrix K in equation (2.2) models the first
itetn of the set of performance specifications because the behavior of [.Is2 + C s + K]
approximates that of K for some bounded frequency range. In other words, for some

bounded frequency rapge, inequality

Jw (2.4)

[G° + 8 | < G

i} ij!
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is true, where 3. j 15 a positive pumber less than one which measures bow close
[Js +Cs+ K | is to K. Here again, the only purpose of introducing Bij is to say that
for the bounded [frequency range of (0, w,), the impedance iz equation (2.2) behaves
approximately like the K-matrix. We call this frequency range Wy i i and kij are
members of J, C and K. w, and the stability of the system depend on matrices J and C.
It can be shown that for a given matrix K, there exist many J and C matrices such that the
<o eigenvalues of equation (2.2) are in the left half complex plane and [Is*+Cs+ K ] is
close to K for all 0<uw<w,. For example, if J aod C are selected to be K and K (where
7, aod n, are scalars), then the characteristic equation of equation (2.2) yields n uncoupled
second-order equations for the eigenvalues of the system. ", aad Vg can be selected such
that all eigenvalues are in the left balf complex plane. The smaller 7 is selected to be, the
wider W, will be. Of course, this may oot be the best way of choosing J and C, but it does
show that there exist many J and C matrices such that with a proper K, equation
(2.2) models all three items of the set of performance specifications. Again, if we consider
matrix C as a parameter that only guarantees a3 stable and slightly over-damped {or slightly
under-damped) system, then we can claim that matrix J is the oply effective parameter in
increasing or decreasing the frequency range of operation, w,, for a given K-matrix. The

following is a summary of the parametrization of the set of performance specifications:

stiffness matrix ........oooeeeeeeeenin. > K;
VSOOI~ S 3
stability ..., > C.

At this stage, we do not restrain matrices J, C and K to any structure. The only restriction

is that J, C and K be pon-singular matrices.

Equation {2.2} is ot the only possible parametrization of the performance specifications.
Similarity of the natural behavior of maanipulators to the form introduced by equation (2.2) is
one reason for the choice of the second-order impedance. Withil_l some bounded frequency
tange. manipulator dynamics are governed by Newton's equations, which are of second order
for each degree of freedom. Practitioners tend to observe an attenuation in frequency
response tests on manipulators for some bounded frequency range which cap be approximated
40db per decade. At high frequencics, other dynamics contribute to the dynamic bebavior of
maeipulators. We chose a second-order impedance because of this dynamic similarity.
~Chapter 3 and Appendices A and B explain some properties of the second-order impedances.
Throughout this thesis, equation (2.2) is referred to as the targe! dynamice. Other forms of

this equatiob are presented in Section 2.5.
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Wichout any justification at this stage, we claim that AY(jw) and AD{jw) must be small
in magnitude. This restriction does not mean that this theory cannot be applied when large
contact forces are involved. A large contact force (torque} can be produced by many
incremeatal forces, AD{jw}, where AD{jw} is very small at each stage. This restriction on the

size of these variables is clarified in Chapter 4.

Here, we use an example to illusirate a potential difficulty with matrix J. Consider a
diagonal K-matrix. If K is choten s0 that K = diag(k,, k, . kn), then
J = diaglj,, iy - )y) s0d C == diag(c,, ¢, .., €,) can be selected to guarantee that each
chanpel has the desired frequency range of operation. J need not, however, be a diagonal
matrix to guarantee the uncoupling of motion in the desired operating frequency range. Even
though K is selected to be a diagonal matrix to ensure uncoupling, there exist ap infinite
number of J-matrices (not necessarily diagonal) that can guarantee this uncoupling for the
desired frequency range of operation. This is true because Js? is effective only at high
frequencies (v>w ), for all 0<w<w, K plays the most important role in determining the
response of the system. The size of J is important, mot its structure. Of course, the
diagonal structure for J makes its selection much easier. As stated earlier,
| 752 + C s + K| remains very close to K for some bounded frequency range, 0w,
For all 0<u<y,, [ 3 s ? 4+ C s + K| behaves approximately like K, and the contact loads
that are generated in response to those components of the imposed motion AY(jw) that live
in the operating region 0<w<w, is approximately equal to K AY(jw), which is nearly
independent of J. (Of course, the response of the system outside the frequency range of
operation (u <.=<x) depends on J.) Oun the other hand, w,, establishes the frequency range
in which the size of K is much larger than Ju? Dependence of w, on the size of J and the
independence of the system’s response from J, show that the size of J is important and not
its structure. (One can consider the size of the J-matrix in terms of its singular values.) A
diagona) or a non-diagonal J is equally suitable for an impedance as long as the size of the
matrix guarabtees that AD{juw) = K AY{jw) for all 0<w<w,. In Chapter § we will arrive at
a pon-diagonal J, which can guarantee an uncoupled stiffpess for 0<w<w, without any force

measurements. See Section 5.3.4 for a discussion of the selection of the J-matrix.

By specifying the matrices J, C and K, a designer can modulate the impedance of the
system. If 3 dyoamic system is in contact with its environment and a new reference point is
commanded {e.g., by a supervisor program), then, since the parameters of the impedance in
equation (2.2) are under control, the resulting interaction load om the system will also be

under control. This means that the controlled dynamic system will behave like a system that
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accepts a tet of position and orientation commands and reflects a set of forces and torques as
output. This is the fundamental characteristic of impedance conirol that cannot be attributed
to admittance conirol  In other words, impedance control always allows for closed-loop
positioning capabilities.  Stiffness control {50] also offers this characteristic. By assigning
different position and orientation commands and by maintaining complete control in equation

(2.2), a designer can achieve the desired contact forces sad torques.

Impedance control can be contrasted with the two conventional modes of controlling a
dynamic system:  position control and force control. Position control works well for
upconstrained space, but causes difficulty when environmental comstraints exist. In cobtrast,
force control is desirable for manipulations in constrained space. Position control and force
control are two extreme cases of impedance control. The former implies very high impedaace,

while the [atter implies very low impedance,

2.3 Stability Robustness Specifications

The stability robustness specifications arise from the existence of model uncertainties
(49, 33]. The model uncertainties fall into two classes. Lack of exact knowledge about the
parametets of the modelled dynamics (e.g., the inertia :natrix) constitutes the first class of
model upcertainties.  High-frequency unmodelled dynamics (such as bending or torsion
dypamics of the members) form the second class of unmodeiled dynamics. Note that the
model uecertainties of the second class gemerally give rise to modelling error only at high
frequencies, while the model uncertainties of the first class can contribute to modelling error
at all frequencies. If the compensated system does nmot satisly the stability robustoess
specifications, the system may not become unstable. This is true because our robustness test
is a sufficient condition for stability. Satisfaction of the robustness test guarantees stability,
while the failure of the robustpess test does pot necessarily imply instability. If ome camnot
mcet the stability robustness specifications at bigh frequencies, it is pecessary to consider the
higher-order dynamics (if at all possible) when modelling the system. Adding the bigher-order
dynamics to the system allows for weaker stability robustoess specifications at high
frequencies. If higher-order dynamics cannot be determined, it is mecessary to compromise on
the set of performance specifications. A small w, will allow designers to meet strong sets of
stability robustness specifications at high frequencies. On the otber band, with a very small

«,. stability robustness to parameter uncertainties may not be satisfied. This is true because
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stability robustness to parameter uncertainties assigns a lower bound oo w,. To achieve a
wide w_, a designer should have a good model of the system at high frequencies (and
copsequently, a weak set of stability robustness specifications at high frequencies). Because of
the conflict between desired w_  and stability robustness to high [requeacy dymamics, it is a
struggle to meet botb sets of specifications for a given model vacertainty. Tbe frequency
range of operation, w,, cannot be selected to be arbitrarily wide if a good model of the
system does not exist at high frequencies, while 2 good model of the system at high
frequencies makes it possible to retain the target dynamics for a wide w,- The relation
between w_ and stability robustness will be preseuted in Chapter 5. Even though w, is the
major candidate that can be used to compromise against stability robustness specifications,
there are other freedoms in design techpique that sometimes can be used for the same

purpese. This will be clarified in Chapter 5.

2.4 Examples

The following "examples illustrate some applications of impedance control. For the
purpose of understanding the application of this theory, the problems in these examples are

simplified.

2.4.1 Underwater Vehicle with Cables

Most deep underwater operations are done by underwater vehicles equipped with
manipulators. Because of the large inertia of these vehicles (relative to the manipulator
inertia) and their uncontrollability in some directions, it is not trivial to maneuver these
vehicles during a manipulative task. In performing a task (e.g., opening a valve), it is
preferable to keep the vehicle as a stable platform and mapeuver the manipulator. An
underwater vehicle is always subject to external forces resulting from water motion,
madipulator reactions and power/communications tethers. These external forces oo the
vebicle act over a wide frequency range. Rejection of all external loads oo the vehicle and
maintenance of the position and orientation of the vehicle over a wide frequency range of
operation by feedback is mot trivial. This is true because uncertainties in the model {e.g.,
bydraulic actuator system) will assign an upper bound for the baadwidth of the compensated

loop transfer function. Low-frequency external loads on the vehicle can be rejected by
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feedback, and high-frequency loads do not affect the vehicle motion. On the other hand,
there exist external loads with a frequency range of operation too large to be compensated by
feedback, but small epough to affect the vehicle's motion. This frequency range is near the
cross-over frequency of the compensated open-loop transfer function. In other words, when
most of a vehicle's external loads that are deep inside the bandwidth of the compensated
open-loop can be rejected by [eedback, external loads that are far outside the bandwidth
cannot affect the vehicle motion. But external loads that lie between these two frequency
ranges can affect the vehicle motion. (The analogy can be observed in airplanes. Passengers
always feel some disturbances. These disturbances act over 3 frequency range that cannot be
compensated completely by feedback.) To overcome this problem, the vehicle can be
connected to the structure by cables. This can be done by the manipulator on the vehicle.
The cables’ end-points can be equipped with magnets, suckers or hooks, and the cables can
be tensiobed by using the vehicle’s thrusters in the necessary directions. Figure 2-3-a shows

this arrangement.

a b

Flgure 2-3: Constrained Ocean Vehicle

Maiotaining the tension of the cables between the structure and the vehicle will give the
vehicle a more definite position acd orientation. If the cables are stiff, their dyvamics may
overcome the vehicle's ipertia for some bounded frequency range. The stiffnesses of the

cables will dominante the dypamics of the system of vehicle and cables over a wide frequency

range. This frequency range ¢an be approximated by Veables stiffoess/vebicle inertia.
Throughout this frequency range, the system of the vehicle and its cables behaves like 3 very

stiff spring., aod external loads in this frequency range do not affect the vehicle.

The above procedure for positioning the vehicle implies the existence of significant

interaction forces between the vehicle and its envirooment via the cables. The cables impose
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dypamic constraints on the vehicle’s motion. In amy mission, it is desirable to control the
position and orientation of the vehicle and the tension of the cables, even though the number
of cables and the locations of their attachments to the structure may not be kaown in
advance. Here we can see the application of impedance control to this type of constrained
mapeuvering in which the existence and geperal character of the constraint is certain, but the

exact nature of the dynamics snd geometry of the constraint is not known in advance.

Consider the case in which there is just one cable between the vehicle and the structure
in Figure 2-3-b. There is no constraint on the vehicle'’s motion in direction T; therefore, it is
necessary to consider a closed-loop positioning system with s large stiffness for the vehicle
along direction T. A large stiffness in direction T guarantees s good closed-loop poeitioning
system in that direction. There is a constraint on the vehicle's motion in direction R because
of the cable. It js pecessary to consider a small stiffaess for the vehicle in direction R
guaranteeing only a shight tension in the cable when the vebicle is commznded to move from
unconsirained space to constrained space. Of course, once the vehicle is moving on the circle,
one can increase the stiffness in direction R to produce more cable tension. The {requency
content of the command input implies a proper value for w . Stiffness values in various

directions, a suitable value for w, and the requirement of stability imply proper values for K,

Jand C .

2.4.2 Grlndlng.

Consider the grinding of a surface by a manipulator, as shown in Figure 2-4. The
object is to use the manipulator to smooth the surface down to the dasbed line [30]. Here
we give an approach in which this task is performed by a manipulator. [t is intuitive to
design a closed-loop positioning system for the manipulator with a large stiffpess value in
direction R and a low stiffness value in direction T. In many tasks, it is beneficial to
produce the compliant motion in an active end-effector with a few degrees of freedom instead
of producing the compliant motion for the emtire arm. A large stiffness value in direction R
causes the end point of the manipulator to reject the external loads aod stay very close to
the commanded trajectory (dashed line). The larger the stiffness of the manipulator in

direction R, the smoother the surface will be. Given the volume of the metal to be removed,

*Secl.ion 2.4.2 was shaped from discussions with Bruce Kramer, Reginald Gott and John Bausch.
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Figure 2-4: Grioding a Surface via a Manipulator

the desired tolerance in direction R prescribes an approximate value for stiffness in direction
R .

The force mecessary to cut in direction T at a constant traverse speed is approximately
proportional to the volume of the metal to be removed |3]. Therefore, the larger the
“bumps” on the surface, the slower the manipulator’s end-point must move in direction T.
This is pecessary because a slower speed of the end-point along the surface implies less
volume of the metal 1o be removed per unit of time, and consequently, less force in direction
T. To remove the metal from the surface, the manipulator should slow down jn response to
external loads resulting from large “bumps.” The above explanation mesps that it is
necessary for the manipulator to accommodate the external loads along direction T, which
directly implies a small stiffaess value in direction T. If a designer does not accommodate
the external loads by specifying a small stiffess value in direction T, then large “bumps” on
the surface will produce large contact forces in direction T. Two problems are associated

with large cootact forces in direction T:

- the cutting tool may stall (if it does not break);

- a slight motion may develop in the manipulator's end-peint motion along direction
R, which might exceed the desired tolerance.
A small value for stiffpess in direction T (relative to the stiffness in direction R) guarantees
the desired contact forces in direction T. The larger the roughness of the surface, the
smaller K must be in direction T. The frequency spectrum of the roughness of the surface
and the desired translational speed of the maaipulator end-point along the surface determine
- the frequency range of operation, wy. Given the stiffness in both directions, s designer can

arrive at proper values for J and C to guarantee w, and stability. At each point op the
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trajectory, a controller must be redesigped in the joint-angle coordinate frame such that the
desired target impedance of the form (2.2) is achieved in the giobal coordinate frame. The
rotation of the cutter causes some high-frequency disturbances in the manipulator. The
contact force measurement is also moisy. w, must be selected to be lower than the frequency
range of the cutter disturbances and the force measurement noise. The satisfaction of
equation (2.2) prevents the system from responding to these disturbances and noises. (See

page 15 for a short discussion on disturbances.)

2.4.3 Turning a Crank

Copsider the case in which a manipulator turns a crapk or opens a valve, as shown in

Figure 2-5-a.

4

T

a b

Figure 2-5: a: Manipulator Turning a Crank
b: Peg and Hole
The objective is to design a closed-loop positioning system so the manipulator will bave a
large stiffness in direction T; this will cause the manipulator to turn the crank by overcoming
the exterpal loads (friction). It is necessary to consider a small stiffaess in direction R,
because if there is any discrepancy between the real trajectory of the crank haodle and the
commanded trajectory, no large contact force in direction R will result. Note that the crank
bandle canonot move in direction R and a small disagreement with the prescribed trajectory
of the crank handle will cause a large force if the stiffpess in direction R is large. The
frequency coatent in the command signal requires a proper value for w . The stilfoess values

in differeot directions, a suitable value for W, and the desire for stability imply proper values
for K, J and C.
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2.4.4 Peg-in-Hole

The peg-in-hole task is generic to many assembly operations such as inserting a rod into
a hole or a computer board into 3 slot. There are many strategies for this task (see for
example [57]); most assume that the manipulators are capable of producing compliant motion.
We are not giving a complete solution to the peg-in-hole problem. This s just a simplified
example to illustrate the uyse of this method in such maneyvers, Once the peg is located at
the positicn showr in Figure 2-5.b, then a small stiffness in direction X must be selected. If
there is any misalignment between the peg axis and the bole axis, s small stiffness in
direction X causes the mapipulator end-point to align itself with the axis of the hole. If the
stilfness io direction X is large, the manipulator end-point will pot move in direction X, and
large contact forces will result. A large stiffness must be selecited for direction Y to
guarantee a positioning system that will reject the friction forces in direction Y and insert the

peg intc the hole.

2.5 Representations of Target Dynamles

This section represents other forms of the target dynamics. Equation (2.2) in the time

domain cap be described by equation (2.5}.

J AY(t) + C AY(t) + K AY(t) = AD(t) (2.5)

J, K and C are pon-singular matrices,

AY(t) and AD(t) are ax1 vectors. Even though we use the time-domain representation of
the target dynamics in our design method, we plan to guarantee the achievement of the
target dynamics io the frequency domain. We also select the parameters of equation (2.2) to
guarantee the design specifications in the frequency domain. Selection of J, C and K to
tepresent a frequency-domain design specification implies shaping the steady-state bebavior of
the system in response to all frequency componepts of the imposed motion command. An
alternative approach is to specily J, C and K to represent some design specifications in the
time-domain [20]. The target dynamics (2.2) ip state-space are shown by equations (2.6) and

2.7).



aY() Or L ] [avw) 0,
. - . + ADft) (2.8)

AY(t) -JIK -Jic AY(t) J

. , ——

Al Bl.

AY(t) = [I“ onJ AY(1) (2.7)
Ai’(t)
C

t
A = 20xIn, B, = 2oxn, C. = pnX2n
Raok B, and C,=n

The transfer function matrix that relates interaction load to interaction-port motion is shown

by equations (2.8) and (2.9).

AY(jw) = G (i) AD(jw} (28)
where:

Gliw) = C, (jwi, - A J!B, (2.9)
or

Gis) = [ 1+ Cs+ KJ! where 5 = ju {2.10)
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Chapter 3

Eigenstructure Analysis
of the Target Dynamics

Since a geometric approach is being considered for compensator design, it is necessary to
identily the eigenstructure properties of the target dynamics. Sectioz 3.1 discusses this issue.
Section 3.2 explains the concept of wsimplicity, which is the second condition for the
mathematical achievability of the target impedance. (The non-singularity of J, C and K is
the first condition.) Finally, in Section 3.3 we consider the stability analysis of the target

dynamics.

3.1 Geometric Propertles

The target dynamics that correlate interaction loads (forces and torques) with system
motion (position and orientation) are given in state-space form by equations (2.6) and {2.7).
The advantage of this form is that it enables a designer to describe the target dynamics of a
system in geometrical tetms. A  contains information concerning the modes (eigenvalues) and
the relative distribution of the modes {eigenvectors) among the states. A unique value for A,

c¢an be determined by 2n eigenvalues and 2n right eigenvectors. B, represents a rank-n

L
matrix that transforms interaction load to system states; C, is a raok-n matrix that

transforms system states 1o system motion.

The target dynmamics in equation (2.2) imply a closed-loop behavior for the dymamic
system. Our goal is to make the dynamic system (e.g. a manipulator) bebave according to
equation (2.2) for all 0<o<w, Note that in general the closed-loop behavior of a system
canpot be shaped arbitrarily over am arbitrary frequency range. The target dynamics in
equation (2.6) and (2.7) offer a set of eigenvalues and eigepvectors to model the internal
dysamic behavior of the target dypamics. Construction of the eigenstruciure of the dynamic
system (e.£., 2 manipulator or an underwater vehicle} according to the eigenstructure of the
target dynamics is the first step in our design method. There are two issues of concern in
this step. The first issue addresses the achievement of the eigenstructure of the target

dynamics; there is no a-priori guaraotee that the eigenstructure of the dynamic system can be
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constructed according to the eigenstructure of the target dypamics. This limitation in the
construction of the eigenstructure is explained in Chapter 5. The second issue concerns the
achievement of the target dypamics for some bounded frequeacy range. Normally, the
construction of the eigenstructure of the dynamic system according to that of the target
dynamics does not guarantee that the closed-loop dynamic system behaves dynamically as
equation (2.2) for all 0<w<w,. The above two issues are answered in Chapter 5. We will
prove that the eigenstructure of the target dynamics is achievable and we explain how this
achievement is interpreted. The achievemeat of the eigenstructure of the target dynamics is
because of appropriate choice of the target dynamics. We also prove that the achievement of
the eigenstructure of the target dynamics is required to guarantee that the closed-loop system
will behave dynamicaily like equation (2.2) for all 0<w<w, Knowiog the eigenstructure of

the target dynamics is necessary for our design method.

Each eigenvalue of the target impedance, %\, and its corresponding right eigenvector, z,

can be computed from equation (3.1).

(N Lgos - A, ) 7, = 0y i= 12 ., 20 (3.1)
3 75 02:1

Substituting for A from equation (2.6) in equation (3.1} resuits in equation (3.2), whick can

be used to compute the eigenvalues and right eigenvectors of the target dynamics.

\ilnn 'Inn q; . n s
=0, iw §, 2 ., 2n {3.2)
'K \iln-hl'lC P;

9
where; z, = [ ] # 0,
P

q; and p; are nx1 vectors. To produce a non-zero solution for z, equation (3.3) must be

satisfied |54).

\ilnn -Inn
det =0 i=12 .20 (3.3)
FK NI +HIIC

. Equation (3.3} yields the eigenvalues of the target dynamics. Equations (3.4) and (3.5), which

come from equation {3.2), result in vectors p; and q; :
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P, =\ q (3.4)
Prx2+C\ +K|g =0 i=12 .., 20 (3.5)
q; » On :

To produce a pon-zero solution for q;, equation (3.8) must be satisfied.

det D( %, } = 0 =12 .., 2 (3.6)

where: D() )= Jx2 4+ Cx + K

D(\} is the matriz polynomial {12, 11, 13] associated with the target dynamics of equation
(2.2). Egquation (3.6) can also be produced by algebraic manipulation of equation (3.3). q is
called the right latent vector of D \; ) associated with %\, . If J, C and K are symmetric
matrices, it can be verified that the right- and the left-latent vectors of D(\} are equal.

