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ABSTRACT

Methods are briefly summarized to predict the maximum ice sheet
pressure exerted on the walls of the side shell structure of an
Ice—'tl‘:ranéiting Vessel. Furthermore simple structural idealizations
are employed to define stiffness criteria while numer ical procedures
are developed to define strengthening criteria for Ice Navigation.
Structural models based on the theory of beams on elastic foundation
are used to define stiffness criteria. Elastic-Plastic frame buckling
criteria are also developed using a generalized Shanley model and a
numerical solution procedure. Furthermore, approximate methods for
frame buckling are suggested. Stiffness criteria are of importance in
interpreting field test data so that the imposed ice forces can be
evaluated. The lower bound theorem of limit analysis is used to
determine the collapse pressure of the grillage structure. From this
information strergthening criteria can be defined by evaluating ice
damage records. Recommendations for future work are given.
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NOTATION

Symbols which are not given in this list are defined in the text.

A cross-gectional area = BH

A non-dimensional parameter = i deA/A

B width of cross-section

E Young's modulus of elasticity

H height of cross-section

I cross-sectional moment of inertia = ilEBHa

I non-dimensional parameter = ;ksnsz/I

K mid=-section (additional) curvature A

K. curvature corresponding to first yield = fy_/ (EH/2)

K, mid-section curvature due to imperfection

L length of column

M mid-section bending moment

M,y first yield moment = fywe 1

M fully plastic moment =3 M,

P axial force 2

P, elastic buckling load of model - EEI

P colum Euler load = n2EI
L

Po1 fully plastic axial force = af,

R radius of arc which beam bends into

s non-dimensional parameter = sk ndA/H 4

W1 elastic section modulus = éBﬂzA

e non-dimensional parameter = e, /e

e non-dimensional parameter = eple

f yield stress

y EIK

k non-dimensional parameter L



EIK,
non-dimensional parameter N 1
e
ratio of current tangent modulus of
each fiber to the Young's modulus
non-dimensional parameter = M/M 1
e
non-dimensional parameter =P/R,
non-dimensional parameter =P /P 1
c P

value of p corresponding to first yield

relative axial displacement

transverse displacement due to initial imperfection _ LeO /2
non-dimensional parameter = u/ LEY

axial strain of the centroid

axial strain due to bending

maximum strain

axial strain of the straight segments of the
Shanley model

strain in x (axial) direction

initial yield strain fy/ E

non-dimensional parameter = emax/ E:y
additional rotation
initial rotation due to imperfection

parameter which determines the extension of = 4/mw
the rotational spring in the Shanley model

stress due to axial force

stress due to bending moment

stress in x (axial) direction

transverse distance from centroid

distance from centroidal axis to the fibers

that have reached the yield stress in compression

or tension respectively

distance form centroidal axis to the fibers
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that have reached the vield stress (applies in
the pure bending case)

distance from the centroidal axis to the neutral axis
(applies when both bending moment and axial forces
are present)

central angle of the arc that the beam bends into



1. INTRODUCTION

The cbject of the present report is to present, in a summary
form, the work performed cn the project: "On the Rational Selection of
Strengthening Criteria for Navigation in Ice.”

In Section 2 methods to predict the maximum ice pressure in the
case of ice compression are briefly described. The possible failure
modes of an ice sheet under compression are considered in order to
predict the maximum ice pressure exerted on the hull structure.
Relevant references to the estimation of the maximum ice pressure due
to interactions with other important ice features are given in section
8.1. Furthermore, the present work reports procedures for the
calculation of upper bounds to the ice loading die to interactions
with vertical amd sloping wide stuctures.

In Section 3 methods are described to define the stiffness
criteria for the structural design of Ice-Transiting Vessels. The
definition of suitable stiffness criteria is useful in the estimation
of the working stresses. Furthermore, stiffness criteria are of
importance in interpreting field test data so that the imposed ice
forces can be evaluated.

In Section 4 methods are described to predict the ultimate
strength of transversely loaded rectangular grids subjected to ice
loading. At present existing strengthening requirements are derived
fram evaluating ice damage records on the basis of a clamped-clamped
beam model of the side plating betwen two frames. However, the actual
structure consists of a grillage of intersecting beams together with
the asscciated plating. Thus strengthening criteria should be defined
by evaluating ice damage records on the basis of calculations of the
collapse pressure of the grillage structure. All possible collapse
mechanisms of the grillage structure should be considered and not
merely the clamped-clamped beam mode. This is very important since
even the strictest of the existing strengthening requirements are not
always on the conservative side as evidenced recently by the extensive
hull damage suffered by two Canadian vessels (an Icebreaker and an
Ice-Transiting vessel).



Structural Criteria

Methods to obtain structural criteria for ice navigation are
given for the basic structural elements of the side structures:
plates, stringers, frames and the grillage assembly. Plate criteria
were suggested in References (60), (62), (63) and (41). These give
very useful practical suggestions for plate damage due to ice loading.
So, our research proposal did not plan on any additional work on plate
damage. Granted that there are always refinements and extensions that
one may want to pursue. Some of the discussion to Reference (41)
addresses these questions,

Structural criteria for stringers are presented in section 3.1
and in Reference (82). This is part of the work done following our
research proposal. A relatively simple structural model is suggested
and maximum bending moments and corresponding stresses are calculated.
From these expressions stiffness criteria for stringers are developed.
In addition to this work, we did work on the load carrying capacity of
the stringers as they form part of the grillage assembly. This is
important since the ultimate stength of each stringer is beyond the
first yvield capacity. This work is reported in section 4 and in
References (25) and (26)..

Structural criteria for transverse frames are presented in
sections 3.1, 3.2 ard in Reference (82). First yield criteria are
reported in section 3.1 while ultimate criteria are reported in 3.2.
For higher strength steels first yield criteria are more appropriate
since their ultimate strength is of the elastic type. In section 3.2
the criteria are developed for a rectangular section frame while in
Reference (84) we report work on an ideal I section.

The criteria for frames are very important, As reported in
Reference (41) structural damage due to ice loading has always been
associated with frame buckling or crippling of its web. This work
that we did, with regard to frame criteria, we believe is an important
contribution. This is so since this frame buckling mode was not
extensively considered previously in the published ice damage
literature, We are considering the axial compressive loading case

since this is the worst loading case on the frame. This gives a
conservative estimate of the frame capacity in comparison to the
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lateral loading case. This is so since in the latter case tensile
stresses are also developed in addition to the compressive stresses in
part of the cross-section. This then gives higher capacities.

So, we developed first a numerical model following a Shanley
idealization of the elastic-plastic frame column huckling. The
experimental evidence reported in Reference (81) show that this
deformation mechanism gives a reasonable estimate of the load capacity
for the lateral torsional buckling mode. We carried this analysis and
we present results for the maximum load that the colum can carry. We
also obtained results for the post-buckling path. Geometric
imperfections are included in this analysis.

In addition to this numerical analysis we did develop an
approximate and much simpler method of analysis that gives very close
predictions to the numerical model. This we report in section 3.2
under the heading: Approximate Moment-Curvature Relations. We
present the comparison of the two methods in Figures 22, 24, 26 and
27, for columns of three different slenderness ratios and some values
of the initial imperfection.

The crippling mode of collapse of the web of the frame was
previously addressed in References (39) and (67). The theoretical
results presented in Reference (67) give goad predictions of this mode
of collapse for higher web depth to thickness ratios. This comes out
of the compariscn of these theoretical predictions with relevant
experiments reported in Reference (39). For lower web depth to
thickness ratios the elastic-plastic column analysis gives reasonable
predictions when compared to the experimental results. So as reported
in Reference (39) when the web depth to thickness ratio is lower than
about 0.4 »/E7f;. {(where E is the Young's modulus and fy the yield
stress in compression) then our previously described column analysis
is valid.

Structural criteria for the grillage assembly can be obtained
using the methods we are reporting in section 4. We adopted to ice
loading a limit analysis computer program. We list the program in
reference (25) and we handed out a tape copy of this program to the
American Bureau of Shipping, sponsor of this work.

More details of the work done on this project are reported in the
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following References: (14), (22}, (25), (26), (36), (38), (40), {44),
(83) and (84)., We are also reporting in section 8.2 quite a few
references on torsional buckling and tripping.

Summary of Work Done Following cur Research Proposal
Task Breakdown

The research work we are reporting is now indexed according to
the Research Plan described in our proposal. The work planned
according to the six Task breakdown is completed and we intend now to
briefly summarize how this was done according to each Task.

Task I Construct Theoretical Model
The theoretical model is constructed to develop stiffness
and strengthening criteria and is briefly summarized in sections 3.1
and 4 respectively. In section 3.2 we report the theoretical model
-~ for frame stiffness criteria which is discussed under Task II.

I.1 Estimate the Structural Foundation Modulus
The general functional relation is given by eq. (21) of
this report. The details of this analysis are presented in Reference
(26), equations {20) to (46). The non-dimensional structural
foundation modulus is given as a function of four non-dimensional
parameters which depend upon the location of the ice load application,
the geometry of the longitudinal stringers and the gecmetry of the

transverse framing.

I.2 Calculate the Load Carried by the Transverse Bulkheads
The longitudinal side-skin stringer is idealized as a
beam on an elastic foundation (with the foundation modulus provided by
the transverse framing stiffness) acted upon a uniformly distributed
load per unit length due to ice and concentrated loads at the
transverse bulkheads. The details of this work are presented in
References (26) and (82), equations {(14), (15) and Figure 5.
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I.3 Calculate the Bending Stress in the Longitudinal

Side-8kin Stringers

Following the same theoretical model we are obtaining
the maximum bending moment and the corresponding stress developed in
the longitudinal side-skin stringer. The details of this work are
presented in References (26) and (82) section: numerical example.

I.4 Calculate the Bending Stress in the Transverse Frames
Following the same theoretical model we are obtaining
the maximum bending moment and the corresponding stress developed in
the transverse frame. The details of this work are presented in
References (26) and (82) section: numerical example.

I.5 Develop a Procedure for Tripping Bracket Design

This work is reported in section 3.2 of this report for
a rectangular section, while we report the corresponding work for an
ideal T section in Reference (84). The procedure we developed gives
expressions for the necessary frame unsupported length so that frame
buckling will be prevented. This unsupported length provides a basis
for spacing the tripping brackets, Reference (60) gives details on
various tripping bracket arrangements. More details on the work we
performed on Task I are reported in Reference (25), (36), (38} and
- (40).

Task II Consider Transverse Frame Possible Collapse Mechanisms

The first yield, elastic-plastic buckling and ultimate plastic
collapse mechanisms are considered and reported in sections 3.1, 3.2
and 4 respectively. In section 4 various ultimate plastic transverse
frame collapse mechanisms are studied depending on the location and
extent of ice pressure loading. The numerical tool to do this is
developed and more details can be found in Reference (25).

Task III Exercise Theoretical Model

Particular numerical examples are given throughout our work
reported in References (14), (25), (26), (36), (38), (40), (44) and
(84). In the present report we present numerical results in Figures
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15 to 27 ard 30 to 32. 1In section 9 we give the titles of each
figure.