Therefore, for symmetric J, C and K:

ro= g (3.7)
where: 1T D( %, ) = 0,7 i=12 .., 2
riT # ODT B

We wish to design 2 model-based compensator to guarantee that the manipulator dyaamics
behave according to equation (2.2) for all 0<w<uw,. Sinsce dynamic models for manipulators
are often specified in the joint-aogle coordinate frame, it is helpful to recast equations
(2.6) and (2.7} in the joint-angle coordinate frame. Equations (2.6} and {2.7) represent a
state.space relationship betweeo end-point motion and interaction load in the global
coordinate [rame. The transformation of end-point motion and interaction load from the
global coordinate frame to the joint-angle coordinate frame is given in reference [56]; it results

in the following equation:
AY() = J A8t (3.8}

where J is tbe Jacobian of the matrix that trassforms joint-angle coordinates to global
coordinates.  Equation (2.2) represents a3 dynamic behavior in the meighborhood of an
equilibrium point; AY(t) and AD(t) are small incrementals away from an equilibrium point (a

point with zero speed in space). Knpowing this, we can write:

AY(t) = 3, .sc:m) . (3.9)
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Combining equations (3.8} and (3.9) results in equation (3.10).

AY(t) J 0 A8(t)

¢ oA

. = . (3.10)
AY(t) 0 ] A6(t)

Using equation (3.10), the target dynamics in the joint-angle coordinate frame can be written

as:;

[Aé(t)] 9, L. ] [Aem ] 0,
o] : + AD{t) (3.11)
et ['JL""K% -rirtes, §Laegy [ J;'rl]

o) = [ L, 0, [Ae(c)]

aef)

AD(t} in equation {3.11) is still expressed in the global coordinate frame. If v; 15 the right

eigenvector of the target dynamics in the joint-sngle coordinate frame, then:

J::l Onn J;l q;
vi = " zi - , (312)
Onn Jc \i 'rc 9

where g, is the right latest vector of D(;). The 2n eigenvectors of equation (3.12} form a
2nX2n matrix V:

V=|v Vo o Vo f . (3.13)

V is a basis for the state-space represemtation of the target dynamics in the joint-angle
coordinate frame. V shows how the desired modes are coupled among the states of the
target dynamics. The 2n eigenvalues resulting from equation (3.3) are invariant under aoy
linear transformation and form a self-conjugate constant set A = { N i=1,2 ., 20}

A apd V taken together describe the eigemstructure of the desired impedance in the joint-
angle coordipate frame. The realization of the target dypamics in state-space form is not

unique; each representation offets a differeat V.



3.2 Simplicity of the Target Dynamles

Impedances that always yield a complete set of right eigenvectors are called nmple.
Having 3 complete set of right eigenvectors is vital to our coatroller design methodology.
The requirements for the completeness of the set of right eigenvectors are exblained in
Chapter 5. Multiple eigenvalues in A are allowed, while V is restricted to be a fullrank
matrix. Distinct eigenvalues result in independent right eigcavectors [40, 41}, but multiple
eigenvalues in the target dynamics may pot result in a complete set of right eigenvectors. If
the eigenvalues of the target dynamics are distinet, the requirement on the completeness of
the set of right eigenvectors will automatically be fullfilled. Suppose equation {3.3) results in
an eigenvalue with a multiplicity of a. For the sct of right eigenvectors to be complete, the
@ right eigenvectors associated with the multiple eigenvalue must be independent. Equation
{3.12) shows that the independence of the « right latent vectors associated with ap eigenvalue
of multiplicity & is a necessary and sufficient condition for the independence of the right
eigenvectors of the target dynamics. Appendix B idestifies the class of impedances that
always yields a complete set of right eigeovectors for the target dynamics despite 3
multiplicity of eigenvalues. These impedances are called simple. The exact definition of the
simple impedances are given in Appendix B. Knowing the requirements for the independence
of the right eigenvectors of the target dynamics, we can write explicitly the only set of
formal conditions that guarantees the structure of the target dynamics will be mathematically

achievable:

1. J, C and K must be pon-singular matrices.

2. The target dynamics must be simple; all right eigenvectors of the target dynamics
must span the entire Jp-space.
The target dysamics in equation (2.2) imply a closed-loop behavior for the maaxipulator
dypamics. We plan to make the masipulator behave as equation {2.2) for 0<w<w,. Note
that in general ome canbot ask a special closed-loop bebavior for the system. This is an
inbereot limitation of linear controller design theory. We will prove that if the target
dypamics of structute (2.2} satisfy the above two conditions, the target dynamies will always
be achievable. We will explain this concept of achievability in Chapter 5. These conditions
only guarantee that the target dyoamics with the structure given by (2.2) are mathematically
achievable; they do not assure that a particular set of J, C and K is a good candidate for a

system. A target dynamics with the structure given by {2.2) and a particular set of J, C
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and K may not satisfy stability robustness, or even stability condition, even though it is

mathematically achievable.

3.3 Slability of the Target Dynamles

We consider two issues of importance in anmalyzing the stability of a dypamic system
that interacts with the environment. The first issue copcerus the condition under which
equation (2.2) offers a stable target dynamics. The stability of the target dynamics is not
enough to assure the stability of the dynamic system and its eavirooment taken as a whole.
This brings up the second issue: the global stability of the dymamic system and its

environment.

The target dynamics of a system must be stable. Note that stability is not a condition
for achievability. We claim that unstable target dynamics are achievable as long as they are
simple and J, C and K are non-singular matrices. Stability of the target dynamics depends
on the values of J, C and K. One sufficient condition for the stability of the target
dynamics is explained in Appendix A. According to this condition, if J, C snd K are
symmetric, positive definite matrices, then the eigenvalues of the target dynamics lie in the
left half complex plane. If K and/or C are symmetric, positive, semi-definite matrices, then

some or all eigenvalues will be oo the imaginary axis. (These cases are considered unstable.)

I a3 dynamic system interacts with the environment while satisfying equation (2.5) with
symmetric, positive definite J, C and K, the overall system copsisting of the environmeat and
the dynamic system will be stable. In other words, if the coatroller achieves the target
dynamics of (2.2) for all 0<w< oo, then the overall system (dypamic system and environment)
will be stable. This shows that the target impedance bhas desirable properties. The global
stability is proved in Appendix A. The global stability is not a result of the design method,
but of the form that we chase for the target dynamics. If the controller does not guarantee
equatios (2.2) for all O<w<oc and yields a bebavior “approximately” like the target
impedance for a bounded frequency range, then the global stability is not guaranteed.
Appendix A also gives a sufficieat condition for global stability as a function of this

approximation.
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Chapter 4
Dynamic Behavior of the Manipulators

This chapter is devoted to the Lagrangian derivation of the dynamic model for
manipulators aod their actuators suitable for impedance control. Section 4.1 presents the
steps toward this derivation, while Section 4.2 explains the restrictions and uncertainties
associated with the dynamic model. From the standpoint of formalism, some readers may
find our treatment superficial; references {23, 24, 53| offer more leisurely developments of this

derivation.

4.1 Mathematieal Modelling

Dynamic equations that describe the behavior of manipulators are inherently aon-ligear.
Two classes of non-linearities are treated by the manipulator dynamics. One class is associated
with the change in the geometrical configuration of the manipulator, while the second is
associated with pon-differentiable non-linearities, such as dry friction, backlash, etc. In this

derivation, we coasider only the former, differeatiable nouv-linearities.

Let the joint angles in the mapipulator be the system's coordinates. These coordinates
vaty arbitrarily and independently of each other without violating apy constraints that might
act oo the system. This simply implies that the coordinates are generalized coordinates and
the manipulators are holonomic systems. If M(B} is the inertia matrix of & manipulator, then

the kinetic co-energy, T(O,é), can be expressed in quadratic form by equation (4.1).
L) l L -
T(0.8) = - &(t]T M(®) &) (4.1)

where 6(t) = [ o,(t) B,t), ..., §(t) IT is the vector of coordinates. M(9) is slways a
symmetric, positive definite matrix. Lagrange's equations (4.2} are used to derive the dynamic

equations [4].

- | === — -t i=12 ., 2
dv | 88t o B (43

d [ aT(8.8) 3T(8.8) aP(e)
- +
26,(t} 98,(t)
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T(6,8) = kinetic co-energy

P(©) = potential energy from gravitational force
f(t) = generalized force

8(t) = generalized coordinate

Equations (4.3), {4.5) and (4.7) are derived to simplify the terms in the set of differential
equations represented by (4.2).

T
d a"r(e,é)] d [a'r(e.é)] d a'r(e,é)] o) & ]
5[ 2o,(t) J aul anqe) ' EI[ s A () &(t) +[Iﬁ ( )] o (43

d
where o M{8) is given by equation (4.4}
: i

d aM(e) . aMm(e} . aM(e) .
— M{@) = —— 4(t) + 6t + .. + 0,{t) (4.4)
dt 28, (t) 30,(1) asn(t)
. . . T
[BT(G.BJ aT(9.8) aT(e,e)] 06) é(t) s
v, (t) ) du() e, 3)

where Q(e.é) is an nxXn matrix and is given by equation {4.6).

. 1{. aM(e) |
88)=-| &) — )
Q(8.6) . (t) a0 {4.6)
. aMm(e)
ot)T
3,(t)
. aM(e)
T ——
o) 30n[t)J

3P(8) 3P(6)  3P(8) T
[ , . ] = F (9) (4.7)
a0 (t)  B8,(t) 38,(t) ¢

Substituting equations (4.3), (4.5) and (4.7) into equation (4.2} yields the following set of

differential equations, (4.8}, for the manipulatots.
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- d <1
Mi(8) e{1) + [d—; Mie) - Q{G.O)] e(t) + F'(G) = F(t) (4.8}

. d
where Q(©,6} and m M(B} are given by equation (4.6) and (4.4). Vector F(t) in equation

t
(4.9) represents the generalized force.

F(t) = [f,(t), 1,(¢), ... £,(¢) |T (4.9)

d . .
The term [d_ M(8) - Q(O,G]] &{t) is associated with gyroscopic forces {eg.. Coriolis
t
forces or Lorentz forces)  The n-dimensional vector of F'(G) is associated with the

gravitational forces on the manipulatots.

In most constraived manipulations, the motion of a manipulator is very siow; the system
operates at ‘“pear stall”’ conditions, mostly because of dyesamic and kinematic coamstraints.
For example in grinding, arc welding and metal cutting, the state of tbe art of current
technology is the limiting factor in the speed of such operations. The orders of maguoitude of
the gyroscopic terms are much smaller than the inertia and the gravity terms in constrained
maneuvers; this suggests the elimination of the gyroscopic terms from the differential
equations of the motion. This elimination is mathematically equivalent to the linearization of
the gyroscopic terms in the neighborhood of an equilibrium point (zero velocity). Tbhis point
is characterized by the vector 8,. At this stage, the assumption that the manipuiator moves
slowly does not imply any specific restraint oo the inputs to the system. In geaeral, there is
0o unique characterization associated with the ioputs that can gemerate [arge-velocity terms.
The above assumption rejects all inputs that could give rise to velocity terms. The
discussion on page 41 clarifies the conditions on the ipputs that will guarantee small
velocities. At this stage, it is sulficient to assume that all velocity terms are close to zero.
This automatically ensures that the inputs will satisfy the conditions. Equation (4.10) is true

at equilibrium.
F‘(eo) = F, (4.10)

If AS(t) is the perturbation of the generalized coordinate from 8, and AF(t) is the
perturbation of the generalized force from F,, then the linearized equation of motion is:

LR

M(®,) A6t} + GR(6,) AB(t) = AF(t) (4.11)

where GR(6,) is an pXn matrix that can be computed from the following equation:
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T
GR(9,) -[m m E‘(_B)_:l computed at O=@ . (1.12)
° 3,(t) 30,(t) 38, (t)

Since the velocity terms in[:—t Mie) - Q(e,é)]é(t) are of the form ii(t]’ or l:(t.}ﬂ;(t) . the
linearized form of the gyroscopic terms around the equilibrium point, 6, vanish from the
livearized equations. The linearized form of the gyroscopic term around the noa-zero-velocity
operating poiat (6 = 8_, 8 = éo) in gemeral is not zero. Since the target dynamics are
specified in the vicinity of the equilibrium point, 6,. we will continue the analysis with the

linearized model at the zero-velocity equilibrium point (equation (4.11)).

M(© ) and GR(®,) are functicns of the configuration of the system, and once the
manipulator moves from ooe point to another point, they change. We plan to update M(e,)
and GR(O} as ©  changes. [Equation (4.11) represents the dynamic bebavior of a
manipulator when its tnotion is slow. Gravity and the inertia of the system are two effects
that practitioners always observe in the behavior of the masipulators at low speeds; gravity
dominates the motion of the system at very low [requencies, while inertia affects the bebavior
of the system in the bigher frequency range. The generalized force, AF(L), can be expressed
by equaticn (4.13}.

AF(t) = T, AT{t) + AN(t) (4.13)
AN(t) = IT AD{) '
where:

AT{t} = | bt {t), Btu(e), ..., Bt {¢) ]T is the perturbation of the actuator
torques;

AN{e) = [ bn(t), ba.t), ..., to_(t) T is the perturbation of the torque
loads on the actuators:

AD(t) == | &d,(t), dd,(t), .., &d (¢t} T is the perturbation of the interaction
load in the global coordinate frame; snd

Jc is the Jacobian.

T, is 2 voo-singular square matrix which represeats the effect of AT(t) on the coordinates. If
the coordinates are independently driven by actuators, then T, = 1,,. An example of a gon-
unity T, arises wheo A®S(t) is measured absolutely while some actuators are mot driving the
joint angles from a2 stationary base. Substituting equation (4.13) in equation (4.11} yields

equation (4.14) for the linearized dynamics of the manipulators.
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M(6,) A8{t) + GR(®,) A®(t) = T, AT(t) + AN[t) (4.14)

The form of equation (4.14) that describes the behavior of the manipulator in the

neighborbood of an equilibrium point in state-space is given by equation (4.15):

-_\é(t) 0, L. A6(t) 0,,
o N e B o
Le(t)] -M'1{6,)GR(8,} 0, AS(t) Mle,)T,

0
+ " AD(t) 4.15
[M'(e,n;"] sl

where 36(t) = | b, (t), ba,(t), ..., 88 {¢) | T expresses the perturbed joint-angles.

Equation (4.16) approximates the dynamic behavior of each actuator.

B(t)

+ &;(t) = d,(t) =12 .., n (4.16)

s
where:

»,i = bandwidth of each actuator
bu;(t)= input perturbation of each actuator
bt,(t} = output-torque perturbation of each actuator

Note that equation (4.16) is scaled to produce ome unit of torque for each upit of input at
equilibrium.  Such scaling is common and can always be compensated for at the end of the
design procedure by adjusting the open-loop transfer function matrix. The set of differential

cquations describing the actuation of the manipulator is approximated by equation (4.17).

A.T(L) = A, AT(t) + B, AU(Y) {4¢.17)
where:

AL = diag( N L Ny 0N, )

Bl w diag( X“ R NP s N )

AUft) = [ bu,(t), Sugfe), .., bu(t) |T

AT() = [ b,(t), Btyft), ..., &t (¢) T
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Combining equations (4.15) and {4.17} yields equation {4.18) for the dynamics of the

manipulator aod the actuators.

It

se] [ o, e Oun a8y
sow |= | M@ ore,) o, MUeyT, || a8 |+ |0, |auW
AT(1) 0,, 0, A, AT(t)
—— S — ——
ak(e) A AX(t)

Onn

+ | MY @,NT| aDit)

onﬂ

L
Ca |, 0, 0] the:

A:‘((t) = A AX(t} + B AU(t) + L AD(t)
A9(t) = C AX(t)
where:  AX(t)ER®®; AU(t), AD(t) and AS{t)ER®;

(A, B} is a  controllable pair: and
(A, C) is an observable pair.

0

3

o

B

{(¢.18)

(4.19)

{(4.20)

Loasely speaking, if the baodwidths of the actuators are much greater thas w, in all

directions, then the sctuator dynamics can be neglected in the dynamic equations (4.18).

Neglecting all actuator dynamics results in In-state differential equations for the maaipulator.

Conversely, if an actuator bandwidth is smaller than w in a given direction, then Lhe

actuator dynamics canpot be neglected. Matrix A bas 2n eigenvalues associated with the

maanipulator dynamics and a eigenvalues describing the actuator's bandwidth. I the tracsfer

function matrix that maps AU(jw) to A6{jw) is Gp(ju) and the transfer function matrix that

maps AD(jw) to AB{jw) is G;Uw} then the following equations are true:

38(jw) = Gyli) AUG)
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Ad(jw) = G (iw) aD(j<)

where;
G liw) = C (julyy -AJ'B (4.21)
Gliw) = C (july,, - AY'L. (4.22)

Pair (A. L) is not controllable. In forming G;[ju). the modes in the wncontrollable space

(actuator modes) are cancelled out, so G;(ju} becomes a 2n-order system.

The mathematical model given by equation (4.18) is a fair approximation of the non-
linear dynamics represented by equation (4.8) as long as AD{t} and AU{t) are bounded in
magnitude aod frequency. Equation (4.18) is the linearized version of 3 set of nom-linear
differential equations in the neighborhood of an arbitrary zero-velocity operating point. The
model is therefore valid as long as the velocity tetms are close to zero. The amaller the
magnitude of the inputs, the closer the model will be to reality, because small inputs result
in small velocities as long as the frequency range of operation of the inputs is bousded. The
target behavior is specified as an impedance with AD(t) as the system’s response to the
imposed motion. The block diagram in Figure 41 shows how the dyaamic system and the
environment interact with eack other in the ideal case when the target impedance is achieved

for all D,

AYis) AD(s)
commanded
ipcremental
motion

)' (J+ Cs + K|
Environment Dyoamics ]@—

Figurs 4-1: The interaction of the dyoamic system and environment
in the ideal case when the target impedance is achieved for
all 0w

The imposed motion is equal to algebraic addition of the commanded ipcremental motion
from the operator and environmental motion. We assume that the environmeot cag be

modelled as a linear system; therefore, AD(t) will have bounded frequency range if the
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imposed motion from the operator is bounded in frequency raage. A slightly more elaborate
block diagram is ehown in Figure A-1 in Appendix A. Since AU(t) aod AD(t) contain most
of their energy in the bouaded frequency range 0<w<uw, (w, is introduced in Chapter 2),
then by selecting inputs of small magnitude, a designer will pever face large velocities in the
manipulator dypamics. Note that by coafining the frequency range of AU(t) aad AD(t) to
Ml 0<w<w, and the magnitudes of AU(t) and AD(t) to very small values, a designer

eliminates all inputs that could give rise to sigrificant joint-angle velocities.

4.2 Mode! Uncertalnties

Even though some mathematical models reliably represent the dynamies of a system, ao
nominal model can imitate a dymamic system completely. No mathematical model is more
than an approximation of reality; pone is absolutely true. The mathematical modet given by
equation (4.18) will yield a rational approximation of the dynamic system for s certain range
of AU(t) and AD(t) which is bounded i magnitude and frequency. Outside this
range, the model will depart from reality. The difference in behavior between the model and
the real system in various operating regions must be taken into account through » meaningful
mathematical method that allows for differences between ideal and real systems. Such

discrepancies are called model uncertaintics.

Let G;ju) represent the true dynamice of the system. Satisfying the condition on the
input magnitudes, equation (4.23) can be written to show the relationship between the

oominal model, Gp(ju). and the true dynafmics, G;[ju), by means of E(jw) [33].

Gfiw) = Gyliv) | 1, + EGiw) | (4.23)

Ol Eliw) | < e(w) for all w>0 (4.2¢)

E(jv..:)‘r is called the unstructured model uacertainty because equation (4.23) does mot imply

any mechanism or structure that gives rise to E{jw). e(.) is a positive scalar function which

»
The maximum singulsr value of E(ju) is defined as:
Il E{iw) x |I

il x{f
x 0, s0d ||| denotes the Euclidean norm [12].

*masl EUs) | = max
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confines ngu) to a neighborhood of Gp(jw) with magnitude ¢(w). Equation (4.23) is oot the
only representation of the true model. We assume that G;ju) in equation (4.23) remains a
strictly proper finite system. We also assume that G;jw) has the same number of unstable
modes as Gp(ju:]. The unstable modes of Gp(ju) snd G;jju) aeed not be identical. Therefore,
E{j~) may be an unstable operator. The above condition implies that Gp(ju] must contain

unstable modes of the system (if there are any).

When equation (4.23} is used to represent various unmodelled dynamics of manipylators,
the limiting function e{w} has the form shown in Figure 42 e{w) is a bound (or
unstructured uncertainties. It is non-zero for all frequencies.

l b
10 : T ll I T l
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Figure 4-2: e¢{w) is a conservative and educated guess about the
difference between the model of the system and the real system.

¢{w) is usually smalier thao unity at low frequencies and increases to unity and above
at high frequencies. High-frequency dynamics caused by time delays, electrical resonances,
structural dyoamics, etc., always exist, but are peglected. This causes equation (4.18) to
significantly contradict reality at bigh frequeacies. Lack of knowledge about the precise
inertia matrix, the size of the inputs, the effects of perturbations from operating points, non-
linearities such as saturation, ete., give rise to an e{w) at all frequencies, while high-frequency
unmodeiled dynamics contribute significastly to the magnitude of e{w) at high frequencies.
Saturation is inberently noon-linear but can be modelled as open-loop gain reduction for all

frequencies.

Since e{w) assumes a single worst-case magnitude applicable in all directions, it is helpful
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to determine the slowest uomodeiled mode in the manipulator. Let the frequency range
associated with this mode be W,. A good estimation of w, allows the designer to determine
the frequency range for which the model is nearly valid. (No model is absolutely valid.) This
estimation is Dpecessary because it is meaningless to consider equation {2.2) as expressing the
target dynamics for all 0<w<w, wheo the frequency range for which the model can be
trusted is uokoown. Models must be nesrly valid (or the entire {requency ramge through
which the target dypamics are expected to occur, i.e., w,<w,. Figure 42 shows the relative
sizes of w, and w,. The upper bound for W, can be selected from equation (4.25):

w, = ¢ W, (4.25)

where ¢ is a constant number whose size depends on the damping of the unmodelled mode.
A well-damped unmodelled mode requires 3 small ¢ (perhaps somewhere betwees 5 and 10),
while an under-damped mode requires 3 large ¢ (could be as large as 100). w, and a

conservative guess for ¢ assign an upper bound for w To meet stability robustness

o
specifications, it is necessary to bave a cooservative guess for e(w) for all 0<w<oc, This is
because our stability robustness test is a sufficient condition which must be satisfied for all
O0<w<oo.  (This is explained in Chapter § and Appendix E.)  Expetrience, a good
understanding of the system, and bigh-performance experimental equipment will ensble a
designer to make 3 good guess as to the maggitude for e(w) for 3 wide frequency ramge. e(w)
is an educated guess about the difference between the model of the syetem snd the real
system which must be supplied by the designer. Here we assume that a conservative guess
for e(u) is given, along with equation (4.18), to represest the model uncertainty in the

system.