Task IV List Assumptions

The basic assumptions of the theoretical model are discussed in
section 3.1 p.20, section 3.2 p.21 ard section 4.1 p.64. In
section 6 we suggest some recommendations for future work. From the
structural viewpoint these mainly include the coupling of the local
collapses mechanisms to the grillage collapse mode. Furthermore
fracture-tearing criteria must be developed.

Task V Compare with Classification Societies Requirements

The results obtained are compared in scme particular cases with
the previously established requirements. In this report we present
some of these results and comparisons. With regard to the
elastic-plastic frame huckling mechanisms we present some of our
results and the comparison with previous first yield criteria in
Figures 21 and 27. The relevant discussion of these comparisons is
presented in section 3.2. With regard to the grillage collapse
mechanisms we present in this report some of ocur results and the
comparisons with Reference's (60) three hinge mechaniam in Figures 30
to 32. The relevant discussion of these comparisons is presented in

section 4.3.

Task VI Review Published, Full-Scale Experimental Data

Figure 33 from Reference (9) presents this review. In Reference
(22) we presented an overview of icebreaking impact pressures, while
in Reference (14) we considered the non-uniform ice pressure
distribution due to the coupling with the structural wall stiffness.

2, PREDICTION (P MBXIMIM ICE PRESSURE

Methods are presented to predict the maximum ice pressure exerted
on the walls of the side shell structure. The approach taken is to
evaluate the maximum force necessary to fail the ice feature under
consideration, A rigid structure is studied such that its deformation
does not affect the magnitude of the ice forces developed.
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Structures with vertical and sloping sides are considered. Maximum
ice pressures predicted for vertical sided structures may be
applicable for the structural design of the side shell structure
amidships. Correspondingly, predictions derived for sloping
structures can be useful for the structural design of the fore and aft
part of the ship. The present report is mainly concerned with the
prediction of the maximum ice pressure for wide structures.
Interactions with uniform ice sheets are only considered.



2.1 ICE TYPES
The prediction of the maximum ice pressure exerted against the

walls of the ship structure depends upon the type of ice under
consideration. A classification of river and lake ice based on its
formation, structure and texture has been presented in Reference (13}.
This report is mainly concerned with polycrystalline sea ice types.

The basic ice unit is a single crystal of ice. An ideal crystal
has oxygen atoms of the water molecules arranged in such a fashion to
give rise to hexagonal symmetry about the c-axis. Molecules lie close
to a set of parallel planes, which are the basal planes of the
crystal. The basal plane is the sole demonstrated glide plane of the
lattice. Shear applied parallel to this plane gives a strain rate
about two orders of magnitude higher than that resulting from shear
normal to the basal plane. There is no significant preference in the
glide direction.

The mechanical properties of the polycrystalline ice depend
strongly on the anisotropy of the monocrystal. When the c-axes of the
constituent crystals are randomly oriented the polycrystalline ice can
be considered isotropic. However, when subjected to prolonged
deviatoric loading, recrystallization can take place and as a
consequence the crystal orientation ceases to be randam. Strain
softening of the bulk ice results from the development of preferred
corientations of the c-axes,

An ice type which is of importance for ocean engineering
applications is S2 ice (13). It is characterized by random
orientation of the c-axes in horizontal planes (columnar grained) and
average grain size of the order of Smm,




2.2 MECHANICAL PROPERTIES (F SEA ICE

The prediction of the maximum ice pressure exerted against the
walls of the ship structure depends upon the mechanical properties of
the particular type of ice under consideration. The mechanical
properties of ice depend upon the ice temperature, crystal structure,
direction of loading, rate of load application, degree of confinement,
sample size, and the presence of impurities such as salts and air.

The brine volume of sea ice is a function of the salinity and the
temperature of the ice, it is related to its strength. The brine

volume V p is defined by

P

o,
where br is the brine content by weight, p; is the density of sea ice
and P is the density of the brine. The following approximate
equation has been presented in reference (3)

v = 5 [ 222 40532 (2)

to compute the brine volume v, in parts per thousand when the
salinity S of the ice in parts per thousand ard the absolute value of
the ice temperature g in °C are known. Equation (2) can be used in
the range of g from -0.5° to -22.9°C. The volume of brine for ice
temperatures between -0.1 and -0.4°C can be evaluated from the table
presented in Reference (1). Reference to the table must be made for
temperatures below -22.9°C.

In order to predict the maximum ice pressure exerted against the
walls of the ship structure it is usually necessary to know the
following mechanical properties of ice: the Young's modulus E;, the
uniaxial campressive strength o ,, the shear strength 7, and the

flexural strength o .. Test data on the mechanical properties of sea
ice are presented in References (18), (21), (24) etc.

The Young's modulus of ice E; can be evaluated from (21)
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Ep = (771 - 63.2/4, )10 (3)

where E; is expressed in p.s.i. and Yy, in parts per thousand. This
equation was derived on the basis of laboratory and field sea ice beam
test data. Strains were measured in the laboratory with extensometers
bonded to the underside of simply supported beams subjected to
two-point loadings. Field beam test data were based on measured
transverse deflections.,

The uniaxial campressive stength Oc (in the horizontal
direction) can be evaluated from (21)

c = 825 - 60.1/N, (4)
c b

where 0 o is expressed in p.s.i. and Vb in parts per thousand.

Data for the evaluation of the shear strength of ice T g are
summarized in reference (18). Only a small number of shear strength
test data are reported in the literature, since it is extremely
difficult to obtain pure shear strength test results.

The flexural strength of sea ice ¢ £ can be evaluated from (21)

o = 139.1 - 8.82/v, (5)

where Ug is expressed in p.s.i. and Vi in parts per thousand.

2.3 ICE FEATURES

Important ice features include sheet ice, ridges, rubble,
fragmented covers, brash ice amd ice islands. A terminology of
relevant terms often used to describe various ice formations is
included in Apperndix A. The interaction of these ice features with
fixed and moving structures is an important research area of concern
to Naval Architects and Ocean Engineers. More work is needed to
better understand the mechanical behavior and the interaction of these
ice aggregates with ocean engineering structures. Important aspects
of the problem include the determination of the mechanical properties
of ice sheets ard of the bulk properties of large ice masses.
Additional field observations, analytical investigations, and




laboratory model studies are needed to better understand the
properties of various ice formations.

An accumulation of sea ice will either be called FAST ICE or PACK
ICE. Pack ice is any accumulation of sea ice other than fast ice, no
matter what form it takes or how it is disposed.

Depending on whether an ice feature has been unaffected by
deformation or has been deformed the terms LEVEL ICE or DEFORMED ICE
should be used. Important deformation processes include HUMMOCKING,
RIDGING, and RAFTING.

The pressure process by which sea ice is forced upwards into
hillocks of broken ice is called hummocking.

The pressure process by which sea ice is forced into ridges is
called ridging.

Ice movement results in lateral changes in ice thicknesses and
characteristics in almost any area of sea ice. Ice break up of an
initially continuous piece of sea ice results in movement away from
the shore. This occurs with crack formation. If a crack opens to a
sufficient extent an open water area is created which is referred to
as a ILEAD. Crack formation does not always mean that a lead will
develop. This is due to the possibility for crack refreezing. In the
case of closing of the leads the thin ice in the leads is broken and
pushed into a variety of piles, so-called pressure ridges. In
general, there are two primary types of pressure ridges: p-ridges
caused by closures essentially normal to the lead and s-ridges
(so-called shear ridges) produced by motion parallel to the lead.

Massive low-salinity MULTIYEAR PRESSURE RIDGES can be created
through freezing processes bonding the ice blocks together.

The pressure process whereby one piece of ice owerrides another
is called rafting.

In many cases ice deformation does rmot result in the creation of
discrete ridges. Instead the complete ice sheet is converted into a
chaotic terrain of ice blocks which is called RUBBLE FIELD.

Brash ice fields are obtained when accumulations of floating ice
are formed fram fragments (not more than 2m(6')) across the wreckage
of other forms of ice.

Ice islands, icebergs, bergy bits and growlers can pose
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significant hazards in locations where they occur. They should be
considered as ice features in the sea and not sea ice in a strict
sense. They can be a problem to offshore operations in the eastern
Arctic and in particular in the region between Greenland and Canada.
The icebergs of the Arctic Ocean are called ICE ISLANDS. An ICEBERG is
a massive piece of land formed ice of greatly varying shape and size,
showing more than 5m(16'} above sea level. Icebergs in heights above
sea level of 450' have been observed in Canadian and Greenland Arctic
waters. In general, the size of an iceberg is comparable to the size
of a ship.

A BERGY BIT is a large piece of floating glacier ice, generally
showing less than 5m{16') above sea level but more than 1m (3') and of
100 to 300m? (109 to 328 square yards) in area. In general, the size
of a bergy bit is comparable to the size of a small cottage.

A GROWLER is a smaller piece of ice than a bergy bit, extending
less than 1m (3') above the sea surface and with an area of about 20m?
{65 ftz). In general, the size of a growler is camparable to the size
of a piano. |

The most needed information on ice islands is improved
observational data on their number, location, and size distribution.
This would allow estimates to be made of the encounter probabilities
between such features and offshore structures.

2.4 VERTICAL SIDED STRUCTURES

The possible failure modes of a linear elastic ice sheet under
compressicn are considered in order to predict the maximum ice
pressure exerted on the hull structure., The presentation is
restricted to wide structures aly.

The maximum ice crushing pressure g/h can be estimated using the

equation proposed by Korzhavin (8)

q = ImKGch (6)

where q is the ice load per unit length,
h is the ice thickness,

I is the indentation factor which depends on the
geometry of the indentor, the ice thickness and boundary
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conditions; I is naminally equal to 2.5 for a narrow structure
while it is equal to 1.0 for a wide structure,

m is the shape factor; m is equal to 1.0 for a flat
face while it is equal to 0.9 for a round face,

K ig the oontact factor; K is equal to 1.0 for perfect contact
while it might reach higher values for frozen in conditions.

and ¢ c is the ice strength in compression. The main difficulty in
using equation (6) is in the selection of a suitable value for ¢ P
This is so since ice strength is a function of temperature, salinity,
crystal orientation, strain rate, degree of confinement and other
factors (such as the size of the ice piece).

¢ On temperature and salinity can be
estimated from equations {2) and (4). The expression given by
equation (4) refers to the uniaxial compressive strength in the

The dependence of ¢

horizontal direction. A similar equation is suggested in Reference
{21) to obtain the wniaxial compressive strength in the wvertical
direction.

The uniaxial compressive strength of ice strongly deperxds on the
strain rate. This is so since the mode of failure is a function of
the strain rate. At very low strain rates, ice tends to flow or creep
at low stresses amd as a consequence a ductile failure results. Few
visible surface failures are present during this process of
deformation at low strain rates. A brittle failure is obtained at
higher strain rates. Now ice fails by flaking or shattering. A
typical set of strength ¢ _ versus strain rate € data for columnar
ice is shown in Figure 1. It should be cautioned that higher values
for ¢ , should be used when plain strain conditions prevail and/or
when the confined ice strength is more appropriate. Furthermore it
should be moted that in general higher values are obtaind for ¢ e fraom
small-scale laboratory tests than fram field tests.