To recapitulate, the model in equation (4.18) is considered nearly valid as lopg as the

following conditions are satisfied:

- 4D(t) and AU(t) must contain comporents whose frequency spectrs are withia W,
W, must be selected so that w,<w,; this is because of the significant difference
between the model and the reality of the system for w, <w< .

- AD(t) and AU(t) must be small esough in magnitude to meet the linearization
conditions. (In theory, AD(t) and AU(t) must approach zero.)
Note that most constrained manipulation is quite slow and that the sysiem operates at
3 pear stall. (The slow motion does pot imply warrow range of frequencies.) The commands

are small in magnitude and they contain bounded frequency components. For example a slow
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trapsition from free to constrained motion {e.g., 3 manipulator encounters a wall) in principle
may contain large (but bounded) [requencies. The asture of constrained manipulations means
that the conditions on the magaitude and frequency of the inputs are spontaneously satisfied,
and equation {4.18) can be used 35 s model of the manipulator. {In fact, the matural
confinement of the inputs in magnitude aod frequency is a strong motivation to linearize the
differential equations (4.8}) In unconstrained manipulations, the end-point moves quickly.
The inputs are oot confined in magnitude and might contain high-frequency componeats. In
many uncobstrained maneuvers, the speed of operation is ome of the most significant
specifications that must be met. The model represented by equation (€.18) is not valid for

these types of manipulations.
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Chapter 5

Compensator Design

This chapter presents a coatrolier design technique such that a manipulator that obeys
dynamic equation (4.18) bebaves dynamically like equation (2.2) for all 0<w<w, Since we
plan to shape a frequency domain relationship between AD(t} and AY{t], we must not
consider the dependence of AD(t) on the dymamics of the environment in this analysis. This
allows us to preserve AD(t) so we can arrive at a relationship between AD{t) and AY(t).
Theotem 2 m Appendix A considers the global stability of the manipulator and its
environment taken together, based on the dependence of AD(t) on the dypamics of the

environment.

Section 5.1 explains the overall design method, the lirst stage of which requires the
measurement of all states of the system, AX(t), and ioteraction loads, AD(t). Section
5.2 offers a geometric design method to achieve the state-feedback gain. In Section 5.3 we
consider the role of force-feedforward gain. Finally, in Section 5.4 we arrive at the desigp

parameters for stability robustness.

5.1 Bacekground

Our analysis of the compensator design for impedance control comsists of two stages.
During the first stage, it is assumed that all states, AX{t), and interaction loads, AD(t), in
equation (4.18) can be measured. The states of the system are joint-angles, joint-angle rates,
and actuator torques. There are no acceleration measgrements. Suppose the contrel law in

equation (4.19) is chosen so that:

AUt) = - G AX(t) + G, AD(t) {(5.1)

G = nX3n Gd = nxXn .
Substituting AU(t) in equation (4.19) yields equation (5.2).

AX(t) = (A -B G ) aX(t) + (L + B G, ) ab(t) (5.2)
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A8(t) = C AX(t) (5.3)

AX(t)ER¥*®  AD{t) and AS(t}eR®

Figure 5-1 shows the closed-loop system. Equation (5.2) shows that G alters the
internal dynamics (eigenstructure) of the closed-loop system, while G, modifies the
transformation matrix that maps interaction-load space to state space. G, can be copsidered
a5 a feedforward gair and not feedback gain. This is true because in our treatment of force
measurement, G, does not affect the stability of the closed-loop system. Evea though AD(t)
can be expressed as a function of the dymamics of the enviropment, in this chapter we must
ignore this dependence so we can arrive at a relationship between AY(jw) and AD{jw) in the
frequency domain. (See theorem 2 in Appendix A for a treatment of the global stability of

the manipulator and its environment taken together.)

IAD

Figure 8-1: Closed-loop System

The state-feedback gain, G, and the force-feedforward gain, Gy, are designed to
guarantee that the three transformation matrices, (A - B G), (L + B G,) and C in equations
{5.2) and (5.3) resuit in the same transfer-function matrix in the global coordinate frame as
the target impedance, which is expressed by equations (2.6} and (2.7). In other words, if
G (iw) in equation (5.4) represents a mapping from the interaction load, AD{jw), to the joint
angles, AB(ju), then the object is to design G and G 4 %0 that equation (5.6) is satisfied for
all 0<w<w,, while the stability robustuess specifications are also guaranteed. AD(jw) is

measuted in the global coordinate frame.



A8(j<) = G_[j~) AD{jw) (5.4)
where:

Gliw) = C (jwly -A+BG)y{L+BG,) (5.5}
. Galis) = Gyij=) (56)

J. Gr]{ju;l represents the transfer-function matrix that maps the interaction load. AD{ju), to

the end-point motion, AY{j.), in the global coordinate frame.

At the second stage of the design, it is assumed that only the first n states of AX{¢)
{ie, AB(t]) and all states of AD{t) are available for measurement. Even though we are not
obliged to make such an assumption, we feel more confident offering a final compensator
design for impedance control based on the most reliable and extensive set of available

measurements.

A new geometric method for full-state observer design is offered to recover the design of
the first stage. The geometric recovery procedure allows the designer to achieve the target
impedance using only the joint angles, A&{t), and the interaction load, AD(t). Chapter § is

devoted to the first design stage, while Chapter 7 explains the second stage of the design.

5.2 State-Feedback Deslgn

G is designed to pguarantee the eigenstructure represented by V (given by equation

(3.13)) and A (given on page 32) and the stability robustness specification. The complex

pumber 5, and the complex vector u; that satisly equation (5.7) are the closed-loop eigenvalue
and the right closed-loop eigenvector of equation (5.2).

4, =(A- BG)uy i=12 .., 3 {5.7)

] 3

b 7‘ 030
u; is 3ex1 vector. For convenience, matrix U is formed such that it coatains all right
closed-loop eigenvectors, u,, as its columps, and self-conjugate set § is formed such that it

contains all closed-loop eigenvalues as its members.

U=1luy v . uyl| (5.8)
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Sem {8 : im12 ., 3} (5.9)

The object is to design G so that {A - B G) contains the eigenstructure represented by
A and V. Aside from the case of a single input system, the specification of closed-loop
eigenvalues does pot uniquely define G. The source of non-uniqueness is the freedom offered
by state leedback, beyond eigenvalue assignment, in selecting the associated right closed-loop
eigenvectors (or left closed-loop eigenvectors) and generalized eigenvectors from an allowable
space.  Arbitrary eigenvector assignment in general is not possible. Each closed-loop
eigenvector is conlined to an allowable sub-space. This allowable sub-space is given in
Sections 5.2.1 and 5.2.2. The restriction on the construction of the closed-loop eigenvectors
simply implies that one caomnot specify all members of each right eigenvector arbitrarily.
Only some partitions of each eigenvector in general can be comstructed according to design
specificaticns. A unique value for G is determined by the arbitrary pole-placement of S and
by the eigenvector construction of U in the allowable sub-space [9, 10, 44, 45, 27, 39]. Io

other words, a unique value of G can be designed so that :

- the 20 dominant closed-loop eigenvalues in S are placed at locations assigned by A.
The n remaining actuator eigenvalues are moved as far tc the left as the stability
robustness specifications will allow. (This will be explained in Section 5.4.);

- U is constructed in the allowabie sub-space, so that the dominant partition of U
contains V,
Since o, and vibelong to different spaces, it is necessary to partition U, Here we describe
the dominant partition of U and explain how U can be constructed such that it contains V.

Partiticning U yields:

Un Uje

U= (5.10)
Us, Uy,

where : U, = 2ax2n U, = 2uXao U,, = aX2n U22 = p X0 .

Assume also that U = [U; U, ]| where:

Ulz ’UB-

Ul is the set of right closed-loop eigenvectors associated with the 2n dominant closed-

loop eigenvalues represented by A. U, is the set of right closed-loop eigenvectors associated
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with the n actuator closed-loop eigenvalues. U“ shows the rontribution of the 2n dominant
closed-loop eigenvalues to the manipulator states (AO{t), A.Git)), while U, shows the effect of
the 2n dominant eigenvalues on the actuator states AT{t). We construct U, such that
U, =V. In general, because of limitations om eigenstructure construction, a designer cannot
form the c¢losed-loop eigenvectors arbitrarily. But in this case, it is possible to comstruct U,
so that U =V. In other words. V, which is the set of the right eigenvectors of the target
dynamics of (2.6), is in the allowable sub-space determined by the opeo-loop dymamics. The
existence of the right eigenvectors of the target impedance in the allowable sub-space
determined by the open-loop dynamics given by equation (4.19) is 3 significant factor in
achieving the target impedance. If V were pot in the allowable sub-space, the achievement of
V and A, and consequently, Lhe target dypamics of equation (2.6) would oot be possible by
state-feedback design. This allowable subspace is given in Sections 5.2.1 aad 5.2.2. Once UL

is constructed to be exactly like V, no choice will remain in constructing U,,-

U, shows the effect of non-dominant closed-loop eigenvalues on the manipulator states.
U,, is the more significant partition of U, because it allows the achievement of the uncoupled
closed-loop dynamics for the actuators. Once U,, is constructed to achieve the uncoupled
closed-ioop behavior for the actuators, so cboice will remain in coostruction of U,,. This
issue is explained in Section 5.2.2. Because of the mentioned limitation on construction of
eigenvectots, only some partitions of eigenvectors can be comstructed arbitrarily. Designers
must construct those partitions of eigenvectors that bave a more significant role in the closed-
loop bebavior. In our case, U, aad U,, are more significant partitions of U, and U,
respectively. The exact construction of U, and U,, and the placement of the 3n poles of S
are the free choices that linear state-feedback control offers for achieving a unique gain, G.

Sections 5.2.1 and 5.2.2 explain bow this freedom can be used.

5.2.1 Manipulator Elgenstructure

This section identifies bhow the manipulator eigenstructure canm be constructed. Using
equation (5.7}, equation (5.11) can be written to express the right closed-loop eigenvector, u,,

associated with the 20 dominant eigemvalues. From equation (5.7):

{ $lypzn - A )y, + B Gu =0, ia 1,2 .., 20 . (5.11)

LT ¥ 0y,
Sioce s; is selected from set A, then s; == X, . Equation (5.11) can also be written as:
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[( Mlyog, - A ) .B ] o 1=0, i=12., 2, (5.12)
-G u,

If m; = - G u, where m, is nX1 vector then:

[ ( Mlgag - A ) - B ] 4] =0, i=m12 . 2. (5.13)

[ m; |

Equation (5.13} states that [uiT miT]T is in the right null-space of | { Nljgsn - A ) -B |
Since the dimension of the right null-space of [ ( N\, , - A ) -B | is at least 1 |34,
[u;T miT]T is confined i an n-dimensional sub-space spaoned by null vectors of

- A}  -B|. Because of this restriction on [, m7T|7

;1" oot all members of U,

{ ( \ilansn
can be selected arbitrarily. u; must be selected such that IuiT miT]T lies in the nullspace
of [ | \lya3o - A)  -B ). There is anotber way of arriving at this confinement. If s; does

not belong to the spectrum of A, then equation (5.14) can be generated from equation {5.7):

o, =-{slyy -AT'BGu i=1 2 .., 2. {5.14)
Since s, is selected from set A, them s, = %, . u; can also be expressed by equation (5.15).

U, = { N4, - AV Bm, i=12 ., 2 (5.15)

where :  m;, = - Gy m; is nX1 vector (5.16)

Let: N, = (NI, -A)'B i=12 ., 2; - (5.17)

then : g; = N, m; i=1 2 .., 20. (5.18)

Equation (5.18) mathematically justifies the limitation on the construction of the closed-loop

eigenvector mentioned previously |16]. Each closed-loop eigenvector, u, associated with b

il
must reside in the column space of N; which is a function of the closed-loop eigenvalue ),
and the open-loop dyoamics of the manipulator {A,B). This = an important coustraint on
the construction of the right closed-loop eigenvector, w, which is trapped in the p-

dimensional sub-space established by columns of N, .

Because of the confinement of u, in an n-dimensional subspace, in general, it can be
_expected that only o members of u; can be selected arbitrarily. But we are interested in

construction of u; such that its first 2n members are like \ We show that a vector, v,

T m7T|T is in the nullspace of

(along with an m) exists such that [y ;



-52.
ANy - A} -B | and its first 2n members are the same as v, Consider u; and m,

given by equations (5.19) and (5.20).

l

1 2
o o= NI {J‘c qi] i= 12 ., 2 (5.19)

T," | M(8,) »* + GR(®,) ]

m, = B.-l { \i Inn - A, ) T"l [ M(On} }.iz + GR(QO) | J:l q i= 1,2 . 2 {5.20)
The first 2n members of u, are the same as v;. Form [ { 81ipgn - A ) -B |:

l[siISnSn'A) -B| =

si[::ln ']nn Onn Onn
MY ) GR(S ) s, 1. M8, T, 0., 1- {5.21}
Gnn Onn { silnn'Aa} 'Bs

Substituting for | ( s, , - A ) -B | from equation (5.21) when $ = %\, 3ud u; and m,
from equations (5.19) and (5.20) into equation (5.13), shows that |uiT miT]T is in the oull-

space of [ ( NI - A} -B ]. This substitution shows that v;, which is given by

3a3n
equation (5.19), is achievable. Since u; (i=1,2,.2n) must be in the right null space of
| ( )‘ilsnan -A) B |, then no option would remain to comstruct the last o members of u,,

if the first 2n members of U, are constructed like v

5.2.2 Actustor Elgenstructure

We offer a similar treatment for the actuator eigenvalues and their right corresponding
eigenvectors. The actuators in the manipulators are dynamically upcoupled. It is a good
practice to preserve this uocoupling in the dynamics of the actuators in the closed-loop case,
too. The uncoupling of the closed-loop actuator dynamics allows the designers to achieve

different bandwidths for actuators such that they are comsistent with their hardware.

it has already been mentioned that Uy, is the significant partition of U,. To achieve
the uncoupling of the actuators, Uzz is chosen to be an identity matrix. Since each right

closed-loop eigenvector is confined to an p-dimensional subspace in 3a-dimensional space,
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constructing U2 such that U22 - IIm is always possible. At this stage, we have not
mentioned where the a actuator closed-loop eigenvalues must be located. This will depend on
the stability robustness specifications. Section 5.4 is devoted to this matter. For continuity
in all material cooceroing the design of G, readers can assume that the closed-loop
eigenvalues of the actuators are located deeper in the left hall complex plane than any
complex number offered by A. At this point, it does not matter how far from the origin
these eigenvalues are Jocated. Section 5.4 clarifies how a designer can use this freedom as to
the closed-loop eigenvalues of the actuators to satisly the robustness specifications. If

m, = - G u;, equation {5.7) can be written as:

[ (& bypgn = A ) -B ] [ ui] =0, i=2n+l, 2042, ., 30 . (5.22)
m;

Let: U,y =[38, & - gnl (5.23)

where g is nX1 vector and Uy, = 1 . If u, and m, are selected according to equations

(5.24) and (5.25),
[ M(®,) 5* + GR(®,) |'T,

o, = | [ M8, s?+GR®)T,s [;i] i = 2041, 2042, .., 30 .  (5.24)

I

m o= B [sl <A |g 0= 20+l 20+2 .., 3 (5.25)

then substitutiog uw, and m; from equations (5.24) and (5.25) into equation (5.22) and
[ (839 - A )  -B | from equation (5.21) into equation (5.22) shows that [u,T  m.T|T is
in the right null-space of [ (sl , - A) -B |. This shows that u, which is given by
equation (5.24}, is achievable. The last members of u, are like g, which guarantees the
uncoupling of the closed-loop actuator dynamies. Note that the inverse of
[ M(8,) z;i2 + GR(8,) | always exists as long as s, is not equal to any eigenvalues of A. One
can always multiply u; by [ M(8,) s? + GR(6)) | to ease this condition. Since u,
{i=20+120+2....30) must be in the right pull space of [ (s [, . - A ) -B |, then no
option would remainl to construct the first 2n members of U, it the last & members of u, are

constructed like \T
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$.2.3 Computation of G

Once the m's and u;s are computed from equations (5.19), (5.20), (5.24) and (5.25),
then equation (5.16) can be used to derive equation (5.26) for G.

Gm=-[m my .. mg ||y, wuy. uy|? (5.26)
Or equivalently:

G=-|m m, .. my |U! (5.27)

Equation (5.27) requires that U (given by equation (5.10)) is a full rank matrix. Since the
target dypamics are simple, then U ,, which is equal to V, is a full rack matrix. This means
that U, is a 2o-rank matrix. Matrix U, must be coostructed such that [U, U,l is a tull
rank matrix. We do not give a general procedure to construct U, such that [UI U2] is a
full rank matrix. But since there is {reedom in the selection of the eigenvalues and
eigenvectors of the actuators, one can always use this freedom to modify U2 such that
U,

actuators approach infinity at any angle in the left hall complex plane, then U is a fuli rank

U,] is a full rank matrix. Here we prove that if all closed-loop eigenvalues of the

matrix. It can be verified that as actuator eigenvalues approach negative large numbers, each
of the upper Jo members of each right eigenvector in equation (5.24) approaches a small
number, while the last o members stay constant. This implies that the members of U, g-of
matrix U in equation {5.10} will be much smaller than U,,- Suppose [Ul U2| is pot a full
rank matrix. Then there exists at least one columa in U, which belongs to the column space
of Uy (U, is a full rank matrix) as eigenvalues of the actuators approach infinity at any
angles in the left half complex plane. Siace, in the limit, all members of U:z are aimost
zero, this leads to the dependence of the columns of U". This is a contradiction because
U,, is a full rank matrix. The above discussion proves the existence of U only when all
the eigenvalues of the actuators approach infinity in a stable sense. In practice, we plar to
locate the actyator eigenvalues deeper in the left hail complex plane than any complex
number offered by A. 1f U is a full rank matrix, then Ul can be computed as:

. . -1 .1 -1
[Uu - Ulezz 1U21] ! ‘Uu Uu wn - U!lUll Un,j

(5.28}

Upe Uy [Uyy = UppUpy U, It [Ugy - UpyUy, MUl

Note that we do not consider the independence of the columns of U as a condition for the

achievability of the target impedance. This is because one can always use the freedom in
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choosing the eigenvalues of the actuators to comstruct U, such that [U, U] is full rank as
loag as U, is a full rank matrix, which will be true if the target impedance is simple. Since

U and S are self conjugate, the G will always be a real matrix [39].

5.3 Force-Feedforward Design

Section 5.2 provides a method for designing the state-feedback gain, G, to guarantee the
eigenstructure of the target dynamics given by A and V. Assuring that the eigenstructure of
the target dynamics is achievable does not imply that the target dynamics gives by equation
{2.2) can be achieved. The following theorem formally states the conditions under which a2
designer can guarantee that the system will follow the target dynamics, given by equation
(2.2), governing the closed-loop behavior of the manipulators for all 0<w<w,. (0, wy) is the

bounded frequency range in which the system may operate.

5.3.1 Theorem

The state-space representation of the dynamic system given by equation (4.18), wilth stale-

feedback gein G and force-feedforward gain Gy i8 given by equations (5.29) and (5.30).

AX(t) = (A -B G ) AX(t) + (L + B G, } AD(Y) (5.20)

A6(t) = C AX(t) (5.30)

G=ax3n , G;y=nXxn , A6(t) snd AD{t) € R®

The closed-loop transfer-function matriz that maps AD(jw) to AS(jw) is given by equation
(5.31).

Gliw) = C (juwlyy, -A+BGJ! (L + BG, ) {5.31)

where : A8f{jw} = G_{jw) AD(jw)
Suppose all actustor closed-loop eigenvalues are selected lo satisfy inequality (5.32):
| 5; P >0 real (si)<0 i = 2p+1, 2042, ..., 30 {5.32)

where p 18 g positive gcalar,



- If p spproaches X,

- and if G 15 designed sccording to Seclion 5.2 lo guarsniee the target eigenstructure
Y and A for the closed-loop ayslem,

then o unique value for G, can be oblained such that limit (5.33) iz frue for all w in the
bounded interval (0, w}.
tim  J, G (iw) = G {jw) {5.33}
p = X
Comment

This theorem does not prescribe any value for Gy It justifies the conditions uader

which limit (5.33) is true for all 0<w<w, without regard to stability robustness. According to
this theorem, the satisfaction of inequality (5.32) when p approaches oo and the selection of G
such that V and A are guaranteed, ensure a unique value for Gy that leads to Lmit

(5.33) for all O<w<w,. The proof is given in Appendix D.

5.3.2 Computation of G

Theorem 5.3.1 can be used to compute G, Since, for fast actuator eigenvalues a unique
value for G, guaraptees that limit (5.33) is true for all 0<w<wy, limit (5.33) can be used to
compute G, at some [requency in the bounded interval (O, wy). Assume w = 0 and all
eigenvalues of the actuators are located in the left half complex plane farther than any

complex number given by A. Then from limit {5.33):

where J G_(0) = G(0) ; (5.34)
G0)=C(-A+BG)! L,; and (5.35)
G,(0) = K. (5.36)

K is pon-singular and Lp is given by equation (D.2} in Appendix D. Substituting for G, (0)
and G,(0) in equation (5.34) results in equation (5.37).

<

JC[-A+BG)"LP=K" (5.37)

" Assume that:



dominant modes.

where: Gl = nXn ,

(-A+BG)=

(-A+BG ) =

OIJII
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G, = nXp , Gy = aXn .

Compute ( - A + B G J! as follows:

0 -1

M1(8_)GR(S,) 0

B,G, B,G

G,

-1

T,! GR(®) G,

[Gy+1,,] T, M(B)

(Gy+E, It Gy E G+ T, M8

where:

2 =1{(G; + 1) T,' GR®) + G, .

0

Mo T,

B,G, - A

=]

T,' GR{g,) = B!

Substituting equation (5.39) in equation (5.37) and solving for G,y produces:

Gy={ (Gy + I,,) T, GR(8)) + G, | J! K - (Gy+1 ) T, JT .

5.3.3 Summary of the Design Method

(5.38)

(5.39)

(5.40)

The four following steps can be used to design the feedback and feedforward gains for a

given 6,

1- Use equation (5.19) to compute 2n closed-loop eigenvector, u;, associated with the

Use equation {(5.20) to compute m;, (i = 1, 2, .. 20} which identifies the
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location of u; in its allowable sub-space. q; and \; are given by equations (3.2) or (3.5). The
first 2o members of u; are like v, so one can also use equations (3.1) and (3.12) to compute

the first 2n members of u;. This terminates the construction of dominant modes.

2- Use equation (5.24) to compute n closed-loop eigenvector, u., associated with the

il
actuators. Use equation (5.25) to compute m;, (i = 2u+1, 2a+2, .., 3n} which identifies the
location of u, in its allowable sub-space. This terminates the construction of non-dominant
modes.

3- Use equation (5.26) to compute the state-feedback gain G. The first nXa partition
of G is the joint-angle feedback-gain while the second and the third nXa partition of G are

the velocity and torque feedback-gaias.

4- Use equation (5.40) to compute the force-leedforward gain.

5.3.4 Selection of the J-Matrix

If the conditions of the theorem are satisfied, a unique value for G, caz be found such
that limit (D.23) is true for all 0<w<w,. Even though Section 5.3.2 offers a better equation
for Gy, one can use equation (D.23) to compute G, Equation (D.23) shows apother

interesting result. If the desired inertia, J, is selected according to equation (5.41):
J=1JTMe)J! (5.41)

then substituting equation {5.41) in equation (D.23) results in G, == 0 . This simply means
that if the target imertia, J, is chosen according to equation (5.41), then no force
measurement is peeded to achieve the target dynamics (2.2). This result is significant, since
force measurements are not available for many commercial manipulators. The farce
measurement can be eliminated if the desired frequency range of operation, w,, is small

enough that it can be parametrized by choosing J according to equation (5.41).

We do not prescribe a unique value for the J-matrix to parametrize w,. In fact, there
exist an iofinite number of matrices that can be selected for I to parametrize w,. The size
of J is important, not its structure. {One can cousider ihe size of the J-mnatrix in terms of
its singular values) Here, we summarize some options for the J-matrix. One method is
given on page 19 by coosideting J = Ay Ko A designer can also choose the J-matrix to be
N, Wwhere v is a positive scalar. Equation (5.41) motivates us to use equation (5.42) to select

matrix J.



J=+137TMe8,)J" (5.42)

where ~ Is a positive scalar. Choosing J according to equation (5.42) has the advantage of
consistency with the natural bebavior of the manipulator because Je'T M(8,) J.! is the
manipulator inertia matrix in the global coordinate frame. ~ in equation (5.42) scales the
natural inertia of the manipulator the same way in all directicns. Note that when ~ is pot

unity in eguation {5.42), G, will not be zero.

5.4 Stability Robustness and the Eigenstructure of the Actuators

In this section we arrive at a design parameter for stability robustness. Given a
osominal model, Gplju), in equation (4.21), an etror fubction, E{jw}, is given according to
equation (4.23) to represent the uvacertainties in the system. If the state-feedback gain, G, is
used to stabilize the nominal medel, Gp(ju), then the real model, G;[ju). will also be stable if

inequality (5.43) is satisfied.

"
Orin | Goliw) | > elw} for all 0w (5.43)

mln
where: G (jw) = I, +[G(jul, -1, ) B!

and  e(w)2a,,. | E(iw) |

-  max

References [49, 33] leisurely explain this concept in greater depth. Appendix

E gives a summary of the derivation of inequality (5.43).

The object is to design G so that inequality {5.43) is satisfied. Figure 6-6-b shows a
case in which inequality (5.43) is satisfied. The closed-loop eigenstructure of the n actuators
is the only freedom left in the design of G. Theorem 5.3.1 states that if ail the closed-loop
eigeavalues of the target dynamics approach -oo, then the target dynamics represented by
equation {2.2) can be achieved for all 0<w<w,  Placement of the closed-loop actuator

cigenvalues deep in the left hall complex plane is not trivial. A trade-off must occur between

*The minimum sicgular value of Gotju] is defined as:
I Golixt x |

I x 1
x 9= 0 and ||.|] deactes the Euclidean norm [12].

®minl Goliv} | = min
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performance through a wide f{requency range and stability robustness.

Suppose the closed-loop eigenvalues of the actuators are located at LI WS N
Scaling all closed-loop actuator eigenvalues to one number preserves baadwith ratios for the
actuators that are coasistent with the bardware. The farther from the origin the n closed-
loop eigenvalues of the actuators are located, the larger will be G | whpy = Ly JI' B .
Figure 5-2 shows how G ( juwi, - I _ y! B is affected by the locations of the closed-loop

eigenvalues. We show that two design factors contribute in stability robustness; w, aod o.

of G [ jwl
Actuator Closed-Loop Eigenvalues

Figure §5-2: o and o

max min -1, ' B for Various

an
Note that the closed-loop actuator eigenvalues that are far from the origin act as gains for
G (jwl, -1, ' B. Large values for these eigeavalues shift G ( joly -1 y! B up. This
is true only when the closed-loop actuator eigenvalues are located much farther from the
origin than apy complex number offered by A. Since closed-loop actuator eigenvalues that
are far from the origin result in a large G ( jwl,, - 1. J! B for a wide frequency range,
inequality (5.43) may not be satisfied for all 0<w<oo. This is true because a large
G (jul, -1, J! B for a wide frequency range allows G (jw) to remain very close to unity
for 3 wide Irequency range, which may, in return, cause a violation of inequality (5.43) il e{w)
does not also remain close to unity for a wide frequency range. Figure 8-5-b shows a case in
which inequality (5.43) is pot satisfied. On the other hand, according to theorem 5.3.1, the
larger « is selected to be, the closer J.G, (iw) will be to G,(jw) for all 0<w<<wy,. So the

closed-loop actuator eigenvalues must be placed in the left hall complex plane as far as
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possible without violating the stability robustness specification. In selecting o, G (jw} must
preserve stability robustness specifications at all frequencies. We do not offer any value for
a: it is the designer’s choice. Selecting a good value for a requires experience and an
understanding of the system. a must be large enough to guarantee that the performance
specifications will be met, but small enough to guarantee that the stability robustness
specifications will also be fulfilled. Theorem 5.3.1 clariflies how a large a can guarantee the

performance specifications for a bounded frequency range.

Given 1, C and K, the locations of the eigenvalues of the actuators can be altered to
meet the stability robustness specifications. If the designer can meet npeither stability
robustoess nor performance specifications with only ome set of actuator closed-loop dynamics,
then the designer must compromise on the set of performance specifications ot model the
high-frequency dynamics for the manipulators. o other words, if the actuator closed-loop
eigenvalues are required to be in the neighborhood of the complex numbers of A to meet the
stability robustness specifications at high frequencies, then it is necessary to model the
manipulator more precisely at bigh frequencies or to reconsider the set of performance
specifications. The parameter in the set of performance specifications that can be altered
most effectively to meet the stability robustness specifications is w,, the frequency range in
which the relationship between interaction load and displacement is approximately independent
of frequency: AD(ju)=KAY(jw}). Shaping the icop transfer function G (sl - AF! B tor all
0<w<w, is the requitement to produce this frequency-indepeadent relationship. On the other
bhand, ove cacnot shape G (sl , - Ay! B arbitrarily for an arbitrary frequency range because
inequality (5.43) must be satisfied for all 0<w<oco. Satisfying inequality (5.43) at low
frequencies is trivial because of the small size of e(w). At larger [requencies, G {sl,, - Aj' B
must become small to satisfy inequality {5.43). Therefore, the smaller w, is selected to be,
the more robustpess to high-frequency unimodelled dynamics can be achieved. Since w, 18
parametrized by J, it is pecessary to consider a larger J (and consequently a smaller w,} as a
compromise to meet. the stability robustness specifications at high frequencies. Of course, the
K-matrix can also be altered to change w,- The following summarizes the effects of w, and

a on stability robustness.

More stability Less stability
Increasing Wy OF & oo, > robustness in 0 > robustness in
uncertainties of the high frequency

modelled dynamics unmodelied dynamics
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Less stability More stability
Decreasing w, of @ ... > robustness in ... > robustness in
uncertainties of the bigh frequency

modelled dynamics unmodetled dynamics



Chapter 6

Examples

8.1 Example 1

Consider the planar manipulator with two degrees of freedom shown in Figure 6-1.
Both of its joint angles are powered (rom the stationary base. The second link is drivea by
an actuator on the base via a relatively stiff chain. The mass, length and moment of inertia
of each link are represented by bm;, bx, and i; . The variables il and 12 are the moments of
inertia of the links relative to their end-points. 512 locates the center of mass of the second

link.

7464/32.2  iblsec®/ft

6m2 =

&xl =1t

bx, = 91667 ft .
iy = 00403 |bl.ft.sec* .
1g = (074381 Ibf.I' sec”
8, = 34375 n

6, = 30°

92 = 45°

Figure 8-1: Manipulator with Two Degrees of Freedom

The inertia matrix and Jacobian are:

C i+ tmy, & bm, &, Bl cos(d, - 9,)
M) = '
| tm, & 8, cos(b, - 9,) iy ]
[ - &, sin(8,) -&x, sin{d,)
J =
¢ b, cos(d, ) &, cos{d,) ]

Substituting the numerical values for each variable in the inertia matrix and the Jacobian

matrix gives:

2.7210D-02  7.8967D-03 =5.0000D-01 -6.4818D-01
U(8,) = I, =

7.6967D-03 7 .4381D-03 8.6603D-01 6.4818D-01
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Since the manipulator is mounted horizontally, gravity does not affect it. The actuator
driviog 9, has a bandwidth of 8 radfsec, while the other actuator bas a bandwidth of 10
rad/sec. The actuator dysamics can be expressed by matrices A, and B, according to
equation (4.17). Since §, is not the relative angle between the two links and since the
actuators are powering the system from a stationary base, T, =I  in equations {4.13) and

{4.15).

-8, 0. [a. 0.]
A‘= B‘=
0. =-10. 0. 10,

A, B apd C in equations (4.19) and (4.20) can be written as :

0. 0. 1. 0. o, 0.
0. 0. 0. 1. 0. 0.
A= 0. 0. Q. 0. 5.1959D+01 =5.3766D+01
0. 0. 0. 0. ~5.3766D+01 1.9008D+02
0. 0. 0. 0. -8. 0.
0. 0. 0. 0. c. =10,
Q. Q 0 0.
0. 0 0 0.
B=]0. 0 L = g.870 10.148 1. 0. 9. 0. 0. 0
e. ¢ -96.323 -10.143 c =[ ]
B. 0 0 0, 0. 1. ¢. ¢. 0. 0
0. 10 0 ¢,

The designer must provide not only the mominal model for the manipulator, but also the
bound for the uncertainties, e(w). The model uncertainty for this example is given by e{w) in
Figures 4-2. e(w) takes the value of .4 at low frequencies and rises to 2 at 35 hertz. The
first unmodelled mode that represcots a bending dynamic of the manipulator takes place at
35 hertz {220 rad/sec) with {220)=2. The large magnitude of e{w) at 220 rad/sec shows
that the unmodelled mode is under-damped. Most space manipulators have under-damped
structural modes. The large values for e(w) at bigh frequencies for under-damped, unmodelled
modes force designers to design low-bandwidih systems to avoid possible ipstabilities.
According to this model uncertainty, the dypamic model is oearly valid for an approximate

range of 10 hertz.

We will now consider four different cases. In Cases 1 and 2, the actuator dypamics are

cofisidered in modelling the manipulator, while in Cases 3 and 4, the actuators are fast
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encugh to be neglected in the modelling of the system. Because of this approximation, the
feedback gains, G, are smaller in Cases 3 and 4 than in Cases 1 and 2. We show how the
smaller size of G in Cases 3 and 4 results in more robustness to high-frequency unmodelled

dynamics.

In Case 1, we examine the role of a, which is introduced on page 60. o measures the
location of the closed-loop eigenvalues of the actuators. [n Case 2, a smaller w, is desired,
which motivates us to use equation (5.41) for the target inertia matix. We have shown (page
58) that if equation (5.41) is used for the target inertia and if the actuator eigenvalues are
placed far in the left hall complex plane, then force-feedforward can be eliminated. Cases 3
and 4 repeat the design specifications of Cases 1 and 2 with fast actuators. Ia Cases 3 and

4, we consider the role of G in stability robustness.
Case 1

The design specifications in the global cartesian coordinate frame are:

- stiffness in direction X = 615 ibf/ft for 0<w<6.283 rad/sec (1 hertz);
- stiffoess in direction Y = 12.3 Ibf/ft for 0<w<6.283 rad/sec.

Note that the desired frequency range of operation is selected within the range for which the
mode! is pearly valid. The stiffness ratio is about 20. The low stiffness in direction X
generates a3 "soft” positioning system for the eed-point along direction X, while a larger
stiffness in direction Y guarantees a3 relatively “‘stiff” positioning system in that direction.
Note that the natural behavior of the manipulator in the configuration shown in Figure
6-1 opposes the desired performance specification. In other words, the inertia of the
manipulator in the global cartesian frame, Jc"r M(8,) Jc", makes it much easier to keep the
manipulator "softer” in direction Y than in direction X. The following diagonal target

dvnamics are proposed to parametrize the design specifications.

K= |0.615 0.0 c= [7.9955D-02 0.0000D+00| J =] 2.4725D-03 0.0000D+00
0.000 12.3 0.0000D+00 1.2388D+00 0.C000D+00  2.9670D-02

The diagonal inertia matrix and the diagonal damping matrix are selected such that the
stiffness value for each direction guarantees the desired behavior within a frequency rabnge of
6.283 rad/sec. Note that since we choose a diagonal target dymamics, selection of J- and
C- matrices for a given K-matrix is trivial. We choose each member of C and J such that,
at each direction, a slightly over-damped, stable, second-order impedance results. The transfer

function of the target dynamics G,(s) is:
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1
1.6250 0
(s/12.62 + 1)is/19.72 + 1)

0 0.0812
($/16.2 + 1)(s/25.4+ 1)

Figure 6-2-a shows how the equation that expresses the target dynamics of the system,
Gs) == [ J s + C s + K ||, represents the desired stiffness values and frequency range of

operation.

—
-
—

o
[+

Lt
LS

<
'

Il
-

‘-‘I_ —1——-—"'—-'- LI nruﬁr-l:v—ﬁwl T

a
o
(4]
'
L]
9
i
-
L]

Figure 6-2: 2: The Target Dynamics, G (jw), in Case 1
b: The Target Dynamics, G,(jw), in Case 2
The numbers in the parentheses indicate the row and column
of each member of the matrix, respectively.
The eigenstructure of the target dynamics can be represented by V {equation (3.13)} and

by A which is defined on page 32:
A = { 12621, -19.72, -16.294, -25.450 }

2.7321 2.7321  2.732 2.7321
¥V = -3.6502 -3.6502 -2.107% -2,1075%
~34.4812 -53.8768 -~-44.5150 -69 5547
46.0696 71,9837 34,3382 53.6535
For a=5, the closed-loop eigenvalues of the actuators are located at -40 and -50. This
preserves the bandwidth ratio of 8/10 for the actuators., The set of closed-loop eigenvalues,

S, is given by:

§ = {-12.621, -19.72, -16.294, -25.459, -40., -50. } .
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Using equatioas (5.19) and (5.24) in Chapter 5, U can be computed to be:

o et

2.7321 2.732t 2,7321 2.7321  3.2475D-02 -2.1508D-02
-3.6502 -3.6502 -2.1075 -2.1075 -3.3604D-02 7.6031D-02
U= |-34.4812 -53.8768 -44.5160 -63.5547 -1.209¢ 1.0753
46.0696 71.9837 34,3382 53,5535 1.344) -3.8016
7.3663 17.9840 15,4295 37.6687 1.0000 0.0000
-0.9753 -2.3812 1.4209 3.4690 0.0000 1.0000 J

Note that the first 4X4 members of U are identical to V. Equations (5.20) and (5.25) can
be used to compute m, (i = 1, 2, ..., 6) as follows:

-4.2549 -26.3472 -15.9958 -82.2082 -4.0000 0.0000
0.2556 2.3146 -0.8543 -5,3627 0,0000 -4.0000

The state-feedback gaie, G, can be computed via equation (5.26).

G= ] 70,2275 35.2133 B.0851 3,5328 B.8901 3.4930
13.9381 12.4491 1,7793  1.6355 0.,0786 7.6573

The force-feedforward gain can be computed via equation (5.40).

G, = [104.0850 -1.2679]
-6.3087 -4.7171
The size of o is limited by the stability robustoess specifications. Figure 6-3 shows that large
values for o will lead to a violation of the stability robustness specifications (inequality (5.43))
at high frequencies. The system violates the stability robustness speciflications for am10Q, and
meets the stability robustness specifications for a=35. Large values of o result in large G
which leads to large values of G (sl,, - AJ! B. Figure 6-4 shows tbe closed-loop transfer
function J G (s) for various values of o. The larger o is selected to be, the closer the closed-
loop transfer function J G (s} will be to G,(s) for a bounded frequency range. For small
values of o, the members of J G,|(s) will exhibit strong coupling; therefore, satisfaction of the
performance specifications is not guaranteed at low [requencies. On the other hand, large
values ol a result in a trivial coupling between the members of J,G,/(s) at low frequencies (as
tong as G(iw) = I+ {Gljwl -A 5! B | does not violate the stability robustness
specifications). Even though a large o ensures better performance, it produces large values

for the state-feedback gain, G, and the lorce-feedforward gain, Gd‘

The transfer function matrix J G (s) is shown below for a=5,
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Figure 6-4: The Closed-Loop Transfer Fuction Matrix, J. G (iw),

in Case 1
6250 (s/310 + 1){s/46 + 1) 2Dz s(s/41 + 1) 7
(s/12.62 + 1){s/19.72 + 1) (/12,62 + 1)(s/19.72 + 1)
4.98D.03 5(s/65.8 + 1) 0.0812 {s/32 + 1)(s/37 + 1)
(s/16.2 + 1)(s/25.46 + 1) (s/16.2 + 1)(s/25.4+ 1)
N
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The off-diagonal members of J.G{iw) for a=5 are much smaller than the diagonal members
and therefore, the plot of J.G_(iw} in Figure 6-4 resembles the target dynamics in Figure
6-2-3 for all O<w<u,.

Note that the elemental zeros at the origin of the complex plane cause the off-diagonal
members of J G (s} to be very small at low [requencies. The elemental zeros are located
outside the operating frequency range and do not contribute to the dynamies in the frequency
range of operation. If « is selected to be large, then all non-zero elemental zeros will be very
large, and as o approaches co, all non-zero elemental zeros will approach oo, all off-diagonal
terms will approach zero, and J G (s) will approach G,(s). On the other hand, a cannot be
selected to be a large number since this would violate the stability robustness specifications.
a must be selected to be large enough to insure that the performance specifications will be

met, but small enough so that G (jw) will not violate the stability robustness specifications.
Case 2

Now suppose the performance specifications have been changed as follows:

- stiffness in direction X = .61538 Ibf/ft for 0<w<.6283 rad/sec (0.1 hertz);
- stiffness in direction Y = 12.308 1bf/ft for 0<w< 6283 rad/sec.

The stiffness values are the same as for Case 1, but the frequency range of operation is
smaller. In fact, this is almost the case of static stiffness. If we take Jc'T M(®,) Jc“ to be
equal to the target inertia, then we might be able to achieve the target dynamics without

any force-feedforward gain. Using equation (5.41) for the target inertia matrix results ia:
-T -1
d=J " M8 J

or.

] = 1.4869D-01  1,3925D-01
1.3925D-01  1.4750D-01

The following damping matrix is proposed to produce a stable impedance:
C= [o.ss 0.9]
1.40 2.5 .
C is not a symmetric, positive, deflinite matrix, but the target dyonamics are stable (See

Appendix A for the sufficient conditions for the stability of the target dynamics.) Figure
6-2-b shows bow tbe plot of G(s) = | J s + C s + K | represents the desired stiffness
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values and frequency range of operation. As Figure 6-2-b shows, using Jc'T M(eol J‘:'l a8
the target inertia matrix produces a very narrow frequency range of operation, about the size
required by the performance specifications. As explained on page 20, even though I and C
are not diagonal matrices, the target dynamics exhbibit an approximate uncoupled bebavior for
0<w< 6283 rad/sec. For all 0<w<w,, the off-diagonal members of G (jw} ate much smaller
than the diagonal members. The eigenstructure of the proposed dynamics is represented by A
and V:

A= { -26,062, -20.427, -1,2812,-4,3664 },

-0.6205 -0,8052 19,0481 6.0533
Vv = |-1,0641 -0.9216 -23,9070 -§,5449
16,1711 16,4487 -24.4041 -26.4311
27,7331 18,8259 30,8292 28,5777

U can be computed by equation (5.19) and (5.24) to achieve the target dynamics.
[ -0.6205 -0.8052 18,0481 6.0533 8,1187D-05 -5,3766D-05
-1.0641 -0.9216 -23,9070 -5.5449 -8,4009D-05 1.9008D-04
U= 15.1711 16,4487 -24.4041 -25,.4311 -6,4949D-02 5,3766D-02
27.7331 18,8259 30.629%2 2B.8777 6.7207D-02 -1.9008D-01
-17.0308 ~-12,1023 0.5487 2.1799  1.0000D+00  0,0000D+00
-8.6198 -5.4464 -0.0512 -0.0399 0.0000D+00 1.0000D+OOJ

The first 4X4 sub-matrix of U is identical to V. The smallest value of a that guarantees
the achievement of the desired stiffness for 0<w<.6283 rad/sec without a force-feedforward
gain is 100, This is the proposed value for J that causes G4 to approach zero for large
values of a. J .G (s) is shown in Figure 6-5-a for a==100. Figure 6-5-b shows G {)w) for
a=100, which violates the stability robustness specification. Nor does Jchl(’) converge to
G,(s) for smaller values of a. Since no o guarantees the stability robustness and petformance
specifications at the same time, the design specifications cannot be met. If the structural
unmodelled dynamics were to occur at higher frequencies, then the design specifications could
be met without force-feedback. Using the above target inertia matrix requires a2 large o to
meet the performance speciflications without a force-feedforward gain. If a force-feedforward
gain is allowed, then the above performance specifications can be met by a small a which

will ensure the stability robustness specifications as well.
Case 3

Iz this case, the bandwidths of the actuators are about 40 hertz. The performance

specifications are similar to those of Case 1.
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Figure 8-5: a: The Closed-Loop Transfer Function Matrix, ¥ G _(jw)

b: o, 30d o of G (jw) in Case 2
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- stiffaess in direction X = 61538 Ibf/ft for 0<w<6.283 rad/sec;

- stiffoess in direction Y = 12.308 Ibf/ft for 0<w<6.283 rad/sec.