The process of crushing against a very wide structure can lead to
the non-simultanecus ice failure across the structural width. A lower

average ice pressure results for a wide structure than for a narrow
structure. In the case of non-simultaneous failure the ice width is

subdivided into different regions which are at various stages of
failure. A statistical approach was employed in Reference (10) to
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estimate the influence of the structural width on the magnitude of the
design ice pressure.
The elastic huckling load per unit length of the intact ice sheet

is (19)

2 T
- 3.32
q=pgh |1+ B [, b (7a)
2 24,
c <

where o is the mass density of sea water,
g 1is the gravity acceleration,
b is the width of ice loading,

1
L, = (DI/DB) /4 is the characteristic length (7b)
of the ice plate
3 2

D. = E_h”/12(1 - v.) is the flexural rigidity 7

I I I (7Tc)

of the ice plate
and EI’ vI are the Young's modulus and Poisson's Ratio

of the ice plate respectively

The maximum ice load per unit length developed when cracking of
the ice sheet occurs due to shear stresses is given by (15)

q = mT_h (8)

where Tg is the ultimate shearing strength of ice.

When a floating ice plate is subjected to compression (by a flat
indentor pressing against its free edge) radial cracks emanate from
the loaded region at a certain load level. When the load magnitude is
further increased more radial cracks are created which may finally
lead to the buckling of the cracked region. The elastic buckling load
per wnit length (for a semi-infinite floating ice sheet loaded
uniformly at the contact surface) of the cracked ice plate is given by

(5)

q= n(DEDI)1/2 (9)
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where n is a parameter that depends on the boundary conditions. For
hinged or fixed boundary conditions n = 2, while n= 1 for a free
edge. The effective values of E; and V; will depend upon the
characteristics of the pre—cracked plate and consequently they should
be determined from the same test data on which n is estimated (6).

It should be cautioned that the critical valuve of ice pressure
when a thin floating ice plate becomes unstable is not necessarily the
lowest bifurcation pressure (7). The buckling load can be lower than
the lowest bifurcation pressure. In this regard the post-buckling
behavior needs to be examined, taking into consideration the
possibility of lift-off of the ice cover fram the water foundation
{N.

Figure 2 presents the dependence of ice pressure p on ice
thickness as well as failure mode according to equations (6) up to (9)
and for I=1,m=1,K=1//2, 0 ,=284 p.s.i., T =43 p.s.i., Pg
= 62.4 1/ft3 E. = 5.7%10% p.s.i., v = 0.34 and n= 1. It should be
noted that the elastic buckling load per unit length of the intact ice
sheet (given by Equation (7)) depends wpon the so-called aspect ratio
2b/h, i.e. the ratio of the load width to the ice thickness. It is
clear that as the aspect ratio tends to infinity the corresponding ice
load curve approaches the curve governed by the elastic buckling load
of the cracked ice sheet, as it should.

2.5 SLOPING STRIXTURES
The two-dimensional system shown in Figure 3 is considered.

Initially, local crushing occurs of the upper face of the ice sheet in
contact with the sloping structure. This results in the develcpment
of the interaction force N which is normal to the sloping surface.
Furthermore a fricticnal force uN is developed (where M is the
friction coefficient of ice moving against the sloping surface) due to
the ice movement.

These forces can be represented by the statically equivalent

vertical and horizontal forces V ahd H respectively which are acting
at the center of the crushed area. The magnitude of the forces V and

H are such that they will cause ice failure in bending.*
The ice sheet is modelled as a plate resting on a liquid

*An unlimited driving force is assumed
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foundation. The effect of H on the bending failure of ice is ignored.
This is expected to be a reasonable approximation except for very
steep structures. The load V necessary to cause ice sheet failure is
the lateral load on the structure.

The statically equivalent vertical and horizontal forces V and H
respectively, are given by

V = Ncoso ~ u N sino
H =N sing @ ® N cost (10a,b)

(!

where o is the slope of the structure with the horizontal (Figure 3).
Elminating N from equations (10}

cosd — | sino

oofuer ) an

Ice sheet failure in bending is considered to occur when the
maximum tensile stress in the ice plate reaches the flexural strength
- of ice ¢ £

_ 2
Op = 6Mf/bh (12)
where Mf is the maximum bending moment developed in the ice plate, b
is the width of the ice plate and h is the ice thickness.
The maximum bending moment Mf is

M =8 ve /4 (13)
£ e

where 2 c is the characteristic length of the ice plate {given by
equation (7b)). Equation (13) is obtained fraom the linear elastic
response of a semi-infinite ice plate resting on a liquid foundation
ard subjected to an edge line load of magnitude V.

Combining equations (12) and (13)

¥/b = 0.36555 cfh2/£C (14)

Equations (11) and (14) give
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2
Ojfh sino + ucosa
H/b = 0.36555 L cosT - usind@ (15)
Equations (10a) and (14)
g = N/b = 0.36555 ofhz/ﬂc(cosa—usina) (16)

where g is the maximum ice load per wunit length (acting normal to the
sloping surface) in the case of the bending mode of ice failure, In
the simple two-dimensional theory presented above, the length of the
transverse crack is equal to the width of the structure.

3. STIFFNESS CRITERTA
The determination of stiffness criteria is of interest for the
structural design of Ice-Transiting Vessels. Criteria are needed for

the selection of the stiffness of side shell plating, transverse
framing and longitudinal side-skin stiffening. The definition of
suitable stiffness criteria is useful in the estimation of the working
stresses. Furthermore, stiffness criteria are of importance in
interpreting field test data so that the imposed ice forces can be
evaluated. Criteria must be defined for the fore, aft and midship
section of an Ice-Transiting Vessel. The problem is further
complicated due t the presence of the strengthened ice-belt region.
Structural design procedures are needed to evaluate the relative merit
of a strengthened vessel design versus a design without an ice-belt
zone. Numerical analysis procedures are available today and they can
be utilized in order to obtain the response of ship structures to
prescribed loading conditions. However, simple structural design
procedures must also be developed to aid the designer in the initial
phases of his work. The basis of these procedures is the formulation
of a simple structural idealization while retaining the essential
characteristics that influence the response. The benefit of this
approach is the definition of explicit (though approximate) stiffness
criteria that certainly are very useful in evaluating the relative
merit of various alternative solutions, Furthermore, the uncertainty
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that exists in the determination of the ice forcing functions further
increases the usefulness of simplified structural analysis procedures.

A simple structural analysis method was recently suggested in the
literature (82) to predict the load carried by the transverse
bulkheads or deep transverse web frames, the maximum bending moments
developed in the longitudinal stringer in the way of ice loading and
in the transverse frames, which result from ice compression on an
ice-transiting vessel. The system of framing considered was a
cambination of transverse and longitudinal framing. The possible ice
sheet failure modes were considered to predict the maximum magnitude
of ice pressure on the side shell wall structure. The longitudinal
side-skin stringer in the ice loaded region was considered as a beam
on an elastic foundation where the foundation modulus is provided by
the stiffness of the transverse frames. The linear elastic static
response of the side shell structure for the midship region was
obtained. It was shown that the structural response depends upn the
non-dimensional transverse hulkhead spacing that characterizes the
strengthening for navigation in ice. The effect of the presence of
several longitudinal stringers was approximately taken into account by
the dependence of the effective breadth an the longitudinal stringer
spacing. The case of ron-uniform longitudinal stringer spacing was
also discussed. In the present investigation the effect of the
stiffness of the adjacent longitudinal stringers will be considered in
the determination of the modulus Kpp of the imaginary continuous
elastic foundation. The present analysis is useful for the
investigation of the effects of load sharing., In Reference (82) the
longitudinal side-skin stringer in the ice loaded region was
considered as a beam on an elastic foundation where the foundation
modulus Rpp is provided by the transverse framing bending stiffness
Elp. Additionally, in the present’ investigation, each transverse
frame is considered as a beam on an .elastic foundation where the
foundation modulus KL is provided by the longitudinal stringer bending
stiffness EL , In order to simplify the analysis a uniform spacing s
and a constant bending stiffness EL is assumed for each longitudinal
stringer. A similar procedure as employed in reference (82) provides
the following relation
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3
K = 171.73 EIL/sLL (17}

where I, is the transverse bulkhead or deep transverse web frame
spacing. The details of the derivation of equation (17) are presented
in the Appendix B. Equation (17) is valid for closely spaced
longitudinal stringers where the discrete elastic supports can be
replaced by an imaginary continuous elastic foundation with elastic
modulus KL This condition is satisfied if

1/3 1
s < .207L (ITF/IL) (18)

which is derived on the basis of the requirement that at least four of
the supports are within the characteristic wavelength

my (KLMEI.I.F) 1/4 of the deflection line (11). The characteristic length
1/y is defined bty

2 = (KL/AEITF)”“ (19)

and it depends on the flexural rigidity of the transverse frame EI.I,F
and the elasticity of the supporting medium KL The characteristic
length is an important factor influencing the shape of the deflected
beam, The beam response in this case displays the features of damped
waves ard consequently ) is sometimes called the damping factor (11).

In the present investigation the term elastic foundation is used
for a Winkler support. Thus the beam under consideration is taken as
resting en a kind of spring mattress, the infinitesimal springs
forming a continuum, but acting independently of each other.

In the case that equation (18) is not satisfied then each
longitudinal stringer should be considered as a separate elastic
spring. In the special case of an infinite beam and uniform stiffener
spacing the procedure presented in reference (82) could be used to
obtain the beam response. Thus the presence of uniformly spaced
transverse bulkheads was taken intoconsideration in deterimining the
longitudinal side-skin stringer (in the way of the ice loading)
response. However, the procedure must be modified to allow non-zero
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deflections at the location of the stringers.

3.1 LONGITUDINAL SIDE-SKIN STRINGER FOUNDATION MODULUS PREDICTION
The structural geometry considered consists of a beam grillage

{longitudinal stringers and transverse frames) delimited by deck and

bottom plating and supported by two consecutive transverse bulkheads

(Figure 4).

At first the stiffness of an isolated transverse frame is sought.
The transverse frame is modelled as a beam of length T resting on an
elastic foundation with modulus KL. The ice force P is applied at a
distance from the main deck.

The aim of the present analysis is to obtain some information on
the following functional relation

KTF = F(E, I']:F’ KL’ a, T, STF) (20)

where S is the transverse frame spacing. Equation (20) can be
expressed in the following non-dimensional form

5/2)

Kpp/E = £(a/T, K IE, /T, Tp/la(Ta)] (21)

The parameter a/T characterizes the location of the ice load
application., The parameter RI/E depends upon the geometry of the
longitudinal stringers. The parameters s.,./T, TLnp/[a(T-al 5/2 are
functions of the geometry of the transverse framing (and the location
of the ice load in the case of the mon-dimensional moment of inertia
parameter). The influence of the boundary conditions can be
explicitly considered bw a suitable modification of the parameter
TLp/{a(T-a) 5/ 2, 1n the present investigation the geometric mean is
considered of the resulting deflections under the load application for
simply supported and fixed boumdzsry oconditions at the ends of the
transverse frames.

In Reference (26) two methods were described for obtaining the
form of function f in equation (21). Thus the direct method and the
method of superposition were discussed in Reference (26). The effects
of load sharing were alsc discussed in Reference (26).



3.2 EIASTIC-PLASTIC BUCKLING CRITERIA

Fuler was the first to derive a colum formula and prove
theoretically that there is a criterion for column strength which is
independent of crushing or yielding of the material. For a simply
supported ideal column subjected to an axial compressive force Euler's
elastic buckling load P, is given by:

P = 72 g1/12 (22)

in which L is the column length, E is Young's modulus for the
material, and I is the moment of inertia of the column cross-section.

The Euler formula above is applicable to different elastic
columns provided that the right-hand side of the above equation is
maltiplied by an appropriate constant coefficient, corresponding to
different emd conditions. It is seen from eq. (1) that the critical
stress, which is obtained by dividing the axial force by the
cross-sectional area is independent of the yield stress. For L
sufficiently large the critical stress will be smaller than the yield
stress, and thus buckling will occur before yielding. For a very
short colurn, however, the behavior and strength is determined almost
entirely by vielding and the plastic properties of the material,

When the column is of an intermediate length, vielding of the
material will precede the elastic stability limit resulting in a
requirement for plastic stability analysis.

This plastification of the cross-section causes material
non-linearity during the buckling, and when we in addition know that
the response of a beam-column is geometric non-linear even for a
purely elastic material, it is obvious that the elastic-plastic
buckling behavior of beam-columns of this intermediate length can be
extremely complicated to analyze.

Yet another complicating factor is the dependence on the loading
history. This is due to strain reversal for large deflections when
the tensile stress due to bending exceeds the compressive stress due
to the compressive axial force. Where strain reversal cccurs, the
stress-strain relationship is governed by Young's modulus E, while the

relationship otherwise is governed by the instantaneous tangent
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modulus. Where amd when the strain reversal occurs is dependent on
the relative magnitudes of the bending moment and the axial force, or
in other words the loading history.

A large mumber of the members used in todays framed structures
are of such an intermediate length range that plasticity will have an
influence on the buckling behavior. Because of the mentioned
complexities involved due to both geometry and material
non-linearities as well as load history dependence, the exact solution
of an elastic-plastic buckling problem can be extremely complicated
to obtain. For this reason it is highly desirable to be able to
obtain appropriate solutions of sufficient accuracy by using a
simplified anlysis of the elastic plastic buckling problem.

One such simplified analysis method consists of idealizing the
beam-colum into a model composed of an elastic-plastic spring and two
straight segments. The yield criterion adapted in the spring takes
into account the reduced plastic bending moment capacity due to the
simultaneous action of moment and compressive loads. This is called a
generalized Shanely model idealization because it is a generalization
of the model originally described by Shanley in Ref., (74).
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The objective of this investigation is to study how well suited
the generalized Shanley model is to predict the elastic-plastic
buckling behavior of a real column. This is of large practical
interest because of the large savings that can be obtained if this
simplified model can be used to obtain solutions of acceptable
accuracy, and thus eliminate the need for a time consuming and
camplicated exact solution.

The specific case of a simply supported column of rectangular
cross-section is investigated here, but it is highly recommended that
this work is extended to include other cross-sections and boundary
conditions as well as the effect of lateral loads and end moments.

The reason why a simply supported column of rectangular
cross~section will be used here to investigate the applicability of
the generalized Shanley model, is that the exact solution can be
obtained thus making it possible to compare the results from the
Shanley model analysis with the exact solution.,

For other cross-sections and boundary conditions, the exact
solution can be mxh more camplicated, so that the comparison needed
to evaluate the Shanley model may be difficult to obtain.
Complicating effects such as residual stresses, twisting of the
cross-section, time dependent plasticity etc. are not considered in
this investigation.

EXACT MIMENT-CURVATURE RELATTIONS
The governing differential equation of a beam-column problem will

always involve the quantity EI in its coefficients. Where E is the
Young's modulus and I is the cross-sectional moment of inertia. This
quantity can be oconsidered as the slope of the moment curvature. In
the elastic range this quantity EI is constant and therefore presents
no difficulties.

In the plastic range, however, this quantity is not a constant
due to the fact that the cross-section may be partly elastic and
partly plastic. The elastic Young's modulus E will only apply in the
elastic region or when we have strain reversal, otherwise the tangent
modulus will apply. The tangent modulus is the tangent of the slope
of the stress-strain relation after initial yielding, where the
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stress-strain relation is mot linear.

Thus in order to solve any beam-column problem where plasticity
is involved, we must first obtain the non-linear moment-curvature
relation., The moment-curvature relation is also dependent on the
level of the axial force so what we are seeking is in reality a

moment-curvature thrust relationship.

Pure Bending of Rectangular Section

The moment-curvature relation for a beam of rectangular
cross-section undergoing pure bending deformations will be developed
bv considering a beam segment of length L and with rectangular
cross-section (BxH) subjected to a pure bending moment M, as shown in
Fig. 5. The beam material is assumed to have a bilinear stress-strain
relation as shown in Fig. 6, with modulus kSE for stresses larger than
the vield stress £ v It is assumed that the beam cross-section
remains unchanged during deformation.

The bending moment M is given by:

H/2 H/2
M J oxndA BJ o.n dn ZBI andn (23)
A -H/2 0

where o _ is the bending stress developed a distance R fram the
centroid of the cross-section.

We are oonsidering a member with a length which is much larger
than the height. This means that shear deformations will be
negligible, and we can thus use the assumption that plane sections
remain plane. When this assumption is made, the beam segment in Fig.
5, will bend intoc a circular arc of radius R as shown in Fig. 7. The
central angle ¢ and the curvature K is given by:

L/R (24}

©
fl

1/R {25)

~
Il

The middle fiber does mot change its length since it coincides with
the neutral axis of the segment. A fiber which is a distance " away



- 25_

from the neutral axis will have a length given by (R + n )¢ , and thus
the axial strain ¢ x Will be given by:

e, = [(R+ ¢ - LI/L = ¢n/L = n/R = Kn (26)

Linear Elastic Behavior

When the bending moment M is sufficiently small the stresses will
be everywhere elastic, and in this case we have:

OX = EE:X = EKn (27)

By using eqs. (23) and (27) we have:

H/2
_ 2 U S
M=2B J' EKn dn = 12 BH EK (28)
-H/2
This can also be written as:
{29)
M = IEK
where
H/2
I =J' nZaA = B J‘ nldn = %BHB (30)
A -H/2

is the cross-sectional moment of inertia.

The maximum elastic bending moment Mel will occur when |°x|= £
at the outer fibers of the beam corresponding to N=*H/2, The moment
Mel and curvature Kel in this case are:

= (31}
Mel fywel

where W,1 is the elastic section modulus given by:

ol

W, =1/

=1 gy?
o1 = ¢ BH (32)
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This gives us:

I 33
M, =5 BH fy (33)

From eq. (27) we will get:

(34)
K = fy/(E H/2)
By using egs. (28), (33) and (34) we get:
: = 5
o /M, = K/K (35)

This is the moment-curvature relation in the elastic range for the
pure bending case,

Elastic-Plastic Behavior
For a slender beam the assumption that plane sections remain
plane is justified also in the plastic range.

The stress distribution in the elastic-plastic range is shown in
Fig. 8, and this stress distribution can be written as:

= ; 0‘( <
o, =E €y n/ Ny n<ng (36)
n-=-n
o =E Ey + ksE(Emax - Ey) w7 - n ny<n< (37)
¥
where:
e, = fy/E (38)
€ H
n, o=t (39)
¥ £ 2
max

The last relation follows from the fact that plane cross-sections

remain plane also in the plastic range. € max is the maximum strain

at the cuter fibers of the beam cross-section, and T v gives the
distance from the centroid to the point where the yield stress is
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reached.

The bending moment M is given by eq. (23), and by introducing

eqgs. (36) and (37) we obtain:

M = 2(Ml + Mz)

where
T]y )
n
= — = < BE ¢
Ml BJEsyn n dn 3 yny
0 v
ard
H/2
- n-n
M, = B f (£ e + kE( - ey)ﬁ7§—:zﬁ§] n dn
- ny
Resulting in:

H.2 1 2
M=BEEY[('2") —gﬂyl

. 2 H3 1
+BEkS(e nax

If we introduce the parameter T defined as:

= emaxley

Then eq. (39) can be written as:

Pt
ot

ﬂy‘

By using egs. (31), (32), {44) and (45) we obtain:

(40)

(41)

(42)

3 _ (B2 H
- eI A3 - QG- ng) (43)

(44)

(45)
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_ ) ;
_ Ty I DAL, A
My = {amk) 26 ng -3 T E - GED -5k
e P N LRIV RS (46)
g2 H ¥ 2y 2 b4
At n equals ”y’ eq. {27) gives us:
- EK (47)
fy EK n,
By introducing eq. (46) we can write eq. (47) as:
= 1H (48)
= E¥, — —
fy z 2
By using egs. (34) and (48) we will obtain:
= (49)
g K/Kel
and eq. (45) can then be written as:
Y (50)
Y K 2

By introducing egs. (49) and (50) into eq. (46), we will finally get:

4 2
= (1- 3_1,el K (51}
M/Mel T Ak )5 - 50 1+ kg K q
This is the general moment-curvature relation in the elastic-plastic
range for a beam of rectangular cross-section subjected to pure
bending.
When k =1, we are in the elastic range, and substituting this value of

kS into eq. (51) will give us:

M/M | = K/Kel | {52)

al

Eq. (52) is identical to eq. (14) as it should be.

Elastic-Perfectly Plastic Behavior
Elastic-perfectly plastic behavior corresponds to k=0, and by
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substituting this value of k s into eq. (51), we obtain:

K 2
3 _1,.¢el 53
MM =5 -5 (D) (53)
This is the moment-curvature relation for the elastic-perfectly
plastic case for a beam of rectangular cross-section subjected to pure
bending,
Fg. (29) can be written as:

_ 54
M, = EI K, (54)

and by using this we can write the moment-curvature relation given by
eq. (53) as:

K 2
= 12 - el 1K 55
M = EI[7 - 5(57) el (55)
The moment-curvature relation is presented in this form in Ref, [30].
In the limit as K/K,; goes to infinity the expression given by
eqg. (53) reduces to:

an,Kel Y e M/Mel = 3/2 Mplmel {56)

Mpl is the fully plastic moment capacity of the cross-section when no
axial force is acting.

Effects of Axial Compression
The mament-curvature relation for a beam of rectangular
cross-gection including the effects of axial compression will be

developed by using the same assumptions as for the pure bending case,
except for the effect of strain hardening which will be excluded.

When we are in the elastic region and both bending moment and
axial compression are present, we will get a stress distribution as
shown in Fig. 9. We notice that the neutral axis will not correspond
to the centroidal axis of the cross-section, and we let T denote this
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distance from the centroidal axis to the neutral axis.

As the loads are increased the compressive stress at the
outermost fiber will reach the yield stress £, and any further
increase in the loads will lead to the formation of a plastic region
as shown in Fig. 10a). This condition with cne plastic region will be
called the primary plastic regime. We let N oy denote the distance
from the centroidal axis to the point where the stresses have reached
the yield stress in compression., As the loads are still further
increased, a secord plastic regicon is formed at the outer surface
where tensile E:regsesue acting as shown in Fig, 10b). This
condition with two plastic regions will be called the secondary
plastic regime., We let T'Ity denote the distance from the centroidal
axis to the point where the stresses have reached the yield stress in
tension. Finally, the cross-section will become fully plastic as
shown in Fig. 10c).