Since the bandwidths of the actuators are much larger than the frequency range of operation,

the dypnamies of the actuators can be peglected. The manipulator is modelled according to

the equations given in Appendix C. A, B, L and C in equation {C.1) can be written as:

0. 0.

L = 0. .
5.19590D+01  -5,3766D+01
-5.3766D+01 1.9008D+02

L I e - B e

L = = B -]
L= = T .+ I
L= = B o - |

0.0000D+00  0.0000D+00
B =] 0.0000D+00 0,0000D+00 c=[1. 0. o, o.]

5.1959D+01 -5,3766D+01 [

-5.3766D+01  1.9008D+02

The target dynamics i Case 1 are selected to parametrize the performance specifications.

The eigenstructure of the target dynamics can be represented by V (Equation {3.13)) aod by

A, which is given on page 37

A= {-12.621 -19.720 ~-16.294 -25.459 ),
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0.2158 -4.8722 0.1674 -4,8661

¥s= -0.2883 6.5097 -0.1291 3,7537
-2.7235 96,0812 -2,7269 123.8854

3,6388 -128.3721 2.1035 -95.5635

The set of closed-loop eigenvalues, S, is equal to A. Using equation (C.2) in Appendix C, U
can be computed to be:

0.2158 -4,8722 0.1674 -4 8661
U = |-0.2883 6§.5097 -0.12¢81 3,7537

-2.7235 96.0812 -2.7269 123,8854
3.6388 -128.3721 2.1035 -95,5635

Note that U and V are identical. Equation {C.3) can be used to compute m,, {i=1234):

0.5818 -32.0718 0.,9452 -67.0943
~0.0770 4.2465 0.087¢ ~6.1788

The state-feedback gain, G, and the force-feedforward gain, Gd' can be computad via
equations (C.4) and (C.5).

G = 15,1237 8.1663 1.3537 0,6035
2.6847 2,4269 0.2925 0.2732

Gy = |19.2034 1.0928
-1.8282 -0.4678

The transfer function matrix J.G,(s) is:

1
1.6250 0
(s/12.62 + 1)(s/19.72 + 1}

1

0 2
{s/16.2 + 1)(s/25.4+ 1)

JcGells) it shown in Figure 6-6-a. Note that neglecting the actuator dynamics eliminates the
freedom to adjust G (jw), which is shown in Figure 6-6-b. It G (jw) violates the stability
robustness specifications, then the target inertia matrix must be selected so that G (jw) can

meet the stability robustness specifications.

A comparison of G,(jw) in Figures 6-3 and 6-6-b reveals that the system in Figure 6-6-b
has more robustness to high-frequency uncertainties than the system in Figure 6-3. The
system in Figure 6-3, however, is more robust to low-frequency uncertainties than the onpe in
Figure 6-6-b. This difference is because of the size of the state-feedback gain, G. A large G

causes a larger bapdwidth for G jwl, + A JB, which allows G_(jw) to remain close to unity
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Flgure 8.0: a: The Closed-Loop Transfer Function, 3. G (iw)

b: 0, 30d 0. of G (jw) in Case 3

X a

for a wider frequency range thus causing less robustness to high-frequency uacertainties and
more robustness to low-frequency uncertainties. In Case 1, G is selected to be large to move
the actuator eigenvalues deeper into the left half compiex plane. In Case 3, since the
actuators are fast, G is no ionger a large matrix. We consider the size of 2 matrix in terms

of its singular values.
Case ¢

In this case, the actuators are very fast (40 hertz), and the dyaamic equation presented

in Case 3 is valid. The performance specifications are those in Case 2:

- stiffness in direction X = .61538 Ibf/fv for 0<w< 6283 rad/sec;
- stiffgess in direction Y = 12.308 Ibf/ft for 0<w< 6283 rad/sec.

It is suggested that the performance specifications be achieved without force-feedforward gain.
The target dynamics of Case 2 are used to parametrize the performance specifications. Using
equation (C.4) from Appendix C a designer can arrive at a state-feedback gain, G, and a
force-feedforward gain, G4. Because of the choice of target inertia matrix, G, is zero while

G = [9.3846 7.1083 1.0166 0.5040
7.1083 5.4295 0,6227 0.3151

The closed-loop transfer fuoction, 1.G(iw), and G (jw) are shown in Figure 6-7. Since w, in
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Figure 8-7: a: The Closed-Loop Transfer Function, I, G liw)

b: 0ia 30d o of G (jw) in Case 4

Case 4 is less than w in Case 3, the system in Case 4 has more robustness at high
frequencies than the system in Case 3. Thus, if the actuators are fast and the modet
uncertainties happen at frequencies much higher than W, It is possible to meet the design
specifications without a force-feedforward gain, as long as the desired frequency range of
operation is small esough to be parametrized by the target inertia represented by equation
{5.41}).

The design specifications of Case 2 and 4 are the same. Since the actuators in Case 2
were not fast enough, we could not meet the performance specifications without violating the

performance specifications.

8.2 Example 2

Consider the parallelogram showo in Figure 6-8, which is mounted on the end-point of a
large manipulator. The mass, length and moment of inertia relative to the cepter of mass of
each link of the parallelogram are represented by bm;, &, and i, . I the location of the
center of mass on each link is shown by Bl'i, then the members of the inertia matrix M(Oo]

are:



Figure 8-8: Parallelogram
M@© )" = bm, 8,2 + i + tmy 8% + iy + tm, &,°
M(@,)* = ( tm, &, 8, - bm, &x, &, )Cos(s, - 9,)

M(e,)*

2 . 2 ; 2
Bmz 6!2 + iy + &m‘ EI‘ + i, + &n, El:(2
The Jacobian is :

J - &, Sin(4,) (8, - &, ) Sin(d,) }

¢ &, Cos($,) (&, - &, ) Cos(t,)
If the following equality [1j is satisfied:

F.sm3 Ex.z 613 - bm, ﬁxl EI‘ = 0,

ther the inertia matrix is not only diagonal, but also independent of joint angles; the cross-
coupled velocity terms vanisb (rom the equations of motion (4.8). With the following

*
approximate data:

6!1 = 3.169/32.2 1bf .sec?/ft Bxl = Bin éll = 4in i, = 0.42 1bf.sec? ft
5 m, = 1.570/32.2 1bf sec?/ft 611 = bin 612 = 3in i2 = 0.13 1bf.msec? ft
w

Such a parallelogram has beep built by 1. H. Re and H. Asada st the Laboratory of Manufacturing and
Productivity, MIT.
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0.33 1bf mec? 1t

bmy = 2586/32 2 1bf sec?/ft  fxy = Bin Bl = din 1, =
Ba, =7 760/32.2 1bf sec?/ft  bx, = 14in 8l = fia i, = 1 68 1bf gec? ft
0, = 40° 8, = 110°

the inertia matrix and Jacobian are:

M(Go} = 1.5030D-0¢ 0.00000000] J. ={-4.2853D-01  &,2646D-01
0.0000D«00 8,1000D-02 5.1070D-01  2.2801D-01

The bandwidths of the actuators are 12.8 and 16 rad/sec. The dynamics of the system
under the conditions expressed in Chapter 4 can be represented by A, B and C in equations

(4.19) and (4.20):

[0, 0. 1. 0. 0, 0
0. o0, 0. 1, 0 0
A= |o. o 0. o. 6.6534 0.
0. 0. 0. o. 0. 12,345
0. 6. 0. o. -12.8 0.
_o. 0. 0. o, 0. 16. ]
0. 0. 0. ¢.
0. 0. 0. 0.
B=]0. 0. L= -2.8511 3.3978 1. 0. 0. 0. 0. 0
0. 0. 7.7341  2.8150 | ¢ =
12.8 0, 0. 0, 0. 1. 0. 0. 0. 0
0. 16.0 0. 0.
- d

Thke uncertainty of the dynamic model given by e{w) is shown in Figure 6-10-b. We consider
two cases. The target stiffoess is the same ip both cases, but w, is different. This example
shows the trade-off between w, and stability robustness to high-frequency unmodelled

dynamics.
Case 1

The design specifications in the global coordinate frame are:

- stiffaess in direction X = .615 Ibl/ft for 0<w<6.283 rad/sec {1 hertz);
- stiffness in direction Y == 50 Ibf/ft for 0<w<8.283 rad/sec (1 hertz).

Note that the large stiffness in direction Y guarantees a very stiff positioning system in
direction Y {02 ft deviation for 1 Ibf of the external force), while the low stiffness in

direction X allows the manipulator to accommodate the interaction loads. The following
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target impedance is proposed to parametrize the design specifications:

K= [0.615 o.o] J = [4,9451D-03 0.0000D+00 ] € =[1,1309D-01 0,0000
0.000 50.0 0.0000D+00 2.4107D-01 0.0000D+00 7.1172

The inertia matrix is selected to ensure the desired stiffness for a frequency range of 6.283

rad/sec. The damping matrix of the target dynamics is selected to guarantee the stability of

the target dynamics. Tke transfer function of the target dynamics, G,(s), is:

1
1.62501 0
(s/8.924 + 1)(s/13.944 + 1}

1
{s/11.521 + 1)(s/18.002+ 1)

0 0.02

Figure 6-9-a shows the diagonal members of G (s) = [ J 2+ Cs +K |".
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Figure 0-%: a: The Target Dvoamics in Case 1
b: The Target Dynamics in Case 2

The eigenstructure of the target dynamics can be represented by V from equation (3.1) and

by A, which is given on page 32:
A = { -8.9244, -13.944, -11.521, -18.0021 }

-0.5460 -0.5460 1.5000 1.5000

V= 1.2228 1.2228 1.0261 1.0261
4.8723 7.6130 -17.2820 -27.003%
-10.9128 -17,0513 -11 8216 -18.4712
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For a == 3, the closed-loop eigenvalues of the actuators are located at -48 and -38.4. This

preserves the bandwidth ratio 16/12.8 for the actuators. The set of closed-loop eigenvalues is:
§ = { -8.9244, -13.944, 11.521, -18.0021, -48, -38.4} .

Using equations {5.19) and (5.24) in Chapter 5, U can be computed to be:

-0.5460 -0.5460 1.5000 1.5000 4.5121D-03 0.0000D+00
1.,2228 1.2228 1,0261 1.0261 0.0000D-00 5.3584D-00
4.8723 7.6130 -17,2820 -27.0031 -1.7326D-01! 0.0000D+00

-10.9128 ~-17.0513 ~-11,8216 -18.4712 0.0000D+00 -2.5720D-01%

-~6.5354 -15.9555 29,9264 73.0625 1.0000D+00 0.0000D+00

7.8886 19.2593 11.0322 26.9341 0.0000D+00 1,0000D+0¢

u

The first 4X4 members of U are identical to V. Equations {5.20) and {5.25) can be used to

compute m;, {i = 1, 2, ..., 6) as follows:

~1.9788 1.4264 2.9896 -29.6934 -2,0000 0.0000
3.4885 2.4744 3.0881 -3.3702 0.0000 -2.0000

The state-feedback gain G cac be computed via equation (5.26).

G = 84,2459 11,7245 14,7614 1,1806 4.1775 0.2408
12,0022 35,2393 1.2800 6.6925 0.1676 3.5325

The force-feedforward gain can be computed via equation {5.40).

G, = {-49.3760 0,05689
56.6071 -0.0359

Thbe trapsler function matrix J G (s} is shown below.

[ \ i
| 6250 (s/1520 + 1)(s/40.4 + 1) - s(s/86.7 + 1)
(s/8.9244 + 1){s/13.944 + 1) (s/8.9244 + 1)(s/13.044 + 1)
117D s(s/1423.9 + 1) 0.02 (s/44.95 + 1)(s/71.55 + 1)
L ; (s/18.002 + 1)(s/11.52} + 1} T (8/18.002 + 1)(s/11.521 + 1) J

chc](j-..:} and G (jw) are shown in Figure 6-10 for a=3. Large values for o cause G,(jw) to
remain close to unity for a wide frequency range. This will bring less stability robustness to
high-frequency unmodelled dynamics, but the closed-loop transfer function matrix J.G iw) will

be closer to G (jw).
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Figure 8-10: a: The Closed-Loop Traosfer Function Matrix, 1.6, (jw)

b 0. 30d o of G jw) in Case 1

ax 11

Case 2

In this case, an increase in the frequency range of operation to 15 rad fsec is desired.
Since we chose a diagonal target dynamics, selection of the J- and C-matrices for a given K.

matrix is trivial. The following target dynamics are proposed:

K= ]0.615 0.0 J =11,2363D-03  0.0000D+00 ] ¢ =[5.6544D-02 0.0000
0,000 50.0 0.0000D+00  6.0268D-02 0.0000D+00 3.5586 |

G (iw) in this case is shown in Figure 6-9-b. Figure 6-11-a shows the closed-loop transfer
function J G (jw) for a=3. Figure 6-11-b shows that the system in Case 2 is less robust to
high-frequency uncertainties than the system of Case 1. This is because W, in Case 2 is
selected to be wider than w, in Case 1. A large target inertia matrix (which implies a narrow
wy) produces a narrow bandwidth for G ( ju - A F! B, which allows G,(iw} to become larger
than wunity at lower frequencies. This will cause more robustness to high-frequency
uncertainties and less robustness to low-frequency uncertainties. On the other band, a small
target-inertia matrix (which implies a large w,) produces a large bandwidth for
G (jw - A J! B, which in turn causes G {jw) to stay very close to unity for a wide frequency
range. This will cause a poor stability robustness to high-frequency uncertainties and stronger

stability robustness to low-frequency uncertainties.
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Filgure 8-11: a: The Closed-Loop Transfer Function Matrix, J.Gls)

b: o, and o, of G, (iw) in Case 2

8.3 Simulation

As mentioned earlier in Section 2.4.1, we provide a simple case of a simulated system in
which it is shown that comventional controller design specifications which work for the
unconstrained case, do not work for the comstrained case. The proposed impedance control,
however, is shown .to work in both unconstrained and constrained cases, including the
transition from one to the other. The proposed impedance also allows for control of the
bebavior of the system (e.g., monitoring the interaction force) by changing the parameters of
the impedance. [p Section 2.4.1, we explained that if a submersible vebicle is connected to a
structure via some stiff cables or flexible conmnectors, the system of the vehicle and cables
may achieve large stiffness for a wide frequency range. If the cables are selected to be very
stiff, their stiffoess will be domipant compared with the inertia of the vebicle. The stiffoess of
the cables will be the only dominant dynamics in a wide frequency range. Throughout this
frequency range, the system of the vehicle and the cables will behave like a very stiff spring
and external loads trofn water motion, manipulator motion and other disturbances do not

.affect the vehicle motion in this frequency range.

We conducted several dynamic/3D-graphic simulations of the constrained maneuvers of
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underwater vehicles and manipulators to observe the quality of maneuvers in which impedaace
control and other controllers are employed. The simulation consists of the dynamics of a six
degree of freedom vehicle, cables (up to four cables), and environmental effects such as water
drag. A 3D-graphic representation of the vehicle with cables is depicted on a vector display
whick is updated by the dynamic simulation at the rate of fifty hertz. The physical
characteristics of a particular submersible vehicle called Recon 5* (now being used at MIT
for control experiments) are used as physical parameters in this simulation. This vehicle has
five thrusters, weighs approximately 900 lbs., and is 6 feet long. Here we compare some time
domain results of a2 maneuver performance with two different controllers. We did not include
any model uncertainties in the simulation; the simulation was performed solely to observe the
behavior of the vehicle under different coatrollers. The first coatroller guarantees an
impedance control for the vehicle while the second controller allows a pertect positioning
system for the vehicle with two hertz bandwidth. The first controller was designed according
to the design method of Section 5.3.3 to guarantee the target impedance given in equation
{2.2). The second controller is a model-based compensator designed according to specifications
suitable for uncoostrained maneuvers. This compensator contains integrators in each input
chanael to reject the disturbances up to 2 bertz. The LQG/LTR method was used to achieve
this controller. Here we explain the result of the simple constrained maneuver shown in

Figure 6-12.

cable
| . - X
3 6 ft

Figure 8-12: An Underwater Vehicle Connected with
a Three-foot Cable to a Structure

The object is to move the vehicle in direction X to produce temsion in the cable. First we

*
Recon § (Sea Grant I) is an uomanzed underwater vehicle given to MIT by the Perry family.
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consider 2 maneuver using impedance coutrol. J is choser according to equation (5.41) to
eliminate the need for force-feedforward. Because of the selection of J according to equation
(5.41}, w, will be different depending on the orientation of the vehicle. C is modified by the
computer to guarantee a slightly over-damped system. The time bistory of the command
position in the X-direction is given by plot a in Figure 6-13. Plots b and ¢ in Figure
613 show the cable tension and vebicle position in direction X. The position reference inputs

and the members of the K-matrix are commanded via analog signals to the computers.

L [

|
6 1é 18 24 Sec

6 C

ft
w

-
-

6 12 18 2'4 sec

Figure 8-13: Response of the vehicle under impedance coatrol:
a: laput Command, b: Cable Teasion,
¢: Vehicle Position
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Here is the summary of a simple one-dimensional maneuver:

Reglon 1. In this region, the vehicle slowly approaches along direction X. The high
feedback-gain allows the vehicle to follow the reference input. There is no cable tension in

this region. K in equation (2.2) is chosen to be 10 Ibf/it.

Region 2. The vehicle encounters the cable. Since the cable is very stiff, a sudden
tension occurs upon impact. An overshoot in the cable tension occurs because of the small
velocity of approach of the vehicle at the moment of contact. The slower :he vehicle
approaches io direction X, the smaller the overshoot (at the very start of region 2] in the
cable tension will be. If the vehicle hits the cable with a large forward velocity and the
teference ijnput is not large, then the undersboot (right after the overshoot) of the cable
tension might fall to zero. A similar situation occurs when a manipulator approaches a stiff
wall. That is, if 3 manipulator hits the wall with a large forward velocity and the reference
input is not large, then the undershoot of the contact force might fall to zero and the end-
point might separate [rom the wall. Since the command position is three feet beyond the
cable length at steady state, the cable tension is 30 Ibf. Region 2 shows how the impedance
control method allows for a relatively smooth transition period from the uncobstraiped to the

coostrained situation.

Reglon 3: In this region, K is increased slowly from 10Ibf/ft to 20lbf/ft by an analog
input to the computer while the reference input is kept constant. Because of the selection of
J according to equation (5.41), w, will be different depending on the orientation of the
vebicle. C is modified by the computer to guarantee a slightly over-damped system. Since
the command is kept comstant, doubling K also doubles the cable tension;
AD{jw) = K AY(jw). This region shows the significant capability that impedance control
offers for moritoring the behavior of the vehicle at the interaction port. In this simulation, a
buman monitors the behavior of the vehicle by choosing the “right” K via an analog input
sighal to the computer. A computer cag also be used to monitor K according to some
“hidden logic". Having comtrol of the impedance of the vehicle at the interaction port
reveals the potential of using supervisory control [52] to mopitor the vehicle behavior in

complicated tasks.

Reglon 4: In this region, the input reference-position is commanded to correspond to

the cable length. This will give a zero cable tension in steady-state.

Figure 6-14 shows the behavior of the system when the second controller is used. The

time history of the command position in the X-direction is given by plot a in Figure 6-14.
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Plot b shows the vehicle position in direction X. The refereace input is again commanded

via an analog signal to the computer.

Figure 8-14: Response of the vebicle under pure positioning system
a: Input Commaand, b: Vehicle Position
Region 1: In this region, the vehicle slowly approaches along the direction X. The
bigh feedback-gaio allows the vehicle to follow the reference input almost instantaneously.
There is oo cable tension in this region. This region shows the successful maneuver of the

vehicle jn an unconstraiced environment.

Reglon 2: In this region, the vehicle encounters the cable. As soon as the vehicle
interacts with the cable, the dynamics of the system will change and stability will no longer
be guaranteed. The designer in this case has no control over the impedance of the vehicle,
The wuodesirable behavior of the vehicle in this region depends on the dynamics and
characteristics of the environment and controller, Plot b in Figure 6-14 shows the limit cycle
developed in the vehicle motion. In some cases, depending on the orientation of the vehicle,

the limit cycle does not converge apd instability results.

This simple simulation shows the superiority of the impedance control over a

conventional positionicg system in constrained maveuvers. In the impedance control method,
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the designer guarantees not oaly the positioning capability for the vehicle, but also an ability
to monitor the internal dynamics of the vehicle. This ability allows the operator to govern
the bebavior of the system on the interaction port. Figure 6-13 shows how the operator c¢an
position the vehicle while the cable tension is also coatrolied. The above simulation simply
shows bhow control of the impedance of a system allows for monitoring the behavior of the

system in a structured way.

8.4 Experiment

A simple experiment was conducted on a planar positioning table (X-Y table) to verify
the application of impedance control to constrained maneuvers. The positioning table consists
of a platform driven by two DC motors via two lead-screw mechanisms [Figure 6-15a.] The
goal of the overall project is to develop a positioning system with different stiffnessess and
different bandwidths along the two axes of a global cartesian coordinate frame by an on-line
computer. The axes of this global coordinate frame do not necessarily coincide with the axes

of the motors.®

In this section, we are interested to observe the transient behavior of the table from
unconstrained maneuvers to constrained mancuvers when equation (2.2) is guaranteed for the
system. To show this transient behavior, we just explain the result of an experiment when
only one axis is employed (one dimensional case). Figure 6-15b shows this simple set-up. A
wide bandwidth force sensor is mounted on the platform to measure the contact force along
two orthogonal directions [15]. A computer algorithm with .ol sec sampling time was
designed {according to the procedure given on page 57) and implemented on a microcomputer
to contro] the impedance of the table. The controller is able to accept the stiffness,
bandwidth and damping coefficient {three items of the set of performance specifications given
by Figure 2-1). The platform was commanded to move beyond a solid surface. Figure 6-16a
is the periodic ramp position command generated by the computer to the system. Figure
6-16b is the contact force. For this experiment, K is chosen to be 3.5 Ibtfin while the
bandwidth of the system is 4 hertz.