The instantaneous position of the neutral axis will depend on the
relative magnitude of the bending stress and the direct axial
compressive stress as the loads are increased. We need to know the
instantaneous position of the neutral axis in order to finmd the
moment-curvature relation, so this tells us that the exact solution
cannot be obtained unless we know the loading history.

Linear Elastic Behavior
We have assumed that plane cross-sections remain plane, and by
referring to Fig., 9 we find that the stress distribution O 5 is given

by:
o =EK (n-n (57)
x

Where K is the curvature of the middle surface and n defines the
position of the neutral axis, As shown in Fig. 9 this stress o ¢ In
the axial direction will consist of cone contribution © a from the
axial force P, and ane contributon ¢ p, from the bending moment M.
Thus:

g =0 +o0 {58)
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The stress o 5 Can be written as:

o, = -P/a = -P/BH (59)

The negative sign must be introduced because the axial force is
compressive, while we define tensile stresses as positive. In the
above equation A is the cross-sectional area, which in our case equals
BxH. The bending stress O, can be written as:

g = Mn/I (60)

b

and thus we obtain the following expression for ¢ <

o, = -P/A + Mn/I (61)

At the neutral axis 0, is equal to zero, and plugging this into eq.
(57} will give us n =7 at the neutral axis, as it should. Using this
and 9.=0 in eg. (61) will give us the following expression for the

position { of the neutral axis:

n = IP/AM (62)
The fully plastic axial force Ppl can be written as:
P =Af =
ol y Bny (63)
From egs. (31) and (32) we have:
i, = B1s (64)
ek 277y
Dividing eg. (6l) hy fY results in:
f = -P + M _/If 65
crx/ y /Afy T]/ v ’( )

When the compressive stress at the outermost fiber (n =H/2) reaches



the yield stress (o0 x=—Ey) s the elastic interaction curve is obtained
by using egs. (63), (64) and (65) as:

P/P

= (66)
ol + M/Mel 1

We are in the elastic range, amd the moment-curvature relation given
by eq. (35) is thus valid:

M/M

e1 = KK (67)

By using egs. (62), (63) and (64} we can now obtain:

P/P ., = 2Mﬁ/Meln (68)

rl

When first yield is reached, egs. (66), (67) and (68) will give us:

M _ H/2 _ K (69)
M

el H/2+7 K

Furthermore, when first yield is reached we will get the following by
using egs. (66) and (69):

P __n __kK 2 7 {70)
o1 w247 Ke1 B
The stress distribution C x can be rewritten as:
(71)

o, = fy(-wpp1 + M n/MelH)

Then by using eas (69) and (70) we finally obtain the following
expression for the stress distribution ¢ % corresponding to the
initial yield case:

f -
g_ = '—l—_ (n-n (72)
X H/2 + 7

Elastic-Plastic Behavior in Primary Regime
The stress distribution in the primary plastic regime as shown in
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Fig. 10a), can be expressed as:

g = -fy when -H/2 < 1 < —ncy (73)

(74)

The relation between the axial compressive force P and the stress

Oy is given by:

-P ={ deA =J OX dAplaStic +J Ox dAelastic (75}

A Aplastic Aelastic

The negative sign is introduced because P is compressive while we
consider tensile stresses as positive. By introducing the stress
distribution given lw egs. (73) and (74), we can write eq. (75) as:

- 2
ncy H/ _
n-n
*p=3j’ -f dT‘|+ij = dn (76)
-an2 7 Moy Mey T

Performing the integrations will give us the following result:

B f -H 1. 2

Ty o1 2 . Hp +2n3-%H (77
-P = o [zﬂcy"'zcy 2 B

Ny ¥ 7

By dividing eqg. (77) through Ppl as given by eq. (63), we obtain:

.
Pl _ il +T-FeDn,-5H] (78)

The relation between the bending moment M and the stress 0, is
given by:



~ B4 _

= = dA +] 0
M J’ % " dA 4[ % 7 plastic J x dAelastic

A Aplastic Aelastic (79)

By introducing the stress distribution given by eq. (74), we can write
eq. (79) as:

=N H/2
cy _ =
M=Bj -fyndn +3 fy_"l_ﬂ_ ndn (80)
-H/2 ey Ney + 1

Performing the integrations will give us the following result:

3 {(81)

m=—23 — w3 +ie?g

_1, 03
— 24 8 cy 6 ncy

By dividing the above equation with M, as given by eq. (33),

we obtain:
M 1 1 3 n_2
= — [FH+nNn - . CY
M1 g +7 ° b ey () Mgyl (82)

cy
Equation (57) applies in the elastic region o that:

o = EK (n - n) when -n., < M2 H/2 (83}

At n =-n ey the stress 1s O x=-fy and eq. (83) then gives:

fy = EK (“cy + W (84)

By using egs. (34) and (84) we can row obtain:

K = H/2
— (85}
Kcal ncy o

When n cy is equal to H/2 we are in the fully elastic region. By
plugging n cy=h/2 into eqs., (78), (82) and (85) these equations reduce
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to egqs. (70) and (69) respectively, as they should.
Finally, by using eq. (74) the yield stress is also reached in
the outermost fiber n =H/2 where tensile stresses are acting when:

=2 _ % (86)
ncy 2n

ra e

and this gives us a transition to the secondary plastic regime.

Elastic-Plastic Behavior in Secondary Regime
The stress distribution in the secondary plastic regime as shown
in Fig. 10b), can be expressed as:

- _ _ i _

o, = fy when - 5 <1 < T]cy (87
- - < <

o'x = fy when nty <nx< H/2 {89)

Since at n =-7 ey the stress O, equals —fy, it follows from eg.
{88) that:

n. =mn.=27 (90)

The relation between the axial compressive force P and the stress
0, is given by:

-_ = = =4 .
P J Gdi Jodilplastic +J0x&2p1astic CI:r:dél.ast:l-.r.(g1)

A A .
lplastic A2plz«1stic Aelastic

The negative sign is introduced because P is compressive while we
consider tensile stresses as positive, By introducing the stress
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as:

distribution given by egs. (87), (88) and (89), we can write eq. (91)

ey H/2 Tey _
p=8| <fdn+B| fdn+3B | £ L—I— an
y y Y o -7m
<H/2 Ny

{92)
ty n
—ncy

Performing the integrations will give us the following result:

B f _
.y A 2 _ 1 2 _

P _ _[2ﬂcy + Eﬂty ﬂ ﬂ
Mgy~

(93)

By dividing eq. (93) through by Ppl as given by eq. (63), we obtain:

n n
P 1 1. cy 1.ty _ 1 2= (94)
p [2( H )ncy + 2( H )nty ﬁncynty + H n r.lcy]
pl nty -n -
The relation between the bending moment M and the stress J, is
given by:
M= J’ andA=J’ andAlplastic+foxndAZPIastic*‘[Oxndeﬁasti(.gs)
A lﬂklplast:‘u: AZplastic Ael‘ast:b::
By introducing the stress distribution as given by egs. (87), (88),
and (89) we can write egq. (95) as:
ey iz ey -
M=Bj—fndn+BIfndH+B[f 1= n dan (96)
4 n Y -n.Y n.-nm
-H/2 ty cy tv
Performing the integrations will give us the following result:
" o B_'fy_[l 3, 2-_1 2 _1 3 12
.= Bncy ncy n fncy nty gnty- Al
nty n
- l HZ:}
4 H

y O
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By dividing eq. (97) by M, as given by eq. (33), we obtain:

n 2 n 2 n 2
M _ 1 cy ey T cy
M, o o [265=Im,, + 605D n - 365 Ny,
Ly (98)
n
- LYy 3., 37
(> "ty + 2y T 3 nl
In the present case we have elastic stress distribution for
" Ney<n< N gye and thus from eq. (57): -
= -7 - (99)
O, EK(n - ) when ncy <n< nty

At n=np ty the stress ¢, is fy and thus eq. (99) will give us:

= -7 (100)
fy EK(nty n)

By using egs. (34) and (100) we then obtain:

K _ _H/2 {101)
K —
el nty -n
When N ty is equal to H/2 we only have one plastic region, and

this also corresponds to the case given by eg. (86). By plugging
n ty=H/2 and ncy given by eq. (86) into egs. (94), (98) and (101)
these equations reduce to egs. (78), (82), and (B5) respectively, as
they should.

Fully-Plastic State
The fully-plastic state with the stress distribution shown in

Fig. 10c) occurs when:

n=- = (102)
n Ney = Tey

Equation (94) can be rewritten as:
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-ig 1
AL, | (103)

By taking the limit of eq. (103) as the state described by eq. (102)
is approached, we obtain:

= 97 104
P/Ppl 2n/H (104)

This is because the numerator in the last term of eq. (103) goes to
zero faster than the denominator.
Equation (98) can be rewritten as:

1.2 1 2 1 2
M 5 T2 ey T 7 My 1 103 1 2
= + (zn -3z n
M 3 'ty 2 ty
el lHZ _]__HZ( _—)
6 6 nty n
1.3, 1= 2 {105)
+3ncy +2ﬂ ncy)

By taking the limit of eq. (105) as the state described by eq. (102}
is approached, we cbtain:

T =3 - 6 (106)
el

[N
e in ]!
L

This is because the numerator in the last term of eq. (105) goes to
zero faster than the denominator.

For the fully-plastic state described by eq. (102), the curvature
given by eq. (101) approaches infinity as expected.

By eliminating n between eq. (104) and (106) we end up with :

M _%[1_ P 2 (107)

= 5 )
M1 (B

This is the fully-plastic interaction curve for a rectangular
cross-section.
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SHANLEY MODEL, ANALYSIS

Assumptions
The objective of this chapter is to investigate the

elastic-plastic behavior of a colum of rectangular cross-section by

using a Shanley model formulation. The bilinear strJeSs—strain relationship
shown in Fig. 6 is again assumed, amd it is also assumed that the
cross-section remains unchanged during deformation. The Shanley model
formulation to be used in this analysis is a generalization of the

model originally described by Shanley in Ref. (74).

In the generalized Shanley model as shown in Fig. 11, the
initially straight, simply supported column, of length L is idealized
by a model consisting of an elastic-plastic rotational spring ard two
non-flexural straight segments., The rotational stiffness of the
elastic-plastic spring takes into account the reduction in stiffness
due to partial yielding of the cross-section.

It is assumed that the curvature of the mid-section is
constant over the length £ L, where £ is a oonstant which is
independent of the loading history amd the slenderness of the column.
The remaining portion of the column of length (1-£ )L remains
straight. With the above assumptions, we can see from Fig. 12 that
the relative rotation 26 of the spring is given by:

28 = fLK (108)
Where K is the curvature of the mid-section.

Governing Equations

The moment M at the mid-section is given by:
M=Pw (109)

whre P is the axial compressive force and w is the transverse
displacement at mid-section. If © o is the initial stress free
rotation and 6 is the additional rotation, then for small rotations

{singZ 8 ):
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(110)

taj

LB + &

W=

o)
Which together with eqg. (109) will give us:

(111)

M= PL{(O + 80)

toi

The appropriate expressions for the cross-sectional moment of
inertia I, the elastic section medulus W,,, the first yield bending
moment M., and the fully plastic axial force Ppl for a rectangular
section are already developed. These are given by egs. (30}, (32),
(33), and (63) respectively., We also have the relation between
moment and curvature in the elastic range as given by eq. (29}.

By using egs. (29), (108), and (111) we obtain the following
expression for the elastic buckling load, without imperfections
(8 ,=0), of the Shanley model. This buckling load is called P, and
is given by:

p_ = 4EI/1%E (112)

In eq. (22) we described the Buler load P for a simply supported
colum of length L. When:

£y /,nz (113)
the load P, is equal W Pp. We will use this value of the constant £
because it will give the Shanley model the correct elastic buckling
load. '

The relation between the mid-section curvature K, due to
imperfection and the rotation © o due to imper fection is given from
eq. (108) as:

= {114)
26 = ELK,

We can now introduce the following non-dimensional parameters m,
Pr P, and k, given by:
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- {115)
m = M/Mel
= (116}
P P/Ppl
= (117}
pc Pc/Ppl
(118)
k = EIK/Mel
(119)

ko - EIKO/Mel

By using these non-dimensional parameters, we can rewrite eg. (111} in
the following non-dimensional form.

m = p(k + ko)/pc (120)

Since Ky and P, are constant, the incremental form of eq. (120), without
neglecting higher order terms, is:

dm = [pdk + (k + ky)dp + dpdk]/p_ (121)

We have both bending moment and axial force acting, and for this
reason the total axial strain € < will have a contribuiton € a fram
the axial force P and a contribution ¢ p from the bending moment M,

such that:



e = €g_+¢ (122)

The strain Ea due to the axial force is constant over the
cross-section, while the bending strain € b in a fibre at a distance

n fraom the centroidal axis is given by eq. (26) such that:

€ =¢_+ Kn (123}
X a

€ x is here the total strain in the axial direction. K is the
midsection curvature.
In incremental form we can write eg. (123) in the following way:

dex = dea + ndk (124)

For cur model with a bilinear stress-strain relationship, the

incremental stress can be written as:

dc_ = k _Ede (125)
X s p:4
where k=1 when € < Ey' where € v is the strain correspording to
first yield as defined by eq. (38). Equations (124) and (125) give
us:

dcx = kSE(dea + ndK) (126)

In the Shanley model analysis it is most convenient to define the
compressive axial force as positive and thus also compressive stresses
as positive. With this definition the relationship between the
incremental axial force dP and the incremental stress dg x is given
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by:
ar = S do da (127)
A X

Using eqs. (126) and (127), and the fact that 4¢ a and dK are constant
over the cross-section, we obtain:

dP = Ede f k dA + EdKJ' ksndA (128)
a4 & A

By dividing the above equation by Ppl as given by eq. §3), we obtain:

dp Bde, S EdK f
= k  + k nda
Ppl EsyA s s EEyA W S (129)
Fram eq. {118), we hawve that:
dk = M_; dk/EI {(130)

Let us introduce the non-dimensional parameter e defined as:

e =¢_/e (131)
a

By introducing eqs. (33), (116), (130) and (131) into eg. (129} we
‘obtain:

_ 1
dp = de j— kg dA/A + 5 dk Iksn dA/Wel (132)

A A
By introducing the non-dimensional parameters A and 5, defined by:

A= S k_dA/A (133)

A

5" f kgNdA Wy (134)



we can write eq. (132) as:

dp=Kde+%§dk (135)

The relation between the incremental bending moment dM and the

incremental stress 4o x is given by:

daM = S- de nda {136)
A
Using egs. (126) and (136), and the fact that d €, and dK are constant

over the cross-section, we obtain:

dM = Ed eajks nda + EdKJ ks nsz (137)

A A
By dividing eq. (137) by M, as given by eq. (33), we will get:

a _ B o [y naa + B dx nfaa 138
= s fW s (138)
Mel £W 1 vy el
y e A A

By introducing egs. (115), (130) and (131) into eq. {138), we obtain:

dn = de | k_ ndA/v_, + dkj k_ n’da/T (139)
s el s
A A
Equation (139) can be rewritten as:
dm = § de + I dk (140)
where S is defined by eq. (134) and I is defined as:
(141)

— 2
I =:£ k_ n"dA/1
By using egs. (121) and (140) we will get:

S de + T dk = [pdk + (k + kj)dp + dp dk}/p_ {142)
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By introducing eq. (135) for dp in eq. (142), we end up with:

_ 1— - 11— 2 — _—
de = - - -
e {|p+—33(k+kn) P I dk+5S (dk)“}/{ p_S-(ktkp)A-Adk}

By introducing the three mon-dimensional parameters Cl, Cp, and Cy
defined as:

¢, = ~[p+5(ktk)S-p_11/[ (kc+k ) A-p S} (144)
C, = ~1C,B+5)/[ (ietk ) A-p 5] (145)
(146)

Cy = A/ (k+k0)'§-pc§1

we are able to write eq. (143) as:

de = Cidk + [Cy(dk)/(1+C dk)] (147)
3
Equations (114) and (126) will now give us:
T = 82
dp = [ClA + 7 Sldk + [CyA(dk) /(1+C3dk)} {148)

Equations (147) and (148) give us expressions for de and dp
repsectively as a function of dk.

When the loads are of such a magnitude that we are in the
secondary plastic regime, and we define compressive stresses as
positive, the expression for the non-dimensional paraneter A, as
defined by eq. (133), will be:

n

_nty H/2 cy
A= =1 J 49
A IdeA/A B.H[Bj kdn + B [ kgdn + B ) an (149}
A -H/2 ey Ney

Performing the integrations in the equation above will give us the
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following result:

T = k(1o (150)
A H(l ks) (nty+ ncy) + 1«:S

The expression for the non-dimensional parameter S, as defined by eq.
(134) will be:

_ 6 —nty H/2 ncy
S =I ks ndA/Wel =— [BS kﬁ ndn + B S ksndn + Bjndn]{lSl)
A BH -H/2 ncy -nty

Performing the integrations in the eq. (151} will give us the
following result:
2 2 (152)

T = 2 [¢1- -
g = 2 [(1-k) (ncy ey )]

Finally, the expression for the non-dimensional parameter I, as
defined by eq. (141) will be:

Al

-r]t}7 H/2 _ cy
- ) 2
T =J ksnsz/I = 52_3[35 ksnzdn + Bjksn an + Bjn anl (153)
BH
A -H/2 r1.:Y _nty

Performing the integrations in eq. (153) will give us the following
result:

T = H%- - ks) (nty3 + n cy3)+ kS_ (154)
The expressions for A, 5, and I in the primary plastic regime are
obtained by simply substituting n ty=I-I/2 into egs. (150}, (152) and
(154) respectively. Ngy @d N, have already been defined as the
distance frem the centroidal axis of the cross-section to the fibers
that have reached the yield stress in tension and compression
respectively. The entire cross-section is elastic when nty= ncy=H/2.

By plugging this into egs. (150), {152) and (154) we obtain:

Aelast:ic =S da/a =1 (155)
A
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—_ _ _ 6
selastic SA- ndA/Wel 0 (156)
- {2, (157)
Ielastic - i nda/l =1

as it should be.

When the column is subjected to an axial campressive force P, the
relative axial displacement u will consist of three parts. First the
menmbrane compression u; of the bending portion, given by:

_ (158)
u, = ELEa
Where ¢ a is the axial strain of the centroid. Second the membrane
compression u, of the straight segments:

uy = (1 -E) LER {159)
Where € R is the axial strain of the straight segments. The third

component of the relative axial displacement is the axial component of
the change in geometry, shown in Pig. 13, to be approximated by:

1 {160}
ug =3 16(6 + 290)
Thus the relative axial displacement u will be:
- - 1 161
u=Ele + (1~ BE)lep + 5 L6(6 + 26,) (161)

Equation (161) can be written in ron-dimensional form by dividing by
L Ey, and by introducing the non-dimensional parameters § amd epr
defined as:

§ = u/L €y (162)
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e. = e /e (163)

Equation (161) can then be written in non-dimensional form as:

8 =ge+ (1-Eey +%g—y(e +28)) (164)

The last term in eq. (164) can be written in terms of P., K, and k as
defined by egs. (117), (118), and (119) respectively, in the following
way:

8

£
¥y

N

(6 +20) = gk(k + ZRO)/G P, (165)
Thus by introducing eq. (165) into eg. (164), we will finally obtain:
§="Fe + (1 - E)eR + Ek(k + 2k0)/6 Pc (166)

In incremental form, we can write eq. (166) as:

4§ = Ede + (1 - E)de, + Edk[2(k + ko) + dk]/6 p_

Phen € p >Ey the tangent modulus aoplies so that:

de

R

= dP/AkSE when £x” ay (167}

When € R < €y Youna's modulus gpnlies so that:

{168)
deR = dP/AE eps £y
By dividina eg. (1A87) and (168) W €, anc® using eqs. (38}, (&3},

(117Y and {1R3}, we ohtain:

= Q
deR dp/ks when e, > 1 {159)
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de_ = dp when e, <1 (170)

R R

Wlastic Resoonse

™en the entire coross-section is elastic, we have from eas.
(155), (157) an® (156) resovectivelv, that A=T=1 and that S=0, Thus in

the elastic range, ea. (135), will reduce to:

p=e (171)
Eouation (1240} will reduce to:
m=k (172)
an? finallv, ea. (170) will reduce to:
eg = P (173)
Equations (120) and (172) will now give us:
P/, (174)

k
1—13/13c 0

The factor (tv%h)/{l-o/bcl is the elastic amplification factor. Bv
introducina eqs. (171), (173) and (174) in ea. (166}, we aet the

result:

gP/Pc[Z-P/Pc] K 2 (175)

5=p+ 2
6pc(l - plpc)
First-Yield State )

mhe first vield state is given lhwy ea. (A€}, which can be written

in ron=dimengional form as:

m+p-=1 {1761

Ecuations (172) and (174) will give us:
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p/p
mo= ——— & (177)
1-p/p O
c
Introducing eg. (177) for m in eq. (176) will now cive us an

evpreseion that can he solved for p. This value cof p will cive us a

value for e initial vield load ne'l’ First we obtain:

2. - (178)
P (k0+pc+l)p+pc 0
Solving eg. (178) for p will aive us:
- 42
ky+p, + 11 /(k0+pc+l) -4p,
P = 5 (179
First vield corresnonds to the smallest valve of p, so that:
2
) (1+ p. *t ko) - V(1 + p. * ko) -4 P, (180)

po:-;l ) 2

Bv usino eqs. (63), (112) and (117), we can obtain P as:

2 .
: - 1t E, H (181}
P. 3t (fy) (L)

The transverse displacement Wy is rfue to an initial imperfection 6 o

is qiven hw:

w, = 5 LB {182)

P =

4

The value of ko to he used in eag. {180) can he found¢ from €d.
(114), hv introducina egs. (19 and (182), with the result:

k., =6 p (183)