As long as the force sensor is bot in touch with the stiff wall, the contact force is zero.

* This experiment is & small part of » grester project of the robotic deburring conducted by GE & MIT
under supervisicn of Professor Bruce Kramer.
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2 LBF

”

MOMENT OF CONTACT

Filgure 8-16: a: Command Position
b: Contact Force
After the force semsor touches the stiff wall, the comtact force increases proportionally to the
commanded input (AD(t)= K AY(t)). Since the input position command is a3 ramp function,
the contact force is also a ramp function. Ecbancement of the algorithm to include both
axes of the positioning table and semsitivity analysis of the system parameters are on-going

projects in Laboratory of Maneufacturing and Productivity at MIT,



Chapter 7

An Approach to Loop Transfer Recovery
Using Eigenstructure Assignment

7.1 Introduction

This chapter stands by itself; it is oot necessarily a part of a design technique for
impedance control, but it provides a new method for designing an observer that can estimate
the measurable states of the system. Section 7.7 explains bow this chapter applies to
impedance control. This chapter is to be presented at the American Coatrol Conference in

Boston, June 1985.

One method of model-based compensator design for linear muitivariable systems consists
of state-feedback design and observer design [2]. A key step in recent work in mulitivariable
synthesis involves selecting an cbserver gain so the final loop-transfer fupction is the same as
the state-feedback loop-transfer function (7], [14]. This is called Loop-Trausfer Recovery
{LTR). This paper shows how identification of the eigeastructure of the compensators that
achieve LTR makes possible a design procedure for observer gain [35]. This procedure is
based on the eigenstructure assiggmeat of the observers. The sufficient condition for LTR
and the stability of the closed-loop system is that the plant be minimum-phase. The

limitation of this method might arise when the plant has multiple transmission zeros.

Historically, the LTR method is the consequence of attempts by Doyle and Stein to
improve the robustness of linear quadratic gaussian (LQG) regulstors [8], [7). However, the
method bas more general applications thae to the robustness of the LQG regulators [14]. In
their seminal work, Doyle and Stein address the problem of finding the steady-state observer
gain that assures the recovery of the loop transfer function resulting from full state feedback.
First, they demonstrate a key lemma that gives a sufficient condition for the steady-state
observer gain such that LTR takes place. To compute the gain, they show that the infinite
time-borizon Kalmaa filter formalism with “small” white measurement-noise covariance yields
an observer gain that satisfies the sufficieat condition for loop transfer recovery. [p this
paper, we present a3 method for computing observer gain that obviates the need for Kalman

filter formalism. The goal of this paper is to analyze the eigenstructure properties of the
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LTR method for the general class of [eedback control systems that use model-based
compeasators. Alter examining the eigeestructure of LTR, a design methodology for LTR via

eigenstructure assignment will be given.

Nomenelature
A, B& C ......... plant parameters
dd) .o input and output disturbances
xfl}.u(t)&y(t] ... states, input and output of the system
HU&EF ) oo states and output of the observer
et} ... error signal of the observer
Gp[s} ..... transfer function matrix of the plant
L eigenvalues of (A-BG)
B . eigetvalues of (A-HC)
R transmission zeros of (A,B,C)
0, o Lransmission zeros of (A,B,G)
G ......... state-feedback gain
K{s} ....... teansler function matrix of the compensator
P orrerrienins positive scalar
viT ......... left eigenvector of (A-HC)
- right eigenvector of {A-BG)
W o square non-singular mXm matrix
ziT ......... zero direction of the transmission zero
-wiT ....... input direction of the transmission zero
J oo maximum number of the linite transmission zeros
xiT ......... left eigenvector of {A-BG-HC)
@ (s) ... open-loop characteristic equation of the plant
®.4(s) ..o closed-loop characteristic equation of the observer
| T order of the system
m o raek of matrices B and C
Ps) ....... precompensator

7.2 Background

We will deal with the standard feedback configuration shown ir Figure 7-1, which
consists of: plant model Gp(s); compeasator K(s), forced by command t{t); measurement noise
{t), and the disturbances d.(t) and d_{t). The precompensator, P(s), is used to filter the
input for command following. Throughout this paper, we assume that the plant can be

described by equatioas (7.1} and (7.2).

x(t) = A x(t) + B uft) + B dft) (7.1)
¥(t) = C x{t} + d_(t) + n{t) (7.2)

where:



-90-

di(t) dot)
it
—{P(s) Kis) Gp(s) —

intt}

Figure 7-1: Standard Closed-Loop System

x(t)€R",  u(t)y(t).d(t).d (t) and n(t) ER™
[A, B| is a stabilizable (controllable) pair
{A, C| is a detectable {observable} pair
rank (B) = rank (C) = m

Once we specify the plant model, Gpis), we must find K(s) so that: 1) the nominal
feedback design. y(s)mGy(s)[I__+ K(s)Gp(s)|"! d.(s), is stable; 2) the perturbed system in
the presence of bounded unstructured umcertainties is stable; 3) application-dependent design
specifications are achieved. The design specifications can be expressed as frequency-dependent
constraiats on the loop traasfer function, K(s)Gp(s). The standard practice is to shape the
loop transfer function, K(s)GP(s), $0 it does pot violate the frequency-dependent coastraints
[7]. The loop-shaping problem can be coosidered to be a design trade-off among
petformance objectives, stability in the face of uastructured uncertainties {33, 49|, and
performance limitations imposed by the gain/phase relationship. Here we assume that n(t) is
a noise signal that operates over a frequency range beyond the frequency range of s(t), d;(t)
and d (t). We also use a precompensator, P(s), to shape the input for command following.
Therefore, the performance objectives are considered as oanly input disturbance rejection over
2 bounded frequency raage. The design specifications may be frequency-dependent constraints
on Gp(s)K(s}, which is the loop transfer function broken at the output of the plant, rather
than on K(s)Gp(s). which is the loop transfer function broken at the input to the plant.
Applying the design specifications to Gp(s)K(s) implies rejection of output disturbaaces. Since
Doyle and Stein first applied LTR to the loop transfer function, K(s)Gp(s}, for consistency
and continuity, we will also assume throughout this article that al) design specifications apply
to K(s)Gp(s). '

One method of designing K(s) consists of two stages. The first stage coacerns state-

feedback design. A state-feedback gain, G, is designed so tbat the loop traasfer function,
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G(sI“-A]"B , which is shown in Figure 7-2, meets the frequency-dependent design

specifications and satisfies equation {7.3) to guarantee stability,

0 B xith I Xt G

Figure 7-2: State-Feedback Configuration

(M, -A+BG)uy =0, im=12 .2 (7.3)

real(\i)<0, ui;éon

N; is the closed-loop state-feedback eigeavalue, while u, is the aX1 right closed-loop
eigenvector of the system. Controllability of [A,B] guarantees the existence of G in equation
{7.3). At this stage, one can determine whether or not state-feedback design can meet the
design specifications. In this paper, we assume that G is selected so that equation (7.3) is
satisfied and the loop transfer function, G(sl“-A)'lB, which is shown in Figure 7-2 meets the
desired frequency-domain design specification. lo the second stage of the compensator design,
an observer is designed to make the first stage realizable [31, 62]. The observer design is not
involved in meeting the specifications for the loop transfer fupction simce all desigo
specifications have been met by the state feedback gain, G. The observer has the structure of
the Kalman filter. Combining the state-feedback and observer designs {Figure 7-3) yields the

unique compensator transfer-function matrix given by equation {7.4).
K(s)aG(slnn-A+BG+HC)"H (7.4)

The idea behind observer design is to lind the steady-state filter gain, H, such that the loop
transfer function,  K(s)Gp(s) , in Figure 7-1 maintains the same loop shape (for a bounded
frequency range) that G(slnn-A)"B achieved via state-feedback design in the first stage. A
technique for designing H to meet this criterion was offered by Doyle and Stein [7]. Since by
this method, K(s)Gp(s) preserves the loop-shape acbieved by G(sl“-A)"B, the final design
in Figure 7-1 meets the specifications that were already met by state-feedback design. {The
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Flgure 7-3: Closed-Loop System

title “loop trapsfer recovery” comes from this idea.) For stability of the observer, equation

(7.5) mast also be satisfied.

vIiml,-A+HC)=0T i=12 . » {7.5)

real (p, ) <0, viT#OnT

W and v'irare the observer eigenvalue and left eigenvector, respectively. Observability of [A,C)
guarantees the existence of H in equation (7.5). The following lemma, which is proved by
Dovle and Stein [7], is central to the design of H:

If H is chosen such that limit (7.6) i# true as scalar ¢ approaches infinily for any
non-ginguler mXm W-malriz ,

Hi(p}

— —~BW (7.6)
p

then K(s), as given by equation (7.4), approacher pointunse toward ezpression (7.7}
G (sl -AY! B [ C (sf -A)! B, (1.7)

and since Gpis) = C (sl“-ﬁ}" B, (7.8)

then K(s) Gp(s) will approsch G (sI“-A)" B pointunse.

The procedure requires only that H be stabilizing and have the asymptotic characteristic
of equation {7.6). Doyle and Stein suggested ome way to meet this requirement: a steady-
state Kalman filter gain [31] with very small measurement-noise covariance. Now suppose we

choose H with the following structure:

Hw=)BW (7.9)
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where W is agy non-singular mXm matrix and p is a scalar. {t can be shown (by the
definition of the limit) that the structure of H chosen in equation (7.9) satisfies the limit in
equation (7.6) as p approaches infinity. Ian otber words, as p approaches infinity, '"H — pBW’
results in ‘Hfp — BW' (The reverse is not true.) Since the structure of H given in
equation (7.9) satisfies the limit in (7.6), then if H is chosen to be pBW, K(s]Gp(s) will
approach G(sI“-A)"B pointwise, as p approaches infinity. Note that the structure of H given
by equation (7.9) does mot necessarily yield a stable observer. We choose H to be pBW
throughout this paper.  The asymptotic [inite eigenstructures of both forms given by
{(7.9) and (7.6) are the same, while the asymptotic inlinite eigenstructures are usually different.

The form in equation (7.9) usually yields an unstable infinite eigenstructure.

Although this paper is not an exposition of the properties of the transmission zeros of a
plant, before stating the theorem, we will remind readers of some definitions and concepts
about this matter. (For more information and properties of the transmission zercs, see
references {48, 6, 58, 28].) The transmission zeros of a squate plant are defined to be the set

of complex numbers s; that satisly inequality (7.10).

silnn -A B {7.10)
rank < n+m

C 0

mm

The necessary and sullicient condition for the truth of inequality (7.10) is given by equation

7.11).

sl,-A B
det = 0 (7-11)
C 0

mm

Equation (7.11) yields j finite transmission zeros (j<n-m). Thke remaining {n-j) traasmission
zeros are at infinity. For each finite transmission zero, there is one non-zero left mull-vector

[ziT -wiT| {tor i=1,2,...,j) such that:

[2F T [rsl,-A B
[ m:l- Oprm’ (7.12)

C VI
where: [ziT -wiT] 7 0n+mT'
wlis an mx1 vector, and zJis am mXx1 vector. ziT is called left zero direction of the

transmission zeros of the plant. [If the left eigenvector and left zero direction associated with
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a pair of equal-valued eigenvalue and transmission zero are equal, then s is an uncontrollable
mode of the system. These transmission zeros are called “input decoupling zeros” (37].
Similarly, if the right eigenvector and the right zero direction associated with an equal-valued
eigenvalue and transmission zero are equal, then 8, i8 an unobservable mode of the system.
These transmission zeros are called “output decoupling zeros.” A similar defiaition for the
tragsmission zeros of a square plant is given by reference [31]; all complex numbers that are

toots of ¥(s) in the equatioa:
v
det Gp(s) - —— (7.13)

are transmission zeros of the plant. Ool(s) is the nth-order open-loop characteristic equation.
The maximum order of W(s) is j. All transmission zeros of the plant, including the ones that
are equal to the eigenvalues of the plaot (which may even be the input-decoupling and/or
output-decoupling zeros of the system), are roots of ¥(s} and also satisfy inequality (7.10) and
equation (7.11). The equality of equations (7.13) and (7.11) can be shown by careful nse of
Schur's equality [26].

7.3 Asymptotic Elgenstructure Properties of the LTR Method

We will now explore some eigenstructure properties for LTR when the observer gain
satisfies equation (7.9). Knowing the eigenstructure properties of the compensator, we will
develop a method for designing H via eigenstructure assignment of the observer. The
following theorem gives the eigenstructure properties of the observer whea H is chosen
according to equation (7.9). Part 1 of the theorem is proved differently in reference {5] and
can also be considered to be a special result of the multivariable root locus given by
references [42, 51, 29, 28]. The second part of the theorem is the result we will use in the

design process.
Theorem

Consider the aqugre linear observer in Figure 7-4:
X(t) = A X(t) + H e(t) + B u(t) (7.14)
A
e(t) = - C x(t) + y(t) (7.15)

;(t)ER" u{t) aad y(t) €ER™



with rank (B) = rank (C} = m .
Then if H iz chosen 30 that:
H=pBW {7.16)

where W 18 any non-singular square matriz and p is o scalar approsching oo, then the

following statements are lrue:

1) The finite closed-laop eigenvalues of (A-HC), ;. 8pproach finile lransmission zeros
of the plant, s. If the linear plant [AB,C| has j finste transmission zeros, (j<o-m), then
(A-HC) wnll have | finite eigenvalues. The remaining closed-loop eigenvalues appreach infinity

at any angle.

2} The left closed-loop eigenvector \r?,. (i=1,2,....j) aseociated with the finite clased-loap

eigenvalue b, opproaches ziT. which satisfies equation (7.17).

[z;r -w;r] s;1 -A B T
=0, (7.17)
m

C 0

2l W] # 0,

w;ris anp mX1 vector and z;ris an nX1 vector. If S; 18 not equal to any eigenvalue of A, then
z;r can be computed from equalion (7.17), and the following ezpression Jor viT(i==l,2,....j) can

be oblained:

vie wl| C (81 -A)] {7.18)

i
where w'ir(i=l.2,....j) can be calculated from equation (7.19),

wiC(sl,-A)"'B}=0o]T (7.19)

where: w;r,‘ UmT

Interpretation. This theorem identifies the asymptotic locations of finite closed-loop
eigenvalues and left eigenvectors of the observer. As p approaches a large number, j (for
j<n-m) closed-loop eigenvalues will approach finite transmission zeros of the plaot, and (n-j}
closed-loop eigenvalues will approach infinity at anmy angle. Since conventional practice in
.complex variable work is to regard a function as having an equal number of poles aad zeros

when the zeros at infinity are included, obe can claim. that ail closed-loop eigenvalues



-96.

juct

Y(t)=0 H it f Xit C ;lt )

A

Figure T-41 Closed-Loop Observer

approach the transmissicn zeros of the plant. Equation (7.17) states that | v;" -w;r] is
confined in the left null space of the given matrix in equation (7.17) as p approaches infinity.
In other words, the left null space of the matrix given in equation {7.17) assigns a subspace

for limiting location of | v;r -w;rl when p approaches infinity. If s, is not equal to any
T

eigenvalues of A, the limiting location of v can be interpreted differently. Equation

{7.18) states that the left eigenvector, v?.' is confined to a sub-space spanned by the rows of
[C(silnn-Al'll if s, is not equal to any eigenvalues of A. This sub-space is of dimension
equal to the rank of C. Therefore, the number of independent cutput variables determines
how large the sub-space corresponding to the left closed-loop eigenvector can be. The
orientation of each sub-space associated with each left closed-loop eigenvector, \r?,' depeads on
the open-loop dynamics of the system [A,C] and the closed-loop observer eigenvalue, ;-
Construction of the left closed-loop eigeavectors in their allowable m-dimensional sub-space in
C® is the exact freedom that is offered by observer design beyond pole placement
{27, 44, 45, 16]. The second part of the theorem identifies the asymptotic m-dimensional
sub-space in C" that confines the left closed-loop eigenvector, v;r. The choice of w'ir in

equation (7.18) allows the designer to construct each n.dimensional left closed-loop eigemvector
T

in its allowable m-dimensional sub-space, As p approaches a large number, then w.
approaches the left null vector of Gp(’*;) in equation (7.19); consequently, each left closed-loop

eigenvector v'ir approaches a final value in its allowable sub-space given by expression (7.18).
Proof:

Part 1: H is chosen according to equation (7.16). The block diagram of the closed-loop
observer is shown in Figure 7-5. The loop transfer function at the plant output is given by

expression (7.20}.
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C{sl_-A)'pBW {7.20)
Eguation (7.21) relates the open-loop and closed-loop characteristic equations [36, 47|,

-1 ¢cl(s)
det {1, + C (sl A" 9 BW]m= ——

7.21
where: “’01(3) ( )

$,(s) == closed-loop characteristic equation of
the system in Figure 7-5.

& \(s) = open-loop characteristic equation of
the system in Figure 7-5.

From matrix theory, equality (7.22) is true [26]

det [1__ + C (sl -Af' p BW | =1 _ +

trace[C(st_-A)!' pBW|+ ... +delC(el -A)'pBW] (7.22)

As p approaches oo, the last term of equation (7.22) grows [laster than the other terms.

Therefore, approximation (7.23) is true.
dell 1+ C(sl -AY' pBW]=zdet[C(sl -A)"' pBW] (7.23)

Considering approximation (7.23), equation (7.21) can be written as:
.1 ch(s)
det [C (sl -Ay' p B W |~ —— (7.24)
1’01(5)
or equivalently:

$qls)

det [G del w
el [Gp(s)] det [p W] = rym

(7.25)
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Since det [p W| 7 0, comparing equations (7.13) and (7.25) shows that the roots of ¥{s) and
®, (s} ‘are the same. In other words, @ ,(s) produces all the transmission zeros of the plant,
including the ones that are equal to the eigenvalues of A, which can even be decoupling

Teros.

Part 2: When H approaches its asymptotic value, the eigenvalues of (A-HC) can no
loager be moved via matrix C. This is true because the eigenvalues of (A-HC} are at their
limiting locations (i.e., transmission zeros of the plant). Therefore, ({(A-HC), B, C| must have
unobsetvable or unpcontrollable modes. Since [{A-HC), C] is an observable pair and H is
expressed as pBW, [(A-HC), B] must be an uncontrollable pair. Since [(A-HC), B| is an

uncontrollable pair, equations (7.26) and (7.27) are true {37].
v{wLa,~-A+HC)=0T i=1,2.,j {7.26)
vIB =o.T (7.27)

u; is the closed-loop observer cigeavalue, and v'ir is the corresponding left eigenvector.

Equation (7.27) states that the left closed-loop eigenvector, v?,' from equatioa (7.26) is in the

left null space of B and cannot be affected by the input. Each closed-loop eigenvector, v?,'
(for i==12..)} can be expressed by equation (7.28).
vI(pIo-A)-wIC =0T (7.28)
where: w‘.lr= . v:er (7.29)

Combining equation (7.28) and equation (7.27) yields equation {7.30). (Note that s;=y..)

| v;r -w;r] |:sil“ - A B

] =0, T (7.30)
C 0

mm

where: | v;r -w'ir] ok 0u+mT for jm=12 j

If s, is not equal to any eigenvalue of A, then from equation (7.30) we can find an expression

for the left closed-loop eigenvector of A:

vimwlC (s I, -A) im1l2 ., j (7.31)

where w'ircan be computed from equation (7.32)

wi[C (gl  -AV B}=0T, ij=2.. (7.32)
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Equation {7.31) shows that the left eigenvectors achievable for the closed-loop observer are
confined to the m-dimensional sub.spaces determined by their associated eigenvalues and open-
loop dynamics {A, C|. @

Comment: As p approaches oo, the j eigenvalues of (A-HC) cancel oul the j finite
transmission zeros of the plaat. A cancellation of an equal-valued closed-loop eigenvalue of
the system with a transmission zero happens il the left closed-loop eigenvector of the system

T

is equal to the left zero direction, z,", associated with the trausmission zero in equation

(7.17). By caocelling [60] we mean they will not appear as poles in the closed-loop transfer
fusction matrix, C[sI_-A+HC|'B . The tragsmission zeros of [A, B, C| are the same as
those of [{A-HC), B, C|, because transmission zeros do not change under feedback. As p
approaches infinity, the transmission zeros of [(A-HC), B, C] turn into input decoupling zeros,

because the system of [(A-HC}, B, C] is not controllable at these modes [37].

Corollary 1: The finite tranamission zeros of K(s) are the same as the finite transmission
zeros of G(slnn-A]'lB.

Proof: The transmission zeros of G(slnn-A)"B are the complex values o, that satisfy the

following inequality :
ail“ -A B (7.33)
rank . < n+m.

Post-multiplyicg the matrix in ineguality (7.33) by the non-singular matrix:

I, 0y ] (7.34)
G+pWC p W

will result in inequality (7.35) for the transmission zeros of G (sI“-A)" B:

o, l“ - A+BG+pBWC pBW {7.35)
rank < n+m

G 0

Substituting H for {(pBW} in inequality (7.35) results in inequality {7.36).
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a; I ~A+BG+HC H
rank < n+m 7.36)
G 0

mm

The complex number, o;, that satisfies inequality (7.36) is a transmission zero of K(s) as given
by equation (7.4). Therefore, K{s) and G(sl“~A)"B have equal transmission zeros. If
G(sl“-A)“B does not have any finite transmission zeros, then K(s) will not have any finite

transmission zeros. B

Corollary 2: If p approaches oo, then all the eigenvalues of the compensstor Kis) wall
approach the (ransmission zeros (including the onee at infinity of the plant, and the left
eigenvectors of {A-BG-HC), x?,' wsll approgch z;l,' where z;r and 8, (i=1,2,....j) satisfy equation
(7.37).