Yo
(8] L

o

c

Interaction Curves
The hendina strain ¢, in eo., (122) has a meximum value when
n=H/2. By using eag. (123} the maximum total strain € may Can then he

written as:

£ =g +K% (1841}



Bv Aividina the abawve ecnation hw € o and using eas. (44), (118) and
{131), we can write eo. (184) as:

L =e+k {185)

When deriving the exoressions for the interaction curves, it is
most convenient to use the same siaon convention as used when deriving
the evact moment-curvature relations, which means t%at tensile
stresses will he considered as positive in this subchaoter.

mhe hilinear stress-strain relation as shown in Fio. 6 is assumed

and then the following will amoly:

g, =E¢€ 3 - <g <¢ (186}
X X y — X — 5%
1

f,=E¢ : e =g (187)
b4 y x y

= - - >
o, = (1 -Kk)E €y tkEe ;e 2e (188)
o ==-(l-k)Ee_+kEe_ ;& < -€ (189)
X ] y 5] X x — v

The strain Aistribution over the cross-section in the secondarv
plastic regime is shown in Fia., 14a)  and the corresponding stress
Aistritution is shown in Fig, 14 b), Plane sections are assumed to
remain plane also in the plastic recion, so that the strain
Aistri'mition over cross-section is linear, From Fig. 14a)} we find
that the maximum strain is compressive and thus negative, This is
hecause the axial force P is compressive such that the strain e due
to this axial force is compressive. From Fig. 1l4a), v can also find
the relation hetween the axial strain e, and n as:

g = WX a o (120



"Men —n .,<n < Ny the stresses are elastic, so that egs. (1B8A)
and {190) will qive us:

€ x” €a (1el)
9, = E 573 n-e i n, fnsng
In the olastic region corresobnding te N tyi n <B/?, egs. (188) and

{190) will give us:

€ - €
= (1- _max a . _ .
0, = Ik )Ee +k E[— 7 n-e.l; Ny SN2 H/2 (192)
Fj_nélly in the plastic reaion corresponding to -E/2 < n < Ty e €S,
{189) and (190) will give us:

£ - £
max a
= ={]1- + —_— — PR —_T 16
UX (1 kS)EEy kSE[ B/2 n ea] H H/?.i N _<_ Tlcy (193)
The relation between the axial compressive force P and the stress

o, is given Fw:

f (194)
-P = dA = + f I
P A ox A'f ddilplastic A CrdiZpl.ast:.‘r.c +A cxdaelastic

lplastic 2plastic elastic
The neoative sion must he introduced because we here consider tensile

stresses as positive, vhile P is compressive. Fauations (192). (193)

and (191) respectivelv, will now give us:

H/2

i £ = €
- - _max 4
S Odilplastic = Bg{(l ks)EEy + ksE[ W3 n Ea]}dl‘ (195)
A11_31"7),stia:: nty
_ncy Cmax ~ Fa
. = - aa ;...__——-—n_
[ 0, A 2plastic B { a ks)EEy+ksE[ H/2 €aJ}dﬂt1°6)
AZplastic -H/2
1
* Cmax ~ Ea
g Ox%elastic ~ B E[__ﬁ7§_____ n- Ea] dny (1973

Aelastic _ncy
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Pv verformina the intearations in eas, (195) to (197) and suhstituting
hack into em. (194), we ohtain the following result:

£ - £

)+ B8 (n 2o By

= B(1- - + € +
B(1-k)E[e (n,, Ney) + €Ny + 1 ey ty

ty

+ BkSEQaH (398)

By dividing eg. (198) kv Py given ' eg. (63), an? Ww usirg egs. (44)
and {131}, we finally ohtain:

P 1 2 2
ﬁ fa-x) [(n eyt ey) H(nty oy )1+ te ooy
+ (1k )—[n Em Zn B |

c:yH cy ty

The re}.ation hetween the bending moment M and the stress Ux is

aiven hv:
M= j andA 25 CJ:ncnd‘p‘lpla\st:i-:: +J0xndA2pla'stic +f0 ndA ,
X elastic
A A A

lplastic 2 Aelasl::i.n:: i)

Eauations (192), (193) and (191) respectively, will now give us:

H/2
6_nda o = B|{-k)Ee +kE[————""~—n—e1}ndn
x ' 1plastic v H/2 a
Alplastic nty (201)
ey - €,
[ O g ptastic ~ E{ (1-k ey + k E[—HTE'__ n- Ea]}- ndn
) (202)
A2pl:=lst::i.c H/2
Tey € - €
- max a _
I cfxndAelastic - Bg El H/2 12 Ea ]?d?
(2031
Aclastic ey

Rv performing the integrations in eos. (201) to (203}, and
suhstituting back into ea. (200), we chtain the folloring result:



M = _ B 1 2_1 2 1 1
M BE 1(1 ks)[cy(4 Eﬂcy Enty )+ Eaciﬂcy 2nty )
£ - £ € - £
max a,l 3 3 max al 3
+ Fn, ~ +3n Dl +k T H
H/2 3ty 3¢y s H/2 12 }

(204)

By dividina eq., {204) hy Mel as aiven hv ea. (33), and by using eas.
(44) and (131), we finallv obtain:

3
n n 2 n 3 rlc _
M f ek (3R By - sy R ) ke
el

n 2

n 3 =n_3
)+ ar(y + (2 1TSS

cyz Ney
2y + (%)
(205)

£ (k)5 - 3(C

i i A = 4 = = = =
First yield corresoonds [ Emax/s:y 1 and M s T1ty H/2.
Plugging this into eg. (1929) will result in:

P/P . = e (206)
Pluaging the same values into eo. (205) will result in:

M/Mel = -e +1 (207)

By eliminating e between as. (206) and (207), we obtain:

ML+_1;__=1 (208)
el pl

Fouation (208) is identical to eo. (6}, and thus as expected egs.
{129) and (205) reduce to the elastic interaction curve when

n C’}’= n tV:H/Z and Ema’c/ £ V=1.

When kq=0 ane "N o= Ny ¥ will ohtain the fullv plastic state

t
for a pverfectly plastic material. Plueging this into eq. (199) will

give us:

P/P_. = Znty/H (20%)

rl
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Pluaging the same values intoc ea. (205} will give us:

2
M _ 3 _ GCEEX) (210)
Me 1 2 H

Bv eliminatina N hetween eg. (209) and (210), we end up with:

2
=3pn-G3—91
el pl

Equation {211} is equal to ea. (107), and thus as expected eas. (199)

{(211)

|K

=

and (205)reduce to the familiar interaction curve for a verfectlv
1 i ial = - =
nlastic material vhen ks 0 ard Q:v n ty
Wwith £ and e given, we are akle to calculate the corresponding

values of n oy and n The appropriate relations are obtained from

tv*
the strain Jistribution shown in Fia. l4a, from vwhich it follows:

+
T Ney (212)
EY
E

™
W ‘:SI

€y max ' (213)

n+ Ney m+ H/2
Elimination of N between egs. (212) and (213) will give us:

Ea + £ H
ncy == -~ ¢ o {214)
a max
By using eas. (44) and (131) we cen now write eq. (214} as:
e -1H
ncy e - L E (215)
~or by wing ~q. (185):
< H. _ (215)
T]cy = 2(1 e)/k

Obviously the maximum value of Moy is B/2. From Fig., l4a it also
follows that: ‘

bi — = max (217)
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By introducing eos. (212) and (214) in ea. (217), we will ohtain:

e+ € n
Ny =T e 2 (218)
max a
Bv using egs. (44) and (131) we can noW write eg. (218) as:
_ l1l+e H
"y T T -e 2 (219)
Or kv using eq. (185):
N =21 + e)/k (220)
ty 2 : ’

Ohwionsly the maximum value of My is H/2. Bv using this value of
N kv in egs. (199) and (205) we will obtain the solutions in the

primarv plastic regime,

APPROXTMATE MOMENT-CURVATURE RELATIONS

The ohjective of this chapter is to cohtain avoprovimate
moment-curvature thrust relations that can be compared with the
results form the Shanlev model analvsis. These approximate relations
are important since the exact solution is comolicated anc cannot he
exoressed in an explicit form.

When the entire cross-section is elastiec, the mon—iimensional
relation hetween midsection moment m and curvature k is given hy eq,

172). This elastic rmoment-curvature relation is valid until first
yvield is reached, as describe? by eq, (176). The value »
corresponding to first vield is O,y given bv ea, (180). At v equals

J-

Payr €9. {176) will give us:

k+pe1= 1 (221)

The elastic moment-curveture relation agiven hw ea. {172) is valid

until the limit given hbw ea., (221) is reached, such that:

m=k ; k<1l - pel {220
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The axial force-curvature relation up to first vield is given lw eq.

(174), such that:

k= —S— &, . k<l-p (223)
1 - p/p, €

When plastic effects are present (i.e. k >1 - D), the

1

following exmression will he investigated:

M/M Y
Ej“ = m (1 - %)Y”l - ‘ﬁ] b k21 =Py (22¢)
Where
m =1 -k (225)
pl
m =3 [1- (B )21
2 2 Pp1 {226}

For eq. (224) to cive an appropriate moment-curvature relation in the
plastic range, firstly when M/Mel =m we are in the elastic range so
that from eg. (222) we should have M/Mel = K/K,y =M. By plugging
MM_y = my into eq. (224) we get the result K/K y = my, so that the
first requirement is satisfied.

Secondlv, ea. (226) corresponds to ea. (107) which is the
interaction curve for the ultimate cavacitv for a rectanqular
cross-section and perfectlv-plastic material hehavior. The
corresponding requirement that eq. (224) must satisfy is that K/Kel
should approach infinitv vhen Mmel = m,. By plugging MM, = m, into
eq. {224) we see that aleo this requirement is satisfied. Ea. (224)
can he converted to give ¥M_; as a function of K/, with the
following result:

m
Y oow [1- (m, K_El)l/Y(l - ;i)]; k21l-py (227)

Mel 2

The exponent y 1is determined hw the requirement of continuitv of

elopes at K/I-(e.l =My, resulting in:
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Y= — =1 (228)

Bv introducing egs. (115) and (118), we can now rewrite eq, {(227) in

the following wav:

1/y

1
m=m [1-G) =n s k>1-0p, (229)

3] 1

Where

o, = @)Y - (230)
3 1 m
2
Equation (229} is the final expression for the mifdsection
moment-curvature thrust relation in the plastic range.
The avial force-curvature relation bevon? first vield can he
rbtained Yy eliminating m between egs., (120) and (229), with the

follawing result:

k = s k>1-p, (231)
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DISTUSSION

In the previous sections we have derived all the necessarv
expressions, and these will now be used to o the rmumer ical
calculations necessary to evaluate the Shanlev model analvsis,

Let ns start out with comparing the exact moment-curvature thrust
relation with the amwroximate ones,

The most simple case corresponds to mure bendina. The exact
moment-curvature relation is then given hy eas. (35) and (51} in the
elastic and elastic-plastic range respectivelv. This moment-curvature
ralation is sheem in Fig. 15. The influence of the strain hardening
coefficient k  for a value of kg, = 1/270 is also showm. The
approvimate moment-curvature relations are given hwy egs. {222) and
(229) in the elastic and the elastic-plastic range respectivelv. For
the hending case ec. (229} will reduce to eq. (51) with I“s = (1, such
that for this special case the exact amd amproximate moment-curvature
relations will coincide,

ithen the compressive axial force is present, the situation is
more complicated. 1In order to ohbtain the exact solution in this case,
we mist first find the limits that aive the transition from the
primary plastic to the secondary plastic regime so that the range of

validity for a given P/Ppl for the governing equiations in the
primary plastic to the qiven P/Pol for the governing ecuations in the
primarvy plastic and secondarvy plastic reaime can be estahlished.
Bquation (86) gives us the value of ncv when the transitior between
primarv plastic and secondarv plastic behavior occurs.