[2f wI] [sl, A B .
- on-l-rn (7.37)

[ z‘ilr 'w;rl % 0m+nT

In other words, the eigenvalues of ihe compensator cancel oul the transmission zeros of the

plant,
Proof: The transmission zeros of the plant are the set of complex aumbers, s, that

satisly inequality (7.37). Post-multiplying the matrix in equation (7.37) by the non-siagular

matrix:

[ Lo %m {7.38)
G lm ]

will yield the following equation, which can then be solved to find the finite transmission

teros of the plaat:

[ -wT] [sl,, -A+BG B
c 0

] =0T {7.39)

[l wl] # 0,7 foriml, 2,

We apply the result of the theorem to system [(A-BG), B, C]. According to part 1 of
the theorem, if H=;BW, then as p approaches oo, the eigenvalues of (A-BG-HC) will
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approach the transmission zeros of {{A-BG), B, C| computed from equations (7.39). These are

also the transmission zeros of the plant given by equation (7.37).

Accotding to part 2 of the theorem, the left closed-loop eigenvectors, x'.ll,' of the

compensator given by equation (7.40):

xT (i 1,,-A+BG+HC) = 0T, im12, (7.40)

x;r 7 DnT

approach z;rgiven by equation (7.39) or equation (7.37). @

7.4 Comments

1) According to corollary 2, as p approaches oo, the eigenvalues of K(s) will cancel
out the transmission zeros of the plant. According to corollary 1, as p approaches oo, the
transmission zeros of K(s) will approach the transmission zeros of G(sI“-A)"B. Since the
number of transmission zeros of two cascaded systems (K(s) and Gp(s)) is the sum of the
number of traosmission zeros of both systems, the trapsmission zeros of K(s)Gp(s} are the
same as the transmission zeros of G(sl“-A}'lB. Similar arguments can be given for the poles
of K(s)Gp(s). The poles of K(s} cancel out the transmission zeros of the plant; therefore, the
poles of K(s)Gp(s} will be the same as poles of G(sI“-A)"B. This argument does not prove
the equality of G(sl“-A)'lB and K(s)Gp(s) as p approaches oc. Proof of the pointwise equality
of K(s3)Gp(s) and G(sl“-:\)“B is best showa by Doyle and Stein in [7]. The above commeat
coneerning pdle-zero canceliation explains the eigenstructure mechanism for LTR. Since pole
placement and eigenvector construction in the allowable sub-space prescribes a unique value
for H. we plan to design the observer gain for the LTR via pole placement and left

eigenvector comstruction .

2) The asymptotic finite eigenstructure for H in both equations (7.6) and (7.9) are
the same, but the asymptotic infinite eigensiructures are usually different. The form of H
given by equation (7.9) is rarely stabilizing. Since both forms guarantee the pointwise
approach of K(s)Gp(s} to G(sl ,-A)B, it can be deduced that the pointwise approach of
K(s)Gp(s) to G(sl  -A)B occurs whenever the asymptotic finite eigenstructure is the same as
that given by the theorem. Hence, combining any such [linite eigenstructure with any stable

iafinite eigenstructure will result in the approach of K(s)Gp(s) to G{sl -A)B in a stable sense.
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3) Difficulty in using LTR will arise if the plant bas some right balf-plane zeros
(non-minimum phase plant). In our proposed procedure for LTR, ome should place the
cigenvalues of (A-HC) at tbe transmission zeros of the plant. If the plaat is son-minimum
phase, one would place some eigenvalues of (A-HC) on the right half-plane. The closed-loop
system will not be stable if any eigenvalues of {A-HC) are oo the right half-plane. According
to the separation theorem, the eigenvalues of {A-HC) are also the eigenvalues of the closed-
loop system. Therefore, the sufficient coadition for LTR and the stability of the closed-loop
system is that the plant be minimum-phase. If the plant is non-minimum phase, coe should
consider the mirror images of the right half-plane zeros as target locations for eigenvalues of
(A-HC). In such cases, loop transfer recovery is not guaranteed, bui the closed-loop system

will be stable.

7.5 Design Method

For observer design, we place j finite eigenvalues of (A-HC) at finite transmission zeros
of the plant. The left closed-loop eigeavector, viT, associated with the finite modes must be
constructed such that [viT -wiT] is in the left null space of the matrix given by equation
(7.17}. The remaining {n-j) closed-loop eigenvalues should be placed far in the left half-plane.
Note that the farther the (n-j) infinite eigenvalues of {A-HC) are located from the imaginary
axis, the closer K(s)Gp(s) will be to G(sl -A)B as shown in the example. The left closed-loop
eigeavectors associated with the infinite modes can be computed via equation (7.41).

vi= wlC (u I -A)! = j+l, 42 .. 02 {7.41)

1 oo

where: w?= - \r;rH (7.42)

The following steps will lead a designer toward observer design for the recovery

procedure:

1} Use equation (7.17) to compute the | target locations of the complex [inite
eigenvalues of the observer, s, and j left null vectors of | z;r -w'ir] . u; must be selected to
be equal to s, The left closed-loop eigenvector of the observer, v?,' must be selected to be
equal to z?.' Il s, is oot equal to any eigenvalue of A, use equations (7.18) and (7.19) to
compute the j left closed-loop eigenvectors, v;r and w‘ir. w;r identifies the location of the left
closed-loop eigenvector in its allowable sub-space. This step terminates the construction of

the finite eigenstructure of the observer.
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2) Place the remaining (n-j) eigenvalues of (A-HC) at locations farther than the finite
transmission zeros of the plant. Use equation (7.41) to achieve {n-j} vaiues for v'ir. The w;r

for infinite modes are arbitrary and have little importance because their cotresponding

eigenvalues are selected far in the left half complex plane.

3) Since
viH=-wl  i=12 ., 2 (7.43)
then:
vIJH = - W] {7.44)
vz wg
T T
Vn wll
Use equation (7.45) to compute H.
-1
H=- vl wl (7.45)
T T
Vs W2
T oT
Vn Wn

The independence of the n left closed-loop eigenvectors, v?: is a necessary condition to use
eigenstructure assiggment for LTR. If the left closed-loop eigenvectors are not independent,
our approach fails and one must use Doyle and Stein's approach to recover the loop transfer
function. The dependency of the left eigenvectors might arise if multiple finite trapsmission
zeros result in equation (7.17). If degeneracy of the matrix in equation (7.17) is equal to the
multiplicity of a transmission zero, the existence of n independent, finite, left closed-loop

eigenvectors is guaranteed.

7.0 Example

Consider the following example:

eepee
fseee
e2eer
O Q =0
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c = [+ o 1. o.]
0. 1. 0. 4.
Suppose we are given G such that the closed-loop poles are at -19.35, -1.76, -5.57 and -6.12 ;

G = [4_7234 3.4265 0.9923 0.5631]
1.1497 0.857¢ 0,.2633 0.1952 J.

Using equation (7.19), the fipite transmission zeros, s, and the associated left null-vector

directions, w;r, can be computed. By and g are selected to be equal to s, and S,

b= -1, pp=-.25, ¥ s [1 0l wy=(0 1]

Using equation {7.18), the ieft closed-loop eigenvector associated with the finite modes can be

computed:
vI=(-1.00 000 0.00 0.00]
vi=[ 0.00 -4.00 0,00 0.00 ]

We place the other two eigenvalues of {A-HC) in the left ball-plane as far as possible. The
directions of sz and w‘T do oot matter because the associated eigenvalues are far away.
Figure 7-6 shows that the larther away from the imaginary axis the two infinite eigenvalues

of (A-HC) are, the closer K(s)G (s) will be to G(sl_-AF'B. Assuming :
by = =30, p, = =36, 0] = (1 0], wl=1[0 1]

and using equation (7.41), the left eigenvectors associated with infinite modes can be

compuled:
vy = [ -0.0333  0.0000 -0.0322  ©0,0000 ]
vl = [ 0.0000 -0.0278  0.0000 ~0.1103 ]

Using equation (7.45), H can be computed:

1.0000 0.0000

H =] 0.C000 0.2500

30.0000 0.0000

0.0000 0.9000
The [finite transmission zeros of G(sI“-A}"B are located at -4.3270 and -1.3675 . Table
7-1 shows that the transmission zeros of K(s) approach the transmission zeros of G(sl“—A)"B
as u, and u, move farther into the left balf complex plane (corollary 1). Table 7-1 also

shows that the farther p, and u, are from the imaginary axis, the closer the eigeavalues of
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[C].OSld loop Transmission Eigenvalues of \
elgenvalues zerogs of K{s) K{s)
By = -1 -2.8097 -30 5672
wy = - 25 -1 2662 -24 2387
ky = -10 -00 -1.0000
by = 12 -e0 -0.2500
py = -1 -3.6734 -49 4030 +10 44781
By = - 25 -1.3311 =49 4030 -10 44781
by = =30 -0 -1 0000
By = -36 -00 -0.2500
By = -1 -4 0855 -115 40 + 20 483
By = -.25 -1 3551 =115 40 - 20 461
hy = -90 -0 -1.0000Q

= -108 -0 -0 25
\ J

Table 7-It Poles and Zeros of K(s)

K(s} will be to the transmission zeros of the plant {corollary 2).

7.7 Coneclusion

A key step in the recent work om the synthesis of model-based feedback compensators
for multivariable systems is the selection of the observer gain. The observer gain must be
selected so that the final loop-transfer function, K(s)Gp(s) in Figure 7-1, is the same as the
state-feedback loop tramsfer fuoction, G(sI“-A)"B {shown in Figure 7-2), for some bounded
frequency range. In LTR, the eigenvalues of the compensator, K(s), cancel the transmission
zeros of the plant. It is also true that the compensator, K{s}, will share the same trapsmission
zeros as G(sl“-A)"B. By exploring the eigenstructure of the model-based compensator when
loop traasfer recovery takes place, we provide an alternative design procedure which
eliminates the need for the Kalman filter mechanism via direct assignment of the eigenvalues
and left eigenvectors of the observers. The sufficient conditior for LTR and the stability of
the closed-loop system is that the plant be minimum-phase. The limitation of this method
might arise when the plant bas multiple finite transmission zeros, and n left independent

closed-loop eigenvector cannot be constructed.

In impedance control theory, the LTR method can be used to approximate K(s)Gp(s) by

G{slnn-A)"B. Since all transmission zeros of the system [A, B and C|, given by equation
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(4.18) are at infinity [59], the eigenvalues of (A-HC} can be placed in the left half complex
plane to recover the loop transfer function. The farther the eigenvalues of (A-HC) are from

the origin, the closer K(s)G (s} will be to G(sI  -A)'B.



Chapter 8

Conclusion

We started with conventional coantroller design specifications concerning the treatment of
the interaction forces and torques when the system is not constrained. Generaliziag this
treatment to include cases whem the system is constrained, we stated a set of controller
design specifications to assure compliant motion with stability in the preseace of bounded
uocertainties (Figure 2-1). One of the most important coatributions of this thesis is the
formulation of the concept of compliant motion in terms of a meaningful set of coatroller
design specifications. This set (shown in Figure 2-1) is a proper definition of the compliant
motion. ln Chapter 2, we show that Hogan's target impedance [20|, given by equation (2.2),
can parametrize our set of performance specifications. The following is a summary of the

parametrization of the set of performance specifications:

stiffness matrix .........ccoovviveeeeennnen. > K;
S O > I
Stability ..o, > C.

We assume C to be a matrix that always produces a slightly damped or underdamped
stable system; therefore, for a given K-matrix, the J-matrix is the parameter that affects W,
the most and many J-matrices can parametrize W, In particular, we show bow a wide W
for a small J-matrix) may cause instability in the presence of high frequency unmodelled
dynamics, In Section 53.4, we gave some methods for arriving at a proper value for the

J-matrix.

The target impedance mandates a closed-loop relationship between the interaction loads
and the motion of the system in the global cartesian coordinate frame. In geoeral, the
closed-loop behavior of a system canmot be shaped arbitrarily over an arbitrary, bounded
frequeacy range, but we show that this target impedance is mathematically achievable, and in
Chapter 5 we offer a geometrical design method to achieve it. This is 2 fundamental result
which is proved in Appendix A. By considering the dynamics of the manipulators and its
actuators, continuous feedback and feedforward gains are given in closed form to guarantee

the achievement of the target dynamics in the presence of model uncertainties.

If a dynamic system behaves according to equation {A.2), then the dynamic system and

its environment taken as a whole will remain stable. Appendix A proves this, and it gives a
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sufficient condition for the stability of the target dynamics. The stability of the target
impedance and its global stability with the environment result from the appropriate choice of

the target dypamics and not the design methodology.

To achieve the target impedance given by equation (2.2), we need to measure the joint
angles, joint angle rates, actuator torques and interaction forces of the system. Moast direct-
drive manipulaters are not equipped with fast actuators, and it is necessary to consider their
dynamics and to measure the actuator torques {or motor currents) in the design process if a
wide frequency range of operation is needed. In Chapter 4 we develop a mathematical model
for manipulators and their actuators to represent their dynmamic behavior during low-speed,
constrained maneuvers. When the actuators are fast (i.e, their bandwidths are much wider
than the desired (requency range of operation, uo), the dynamics of the actuators can be
neglected, which eliminates the need for torque feedback (See Appendix C). If w, is small
enough to be parametrized by the target inertia matrix given by equation (5.41), then foree
measurement can also be eliminated. fo other words, if the target imertia is selected to be
the inertia of the manipulator in the global coordinate frame (given by equation (5.41)), then
it is pot necessary to measure the interaction forces. We use force-feedforward only to
change the inertia of the system. If the actuators are fast and the frequemcy range of
operation is small enough that the target inertia can be chosen according to equation (5.41},

then it is necessary to measure only the joint angles and joint aagle rates.

Stability in the presence of model uncertainties is another significant issue in our design
method. Large feedback gains produce poor robustness to high-frequency upmodelled
dynamics and good robustness to uncertainties within the modelled dynamics. Selecting a
wide w_ will produce a large feedback gain, which means the system will be less robust to
high-Irequency unmodelled dynamics and more robust to uncertainties in the modelled
dynamics. Onb the other band, a narrow w_ will result in a small state-feedback gain, which
will assyre good robustness to high-frequency unmodelled dynamies. Since w, is parametrized
by J, we can state that for a given K, a small J-matrix may cause instability in the presence
of hbigh-frequency unmodelled dynamics, and a large J.matrix may cause instability if there

ate uncertainties in the model at low frequencies.

The trade-off between the size of the target inertia and stability robustness relative to
high frequency unmodelled dynamics is another contribution of this thesis. Another factor in
the size of the state-feedback gain is a, which measures the locations of the closed-loop
eigenvalues of the actuators. The farther from the origia the a closed-loop eigenvalues of the

actuators are located, the larger the feedback gain matrix, G, will be. In other words, large
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closed-loop bandwidths of actuators result in less robustness to high frequency unmodelied

dynamics.

As mentioned in Chapter I, there are two approaches for assuring the compliant motion
of a dynamic system, each with its own application. Their fundamental differences are

described as follows:

- ln bybrid force/position control [43, 46, 55, 38, 61|, force is controlled zlong those
directions constrained by the environment, while position is controlled along those
directions in which the system is free to move. This method allows the direct,
and therefore precise, control of the interaction forces, In itnpedance control, there
is no direct closed locop around the interaction force. In fact, we sometimes do
not even measuze the interaction force. The interaction force is controlled in an
open loop fashion. By controlling the position and orientation of the system and
assigning an appropriate impedance, we arrive at a reasonable range for the desired
interaction force {AD(jw} = K AY(jw)).

- Uslike hybrid forcefposition control, impedauce control never forfeits the
positioning capability of the system. Consider a maneuver such as approaching a
stiff wall; the positioning of the system and a low impedance allow the
manipuiator to hit the envirooment with a light contact force. In hyhrid
force/position comtrol, such a maneuver can be done with two sets of controllers:
3 pure positioning system to move the system in the free envirooment, and a
hybrid force/position coatrol to move the system after it touches the environment.

- In hybrid force/position control, the structure of the controllers and the global
stability of the system depend heavily on the dynamic and geomettical properties

of the environment. We arrived at a controller structure which is independent of

environment characteristics.

Dyoamic/graphic simulations were performed to illustrate differences. Apother
conttibution of this thesis is presented in Chapter 7. A key step in recent work in
multivariable synthesis involves selecting an observer gain so the final loop-transfer luaction is
the same as the state-feedback loop transfer function for a bounded frequency range. This is
called Loop Transfer Recovery (LTR). This chapter shows how identification of the
eigenstructure of the compensators that achieve LTR makes possible a design procedure for

observer gain. This procedure is based on eigenstructure assignment of the observers {dual to

the impedance control synthesis).
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Appendix A
Stability

It the J-matrix and K-matrix ino equation (2.2} are selected arbitratily {J is any non-
singular matrix} to parametrize the first and second items of the set of performance
specifications, a value for the C-matrix that assures the stability of the target dynamics is
not guaranteed. But for a non-singular K-matrix, there always exist many J- and C-matrices
such that the eigeavalues of the target dynamics are in the left hall complex plane (e.g., the

J-matrix and C-matrix may be selected to be ~ K and 1,K, 23 on page 19).

The selection of J, C aad K will be much easier if they are restricted to some class of
matrices. Theorem 1 gives a sufficient condition for the stability of the target dyoamics,
while Theorem 2 considers the stability of both the dynamic system and its environmeat.
Theorem 1, which expresses the essential concept of stability of this class of impedances, is

discussed in references [13, 11| and is given here only for continuity of the material.
Theorem 1

If J, C and K are real and symmetric, positive definite matrices, then the sysiem in
equation (2.2) s stable, and if C and K are symmiteric, non-negative definite matrices, then

the system in equalion (2.2} will be marginally stable,
Progf:

The eigenvalue problem associated with the target dynamics is expressed by equation
(3.5).

[INE+CX +K|q =0 i=m 1,2 .,% (A.1)
g # 90,

Pre-multiplying equatica (A.1) by qi“ results in equation (A.2).
af [IN?P+CN +K]|q =0 i=12 ., 2n (A.2)

Where qu is the complex conjugate transpose of q; Simce J is a symmetric positive definite

matrix, then:
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i=allaq >0. (A3)

Since J is a symmetric matrix, equality (A.3) is true for any vector in C7, includicg the right

latent vector q; . Similarly, ¢, == qiH C q; > 0, and k, = qu K q > 0.

Equation {A.2) can be simplified to equation (A.4).
EN N +k=0 i=12 .2 (A4)

where j;, k; and c; are real, positive scalars. Any complex number »; that satisfies equation
(A4) is in the left half complex plane. Equation (A.4) may result in. complex roois on the

imaginary axis (and consequently a marginally stable solution} if «,

; andfor k., vanish.

Absolute stability of the target dynamics results if J, C and K are symmetric, positive

definite matrices. The set of the eigenvalues that result from equation (A.4) is self-conjugate. m

Note that the cooditions oa J, C asd K are sufficient for stability, but not pecessary.
We might arrive at a set of J, C and K that assures stability without satisfying the theorem
conditios. As long as matrices J, C and K are symmetric, positive definite, the eigenvalues

of the target dynamics given by equation (2.2) are in the left half complex plane.

The stability of the target dynamics is not enough to assure the stability of the overall
system of the dymamic system (manipulator) and its environment. In other words, the
following question cannot be answered by Theorem 1: [f & manipulator with o stable
impedance os ezpressed by equation (2.2) is in contact with a slable environment, does the
system of the manipulator and its environment remain stable 7 This is not clear; two stable
systems ioteracting with each other may result in an unstable system. Theorem 2 is needed
for the rigorous assurance of the overall stability of the manipulator and its environment; this

is given by Theorem 2.
Theorem 2

if the closed-loop dynamic behavior of the dynamic aystem i given by equation (A.5):

J AY{t) + C AY(t) + K AY(t) = AD(Y) AD(t) end AY(t)ER (A5)

J=JT>0, K=KI'>0 , C=cT>op.:

and if the environment is o system with the dynamic behavior represented by equation (A.6):

I, AY,(U) + C, AY,(t) + K, AY,(t) = 4D,(t) + ADS(t) (A.6)
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aD,{t) , ADZ(t) and AY,(t)ER™
=T - KT =cT .
Jo=J >0 , K=K >0 , C, =¢C >0,

where:

AD(t) == the load (force and torque ] that the manipulator
exerte on the environment;

ADZ(t) == all other loads on the environmen! funcorrelated with
manipulator states ond environment siales); and

AD{t} = the environmental load on the manipulator,

then the overall system (manipulator and envirenment) is stable.

Proof:

Since the dynamic system is in contact with the environment, vectors AY(t) aad Ay, [(t)
might have members in common. Form a p-dimensional vector AW(t) such that equation
(A.7) and equation (A.8) are satisfied (0 + m 2> p). AW(t) is a vector that contains all
states of the manipulator and environment. Since the manipulator and envircoment are in
contact with each other, thes AY (t} and AY(t} will have some common members. The first
(p-n) members of AW({t} are those states of the envircoment that are not states of the
dyoamic system (moapipulator). The last (p-m} members of AW(t) are those states of the

dynamic system that do not represent the environmental dynamics.

AY,(t) = T, AW(t) (A7)

aY(t) = T, aw(y) (A8)

T, and Ty are mXp and nXp matrices with 0 and 1 as their members. Substituting for
AY (t) and AY(t) in equations (A.5) and (A.6) results in equations {A.9) and (A.10).

I T, AW(t) + C T, AW(t) + K T, AW(t) = AD(s) (A.9)
I, T, aW(t) + C, T, AW(Y + K, T, AW(t) = AD,{t} + ADY(t) (A.10)

Because of the interaction between the dynamic system and the environment, equation

(A.11} is also true.
T,T AD(t) = - T.T AD,(t) (A-11}

Omitting AD{t) and AD,(t) from equations {A.9) and (A.10) by means of equation



-li4-

(A.11) results in:

(T,TIT, + T,TJ T, ) AWE) + ( T),T CT, +T,TC, T, )AawWt) +

(T,TKT, + TTK, T, )AW() = T,T aD(t) . {A.12)
It can be verified that :

TyT J 'I‘y + 'I‘eT J, T, = a symmetric, positive definite matrix;
T,TCT, + T,T C, T, = a symmetric, positive definite matrix; aad

T v T _ . . . .
Ty K Ty + T, K, T, = a symmetric, positive definite matrix.

According to Theorem 1, equation {A.i2) (which shows the dynamics of the manipulator and

the environment} is stable.

According to this theorem, if J, C and K are selected as symmetric, positive definite
matrices, the overall system of the manipulator and its environment taken together will yield

eigenvalues in the left complex plane. g

Note that, this theorem guarantees the global stability of the dynamic system and the
environment taken as a whole, if the dynamic system behaves according to equation (2.5).
The theorem in Chapter 5 shows that the target dypamics can be achieved for a bounded
[requency range. The exampies in Chapter 6 show this matter. If the controller does not
achieve the target impedance exactly, but results in a controlled behavior “approximately”
like the target dymamics for a bounded frequency range, then the above theorem does not
guarantee the global stability. The importance of the theorem 2 is that it shows that the

target impedance has desirable properties.

The block diagram in Figure A-1 shows how the dynamic system and the emviroament
interact with each other in an ideal case when the target impedance is achieved for all
0<u<oo. AY(s) is the imposed motion oa the manipulator which cousists of the algebraic

addition of the commanded inctemental motion and eavironmental meotion.

Theorem 2 simply justifies the conditions under which the closed-loop system in Figure
A-1l is stable. The theorem in Chapter 5 shows that the target dyuamics cannot be achieved
for all 0<w<oo. The examples in Chapter g also show this matter. According to the
theorem in Chpater 5, the controilers result in a bebavior approximately like the target

impedance for a bounded frequency range. The resulting impedance can be shown as:
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AY(s) AD(s)
commascded
inctemental
motion

i() > [J?+Cs+ K] m—> T,7 |
T,T AD%(s)

T, (& [T, T, +TTC T,s+TTK,T, |

Figure A-1: The interaction of the dynamic system and eanvironment
' in the ideal case when the target impedance is achieved for
all 0<Cu<goo

[Js$+Cs+K]| [I_ + E[s)] (A.13)

where E'(s) shows the difference between the achievable target dynamics and the ideal target
dynamics. The closed-loop combination of the dynamic system aad the environment,

considering expression (A.13}), is shown in ligure A-2.

AY(s) AD(s)
commanded
incremental
motion

[l +EE = [J6® + Cs + K| T,

T
T,T AD(s)

Tyfe—[TTI T, *+TTC T, s+ TTK,T, |

Figure A-2: The interaction of the dynamic system and envircement
when the target impedance is achieved for some bounded
frequency tange
The global stability of the system in Figure A-2 is no longer guaranteed by theorem 2.

Using the resuit of Appendix E, the closed-loop system in figure A-2 will be stabie if the
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following inequality is satisfied for all O<u<oo.

O min [!“ + [ +Cs+ K[| T, G',(s) TYT ]1] > o [Ef)]

where : G (s} = [T,TJ, T, ¢* + TTC, T,s + TTK T, [
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Appendix B
Simple Impedances

In this appendix, we counsider the properties of a special class of impedances that are
called simple. Simple impedances guarantee a complete set of right eigenvectors, V, despite
the multiplicity of their eigenvalues. Simplicity is a necessary condition for the achievability
of the target dynamics, but stability is a desired property (i.e., it is the third item of the set
of the performance specifications} and is not necessary for achievability. If we assume the
C-matrix is always selected such that it produces a slightly over-damped (or slightly
under-damped) stable system, then the J-matrix is the ounly parameter that parametrizes <.
We are looking {or a method to arrive at a C-matrix for a given K- and J- matrix such that
the target dypamics in equation (2.2) are always stable and simple. After an analysis of the
eigenstructure of the simple impedances, this appendix proceeds to the determination of a
bound for matrix C that guarantees the stability and simplicity of the target dynamics, given

symmetric, positive definite matrices for J and K.
Definition

Assume that the interaction load, AD(t), and the motioa of the dymamic system, AY(t),
satisfy equation (B.1) in the global coordinate system.

L1}

I AY(t) + C AY{t) + K AY(t) = aD(t)  AY(t) and AD(t) € R® (B.1)

J, C and K are non-singular matrices.
The eigenvalues )\, and the right latent vectors q, satisfy equation {B.2).

D())q=0 =12 . 2 (B.2)

qi#O.

where : D(X )} =JX + C\ + K

If D( % ) has a degeneracy equal to the multiplicity of eigenvalue % in equation {B.2). then

IN + CN + K is a saimple _impedance. In other words, for simplicity of the target

dynamics expressed in equation (B.1), the right latent vectors, q, associated with the

eigenvalues, \,. Wwith multiplicity o must be independent. If an impedance is not simple,
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theo it is called defective. It is clear that all impedances with urequal eigenvalues are simple.
It J, C and K are symmetric, then the above definition will also be true for the left latent
vectors. This is true because equation (B.2) with symmetric J, C and K results o0 equal left
and right latent vectors.  The definition of simple impedances is borrowed from the
terminology associated with simple matrix polynomials. We are going to use the definition of
simple impedances to arrive at a class of impedances that always yield a complete set of
right eigenvectors. We prove in Theorem 5 that over-damped and under-damped impedances
always have n iudependent right eigenvectors., Then for a given set ol symmetric, positive
definite J- and K-matrices, we give a bound for matrix C to generate a stable and slightly
over-damped (and consequently simple) impedance. We need the result of theorems 3 and 4
to prove theorem 5. These theorems are proved in references [25, 32, 13, 11] in a leisurely

fashion for matrix polyaomials of order n. Here we just mention the theorems.
Theorem 3

If the matriz poiynomial given by (B.3) is simple:

IN+CN+K (B.3)
J=JT>0 , c=CT">0, K=Kl >0,

then equality (B.4) 1s true:

RQI(2IN +C)Q =1, (B.4)
where :  Q, =1lq, q, .. q, ] . (B.5)
The q; [i=1, 2, ..., a) are the normalized right lsient veclors associsted with eigenvalue, \ . of

multiplicity &, all of which aatisfy equation (B.6).
D L } q; = 0, i=1 2 ., a ' (B.6)

Theorem 4

The impedance (J 5° + C & + K) is defective if and only if there existe an eigenvalue,

X, with the right latent vector, qQ;, euch that riT 2Ix, +C) q; == 0 for all left latent

veclors, riT, ssrociated with Ny
Theorem §
Consider equation (2.2} when the following inegqualities are satisfied:

J=JT >0, CauCT >0, KmKT >0,
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If equation (2.2) resulls in over-damped eigenvalues, then J s2 + C s + K iz o simple

tmpedance.
Proof:
By contradiction.

Consider the eigenvalue problem in equation {B.7).

[INT+CN +K|g=0, i=12 ., (B.7)

J=JT>0, C=CT>0, K=KI'>0
Multiplying equation (B.7) by qu yields equation (B.8).

HIagr?+qff Cq)+gffKg=0 =12 .., 2 (B.8)
or, equivalently: ji \iz -+ ci\i + ki = 0
where:
j=alle, =q'Cq., k=g Kg,
and j, ¢, and k; are real non-negative pumbers. The roots can be computed from equation

(B.9).

-c + ci2 - 4k, j; )
W, = i= 1,2 .. 2 {B.9)

or, equivalently: 2 j %\ + ¢ = % t:i2 -4k j i1=12 ., 2 (B.10)
If the impedance is over-damped, then inequality {B.11) is true.
¢t-4k j >0 i=12 ., 20 (B.11)

If the impedance is not simple, according to theorem 4 there must be an eigenvalue, »,. with

right latent vector, q,, such that equation (B.12} is true.

aM (20, +C)q =0 (B.12)
or, equivalently: 2 j %\ + ¢ =0 (B.13)
where:

hy=a"Ja ., ¢ =q%Cq,
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Equations (B.13) and (B.10) result in equation (B.14),

c?-4k j, =0 (B.14)

But equation (B.14) contradicts equation {B.11). Therefore, the over-Jamped impedances are
simple and result in a complete set of cigenvectors. The proof fails for critically damped
systems. This theorem is also true for under-damped impedances; proof is similar but needs

more elaboration. B
A bound for C to guarantee the mmpiicity of the target Impedance

Matrix C plays a significant role in assuring the simplicity of the target impedance. A
“small” C may result in imaginary eigenvalues, and consequently, under-damped target
dynamics. A “large” C may result in a slow and ill-conditioned impedance with eigenvalues
that are far apart. It is necessary to propose 3 bousd for C in terms of J and K so the
triplet (J, C and K) will result in a slightly over-damped (and consequently simple) impedance
for the target dynamics. Consider the conservative dynamics of equation (B.15) with real

valued non-singular matrices K and J.
JAYM) +KAY() =0 , J=JdT >0, K=KT >0 (B.15)
The eigenvalue probiem associated with (B.15) is expressed by equation (B.16).

[Ju?+ K|, =0 i=12 ., 2 (B.16)
r‘i ?‘ On
Since J is symmetric, positive definite, equation {B.16) can be written as equation (B.17).

VIjw 1, +VIV KV |V p =0 i=12 .0 (B.17)

i

where: J=V J V] and J'=V Jt V Ji

\/J'_' K \/? is a real symmetric matrix and has a positive eigenvalues, wiz, and n
linearly independent eigenvectors, \/T r', . Since the latent vectors ', are obtained from
these by a pnon-singular transformation \/T it follows that the latent vectors r', are also
linearly independent. Since J is non-singular and all latent vectors ', are independent,
equations (B.18) and (B.19) are true [11, 32, 12].

RTKR = digg(u!, wf, . 6 uf)=n2 (B.18)
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RTIR =1 (B.19)

where: R = [, r, .. ¢ |
Choose a3 new coordinate, AZ{t), according to equation (B.20).

R AZ(t) = AY(t) {B.20)
Substitute for AY({t), A;((t) and A.\‘f(t) in equation (2.2).

RT J R é:;!(t) + RT CR az(t) + RTK R AZ(t) = 0, (B.21)
Using equations (B.18) and (B.19) we arrive at equation (B.22).

AZ{t) + RT C R AZ(t) + 0F AZ(t) = 0, (B.22)
Suppose C is chosen so that RT C R is a diagonal matrix with the following structure:

RT C R = diag (26,0, . 20, , ..., 26w, ) (B.23)

where : £ 21 i=12 .,n.

Then equation (B.22) results in o uncoupled second-order differential equations. The

polynomial matrix associated with equation (B.22) is given by expression (B.24).
Lo +RTCR + 0° {B.21)

Using equation (3.6) and expression {B.24), n second-order uncoupled equations can be
constructed to arrive at the eigenvalues of the target dymamics. Each equation results in two
eigenvalues. Since §>1 (i =12 .. o}, all eigenvalues are real. RTCR and RTKR are

both diagonal, and C can be computed from equality {B.25).
RFCR=12¢ V(RTKR) (B.25)
where : § = diag (€, , € + .., & ). Thus, from equation (B.25):

C=2(RTjle¢ V(RTKR)R?!. (B.26)

Example

Suppose the target-inertia matrix and stiffness matrix are given as:
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1= [.,0368 .0343 K ={0.08 o.o]
.0343 .0509 0.0 0.6

Two independent, right latent vectors form matrix R:

R =[4.7696 -7.0931 ]
0.4666 7.2500

RT K R is a diagonal matrix:

RT K R = ['1.4956 0.0
0.0 34. 5564

Considering £ as:
E =[1.2 0.0 ]
0.9 1.2
results in 2 damping matzix with real eigenvalues for the target dynamics:

C = [0.1096 0.0833 ]
0.0833 0.3264

The eigenvalues of the target impedance are located at -10.9535, -.6563, -2.2787 and -3.1548 .
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Appendix C

This appendix arrives at feedback and feedforward gains when the actuators bandwidths
are much greater than w_. [If the bandwidths of the actuators are much larger than the
desired frequency range of operation, w,, then it is possible to ignore the actuator dynamics
from the dynamic equations of the manipulators. Eliminating the actuator dynamics, A, B, C

and L in equations (4.19) and {4.20) gives:

onn lnn onn Onn
A ==|: ] B -[ ] L= [ ] {C.1)
-M'{8,)GR(6,) © Mo, )T, MYe,)J,T

Cm [, O

nnl'

After some algebraic manipulation similar to that shown in Section 5.2.1, the achievable, right

closed-loop eigenvector is:

-1
Jc q; ]

6 = i=12 .., 2. (C.2)
NIy

m, can be calculated as follows:
m, = T, [ GR(®,) + M{B ) 2} ] ! g i=12 .,20. (C.3)

Since .I;' exists in both equations {C.2) and {C.3), in forming G, J'c‘ can be cancelled out to

ease the computations. The state-feedback gain, G, can be computed from equation {C.4).
Gmm m, .. my]fuo, u .. uy 't (C.4)

Theorem 5.3.1 is also true since the eigenvalues of the actuators can be placed at -oc, which
allows G, to be computed by a method similar to the ope in Section $.3.2.
G, = T,;! [GR(®,) + T, G, ] J} K -JT (C.5)

where: Gy = | G, G, ]
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Since we do not assign any eigenstructure for the dynamics of actuators, the freedom to
adjust for the robustness specification does asot exist. The oaly parameter that cam be
altered to meet the stability robustness specifications at high frequencies is w,. Selection of

the J-matrix according to equation (5.41) results in a value of zero for G-
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Appendix D

Proof of the theorem in Section 5.3.1 on page 55 is given here. This theorem does aot

prescribe any value for G .

It justifies the conditions under which limit (5.33) is true for all

0<u<ub without regard to stability robustness. According to this theorem, the satisfaction of

inequality {5.32) as p approaches oo, amd the selection of G such that V and A are

guarapteed, ensures a unique value for G, that leads to limit (5.33) for all

Proof:

it I..p = L + B Gd' thea:

Unn
-1 T
Lp = | M (90) Jc
Ba Gd
Assume:

G iw) = Gfiw) + Gyfjw)

0<u<wb.

(D.1)

(D.2)

(D.3)

where G (jw) and Gg(jw) represent in diadic form [26] the contribution of the dominant modes

(represented by A) and the modes of the actuators of the closed-loop system, given by

equations (D.4) and (D.5).

In T
. 4 ¥
Gliw) = ¢ | ¥ - L,
imay 19 ° 8
an T
U W
Gyliw) = C [Z = ] L
imzn+1 1Y 7 5
u; and w;r are the right and left closed-loop eigenvectors in

(3.7) and (D.6).

{D.4)

(D.5)

c’® that satisfy equations



wls =wT (A-BG) i=12 .3 (D.6)

I I

As the first step in the proof, limit (D.7) will be shown to be true.

tim G,(jw) = 0, for all O<u<w, {D.7)

P x

The right closed-loop eigenvector associated with each actuator is given by equation (D.8).

This was aiready derived in equation (5.24).

[ M(®) s* + GR(®,) | T,

1

o, =] {M@®)s?+GR®,)]T,s [gi] i = 20+1, 2042, ..., 3n (D.8)

1

If inequality (5.32) is satisflied and p approaches oo, it can be verified that each of the upper
2n members of each right eigenvector, u;, in equation (D.8) approaches a2 small number, while
the last 0 members stay copstant. This implies that the members of U, of matrix U in
equation (5.10) will be much smaller than unity. If WT is the matrix of left closed-loop
eigenvectors, then WT = Ul . With the assumption that the members of Uu, are much
smailer than unity and with some algebraic manipulations, WT can be represeated by
approximation (D.9) as p approaches a large number.
Uyt 'Uu-1 Uiz Uzz'l

11

wT (D.9)

'Uzz.l U21 Un-l Uzz-l

The o left closed-loop eigenvectors associated with the actuators form the lower partition of

matrix (D.9). In other words:

B w‘.!Tn+1 7

W2Tn+2 = [' Up? Uy Uyt Uzz.l] . (D.10)
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Matrices U,y U, and U, are independent of the closed-loop eigenvalues of the actuators.
This was observed in equations (5.24) and (5.19). Because of this independence, if the closed-
loop eigenvalyes of the actuators become very large in magpitude, all members of w;r

(i = 2o+1, 2n+2, ..., 3n) in equation (D.10) will stay bouaded.

Consider the matrix with complex members given by equation (D.11).

v wl
. i = 2n+1, 2042, ..., 3n ' (D.11)
jw - 8

If the complex number, s, becomes very large in magnitude (with negative real parts for

stability}, then it is trivial to prove that the complex matrix in equation {D.11) will approach
T

an nXn complex matrix with very small members, This is true because matrix uw,
{i = 2a+l, 2042, .., 3n) will always have bounded elements, and because w is a bounded

variable {i.e., 0<w<w,). The above limit can be formally stated by equatian {D.12).

u wi :

lim | - -0 i = 2n+1, 20+2, .., 3n {D.12)
Ju - Si

p = @®

where: 0<u:-<u;b

Since G,(jw) in equation {D.5) consists of a finite summation, the limit in equation (D.13) is

also true.

iim G,(juw) = 0 for all O<Cw<uw D.13
2 nn b

p = 0

At the second step of the proof, limit {D.14) will be shown to be true.

im 3, Gi{iw) = Gliw) for all 0<u<uy (D.14)
p— X

Since G is selected to guarantee the eigenstructure properties of the target dypamics for the

manipulator, then equation (D.15) is true.

I, C [ul uy . uzu]— c, [z, 7, .- z,n] (D.15)
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g, (i =1, 2, ..., 2n) is given by equation (3.1). Equation (D.15} is true beczuse the right
closed-loop eigeovecfors of the target dynmamics are achievable. We will use this equality
later.
Equation (D.16) is true because both sides are the left eigenvectors of the target
impedance.
- T - -1 i
4 - [Uu ] |:":: nnn] (D.18)
T 1
'2 Onn 're
T
Lty -

where t.;r is the left eigenvector of the target dynamics in the global coordinate frame and

satisfies the following equation:

e Nbay - A)=0.T i=12 .. 2. {D.17)

Multiplying both sides of equation (D.16) by B, from equation (2.6) results in equation {D.18).

t} Bt - Ull-l[onn ] [D.IS)
: It

T
- t2|1'

Equation (D.19) is also true because both sides show the left closed-loop eigenvectors

associated with modes selected from A when p approaches oo,
p— w;r -

wo | o= LU - U, T ULU,Y (D.19)

Multiplying both sides of equation (D.13) by LP from equation (D.2) results in equation (D.20).



T =
- W, 0.0
wi | Lp= (Ut U U, Ut | e T (D.20)
Ba.Gd
T
L Wzn -

Considering that U,, = I _, equatioa {D.19) can be simplified to equation (D.21).
2 nn

"w}"L = U, -l 0

P " " U,, B, G (D.21)
T i T = M1z P M4 :
w] M1(@,)J]
w
e 4D

U:z is 3 2aXn matrix. As the closed-loop eigenvalues of the actuators become larger,
the upper mXn partition of U, vanishes faster than the lower partition. The columas of
U, are given by the 2n upper members of u, in equation (D.8). So as p approaches oo,

equation (D.21) can be written as approximation (D.22).

- w;[' -
T -1
w, LP 7 U" 0“
MYe) T - u,' B.G, {D.22)
T
- Wzn -

where Uu' is the nXn lower partition of U,,. Consider equations (D.22} and (D.18). If the

following equality is true:
MYe T - v, B, G, = J1 J1, (D.23)

ther the right-hand sides of equations {D.22) and (D.18} will also be equal. Therefore, the
left-hand sides of equations (D.22) and (D.18) will be equal.
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- W‘{ -| pa- t'{ —
Wl L, = tg B, (D.24)
T
- w}n - —lyy
Approximation {D.24) and equality (D.15) taken together result in limi¢ (D.25).
tim J, G,(jw) = G(jw} for all 0<u<w, {D.25)
p — &
where:
T u. wT
Gyljw) = € | Y — L, (D.26)
. ju - s
=] i
. 2o I. t,:r
Gliwy =c¢, | 3. ——|B, (D.27)
-t Y

Equation (D.23) can be used to compute a unique value for Gy This is true because the

inverse of Ul,‘,l B‘ always exists.
Since G, |(j«) = G,(jw} + Gz(ju),

(D.28)

bm J. G {jw) = G ljw) for all 0<w<wy

p = 00 .
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Appendix E
Stability Robustness

This appendix gives a summary of multivariable stability-robustaess criteria. For more

details, refer to references [49, 33).

Fulfillment of the maultivariable Nyquist Criterion is 3 [frequency-domain condition for
stability. This criterion requires that the encirclement count of the map of
det| 1, + K(ju)Gp(ju} } evaluated on the standard Nyquist D-contour, must equal the
negative number of unstable modes of K(jw)Gplju). Gp(ju) is given by equation (4.23).

Al
Kls) Gp(s) AV

Figure E-I: Closed-Loop System

Similarly, for the stability of the perturbed system, the number of encirclements of the map
of det I, + K[ju)G;ju) | must equal the pegative number of unstable modes of K(jw)G;jw].
Under the assumptions governing G;jm), this number is the same as for K{jw) Gp(ju).
Therefore, the perturbed system will be stable if and only if the number of eacirclements of
def{ I, + K(jw)G;ju) | remains unchanged for all G;jw) permitted by equation (4.23). This
is guaranteed if and only if deff I A + K(ju)G;ju) | remains non-zero as Gp(ju) continuously

approaches G")(ju), or equivalently, if and only if:
det [l“ + K(jw)G (jw) 1, + E(jv) ]] 7% 0 for all O<w<oo . (E.1)

If [l“ + K(ju)Gp(ju)[ I, + Eljw) |] is singular for at least one frequency, such as Wy,
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then there exists a non-zero vector, x_ €C", such that equation (E.2) is true.

[1“ + | K{jw,) Gp(jus) ]'] x, = - E(ju) x, x, 7# 0 (E.2)

If inequality {E.3) is satisfied, then equality (E.2) will never happen in all 0<w< and
[I“ + K(jw)Gp(jw] [ I, + E(iw) ]] will always be non-singular.

- [Inn + | Kljw) Gyliw) 1-‘] > o [ E(w) ] for all 0<w<oo (E3)

Therefore, the sufficient condition for the closed-loop stability of the system using the
perturbed model is given by inequality {E.3). o () is defined oo page 42. Chapter
7 explains how K[jw) Gp(ju] can be approximated by the state-feedback loop transfer function
G (jwl, - 1, J' B. In Chapter 7 we prove that K(ju) Gp(jw) converges pointwise to
G ( jul, - 1, ! B if H is selected according to some criterion. Because of this
convergence, inequality {E.4) can be satisfied instead of inequality {E.3) to guarantee stability
robustness specifications.

Omia | Gliwh | > efw) for all 0w (E.4)

where: G (jw) = I+ [G(jw-1,"B]J!

and  e{w)>o_ | E(jw) |

The object is to design G so that tnequality (E.4) will be satisfied. Figure 6-6-b shows a case
io which inequality (E.4) is satisfied.
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