Now B using eas. (78), (82), end (85) toaether with eq. (86), ve
are able to plot P/PDl , MM I

el
the transition as a function of N

and K/Kel respectivelv, corresponding to
~+ . This is showmn in Fig. 16. For
a given B/P_, the value of ncv corresnonding o the transition can
ther he ohtained from this fiqure and then the corresponding values of
K/Kel and M/:—"el. For values laower than this limit, we use the
evpressions for the nrimarvy plastic reaime, vhile for values larger
than this value we use the expressions for the secondarv plastic
reaime,

The procedure to calculate the exact moment-curvature thrust
relations is row to start ocut with a constant value of P/PN' We can

then determine the extension of the elastic region with respect to
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MAM,, by ea. (66), and the corresponding elastic mment-curvature
relation is aiven “w eq. (7). Between the elastic recion and the
transition aiven hw Fig. 16, we are in the orimarv vlastic reqime, and
in this regime we obtain the moment-curvature thrust relations bv
first inverting eq. (78) to calculate n as a function of ﬁcv for a
given p/Pol in the appropriate range as given hy Fig. 16. We then use
eas. {82} and {85) to calculate the corresponding values of 1‘-‘1/Mel and
R/K el®

Tn the secondary plastic regime, we use egs. (90) and (94) to
calculate n and N ty 35 a function of N oy for 2 given P/Ppl’
corresponding to N . values in the secondarv plastic regime. We
then use these values of T'Icv, ntv' and n in egs. {98) and (101) to
calculate MM, and K/X,y respectivelv. The resulting exact
moment —curvature thrust relations are plotted in Fig. 17. In Fia. 17
we have aleo plotted the approximate moment-curvature thrust relations
which are ohtained 'w using egs. {222} and (229). PFram this fioure we
can see that, even if the approximate relations are much simpler to
use than the exact ones, the accuracy is reasonable and is alwavs
within 10% for our case.

In order to be able to do numerical calculations for the Shanlev
mlel, certain parameters must he selected. These parameters that we
need to know, are &, WO/L, kgr E/E,, %, and L/H.

With the above mentione?d parameters given, the calculation
procedure for the Shanlev mordel in order to cbtain the non-dimensional
axial force-axial Aisplacement p-& relationshin, and the
non-dimensional axial force-curvature o~k relationship is to start ocut
using egs. (181) and (183) to calculate Dc
P and ko given we then calculate Doyr which is the value of p
corresponding to first vield, from eaq., (180). Ve can now use egs.
(174) and (175) to calculate the elastic p-k and »-§ relationshio
resnectively for values of p< Day

and K respectively. With

In the elastic mlastic range we must use an incremental nrocedure
with increments in &% in order to obtain the p-k and p-& relations.
The initial values in this incremental procedure correspory’:. to the
transition from elastic to wlastic behavior, i.e. first vield.

The initial value of b in this incremental orocedure corresponds
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Iy

to Py as aiven tw eg. (180}, and the initial values of e and ep are
four? frem egs. (171) and (173) resvectivelv. First vield corresvonds
to z=1, and then the initial value of k can be found from eq. (1853).
With k and e given we can calculate Ney and Ny from egs. (216} and

(220) respectively. The maximum value of Ny and Ny is H/2. With

ncv and 7 knowm, we proceed with calculating 2, 8, and T from eqs.

ty
{150}, (152), and (154) respectively. and then Cyr Gy and Cq fram equs.
(144}, (145) and (146). We are now able to calculate the incremental re-
sponse de, dp, and dep fram egs. (147), (148), and (169) and (170) re-—
spectively. Then finally we can calculate the incremental response ds

fram the incremental version of eq. (166). We then update e, p, eR,.G '

and k by adding the incremental values to the initial, and we have completed
one step. After the first step we must go back and calculate n
and so on for the updated values.

oy’ "ty

In order to make this process converage, the increment in
curvature dk o he used mist he rather small. The first steps are
most critical and the value of dk can be increased later on. By
trving different values of dk it was fournd for our cases that dk =
0.01 should be used in the first 50 steps of each Shanlev model
calculation, amd in the following steps a value dk = 0,05 was found to
be sufficient.

Let us before ve present the p- § and p-k relations from the
Shanlev model, show the dependence of 3, S and I on & for ks = 0 and
variocus values of e. This dependence is showm in Figs, 18, 19, and 20
respectivelv. We see from Fig. 19 that bevond first vield ( tzl) S is
different from zero, Thus fraom eg. (135) the curvatures produce axial
forces, and from eg. (140) the axial strains oroduce bending moments.

Four different cases are now analvzed, The first case is given
by: 1/L, = 0.0015, k_ = 1/270, E/f, = 2.1 x 10°/355 and L/r = 30. The
value of L/r = 30 corresponds to L/H = 12.25 for a rectancular
crose-section. The p- § relation for this first case with L/H = 12.25
is showm in Fig. 21, and the correswonding p-k relation is shown in

Pig. 22,



The second case is the same as the first ane except for L/r which
now is equal to 70. This corresponds to L/H = 28.58 for a cclumn of
rectangular cross—section. The p-s relation for this second case
with L/H = 28.58 is shown in Fig. 23 and the corresponding p-k
relation shown in Fig. 24.

The third case corresponds to WO/‘L = 0.0005, ks = 1/270, E/fy = 638
and L/r = 49.504. This valwe of L/r corresponds to L/H = 20.21 for a
colum of rectangular cross-section. The p-4§ relation for this third
case with I/H = 20,21 is shown in Fig. 25, and the corresponding p~k
relation is shown in Fig. 26. The final case corresponds to the third
except for the value of W 0/I. which now equals 0.013, The p-9$ relation
for the final case is for the sake of coamparison also plotted in Fig. 25,
while the p-k relation is plotted in Fig. 27.

In order to evaluate the results fram the Shanley model analysis
it is now highly desirable to campare the results from the Shanley
model with the exact solutions. The exact solution is however very time
consuming to obtain. We can get around this problem by camparing the
Shanley model results with the results fram the approximate analysis.

We can do this because we have already shown that these approximate rela-
tions are very close to the exact ones in Fig. 17. The approximate non-
dimensional axial force curvature p—k relations are given by eq. (231).
The resulting p-k relation corresponding to the cases analyzed by the
Shanley model is plotted in Figs. 22, 24, 26, and 27 for comparison.

The agreement. between these two independent analysis methods is seen to
be good.
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4. STRENGTHENING CRITERIA

Rational criteria must be developed for the strengthening
requirements of Ice-Transiting Vessels. Existing requirements are not
always on the conservative side as evidenced by the ice damage to the
USNS MAUMEE, and to other Class C strengthened MSC ships such as the
TOWLE and WYANDOT. Recently two Canadian ships, one an icebreaker and
the other a commercial ice-transiting vessel, suffered extemsive hull
damage while operating in an ice zone specified by the Canadian Arctic
Shipping Pollution Prevention Regulations (CASPRR). It is
interesting to note that greater strengthening requirements are
imposed by CASPRR than by other regulatory bodies.

A detailed review of the existing strengthening criteria for ice
navigation is presented in 2 recent Ship Structures Committee Report
(42). In most cases strengthening requirements are based on
Johansson's work (60) who suggested plastic design methods for their
determination. The side plating between two adjacent transverse
frames was considered as a clamped-clamped beam and the corresponding
uniformly distributed collapse pressure was calculated. However, the
side shell ship structure consists of a grillage of intersecting beams
together with the associated plating. Thus the determination of the
collapse pressure should be based in the consideration of all possible
collapse merhanisms of the grillage structure. Ice damage records
should be evalua ted on the basis of the collapse pressure of the
grillage structure to define strengthening criteria for ice -
navigation.

In the present investigation the ultimate strength of
transversely loaded rectangular grids subjected to ice loading is
studied. The method described in Ref. 76 1is used to obtain the
yield point load of rectangular grillages loaded by lateral loads. A
grid is comsidered which consists of two sets of parallel beams at
right angles to each other. The grid is loaded by a discrete number
of lateral lbbads which are applied at the nodesof the grillage
structure. The lower bound theorem of limit analysis is used to
determine a statically admissible distribution of beam moments which

nowhere exceed the maximum bending moment (yield moment)} of the beam.
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A listing of the computer code BEAMPLT was kindly supplied by the
senior author of Ref. (76). The code BEAMPLT is 2 program for finding
the yield point load of transversely loaded rectangular grids. The
maximum statically admissible multiplier and an associated moment
distribution are computedusing/Linear Programming Techniques.

The necessary modifications have been made to the code BEAMPLT so
that the code now interfaces with the M.I.T. computing system
facilities. Furthermore, a subroutine has been prepared in order to
convert a prescribed ice loading uniformly distributed over a given
rectangular region, to equivalent nodal point loads. The output of
this subroutine forms the necessary input loading to the BEAMPLT
program. The extent and location of the ice loading are independent
variables of the problem.

A description of the ICEGRID program (modified BEAMPLT code) is

presented in the next section.

4.1 TICEGRID PROGRAM DESCRIPTION

ICEGRID is a FORTRAN computer program that uses plastic methods
of analysis to obtain the response of grillages subjected to uniformly
distributed transverse loads. Although ICEGRID can be used for many
different problems, the specific application discussed in this report
is for ship or offshore structures subjected to ice loading.

ICEGRID is a modification of the computer program, BEANPLT,
developed by Tait and Hodge (76), for finding the yield point load of
a transversely loaded point, flat, rectangular grillages. BEAMPLT
uses the lower bound theorem of limit analysis to find the maximum
safety factor of the grillage and the associated bending moment
distribution. The maximum safety factor of the grillage is defined
as that multiplier of the applied loads such that the grillage will
just collapse under the load (PP)fi,j (see Fig. 28) but will support
any smaller multiplier of the applied loads. A detailed description

of BEAMPLT is provided in Ref. (76).
BEAMPLT solves the problem of grillages subjected to point loads

acting at the nodes where two beams intersect. 1In order to analyze

the problem of ice loading against a structure it is desirable to
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consider the effect of "patch'" and line loads. These loads could be
used to simulate the pressure an ice sheet would exert against a
structure. The horizontal axes of patch or line loads are parallel
with the waterline. Point loads could represent localized regions of
high ice pressure loading that might be associated with consolidated
(multiyear) pressure ridge interactions (Gerwick (4) and Rojansky and
Gerwick (17))

It is also important to have the option to apply these loads at
any location within the grillage and not only at the beam
intersections. ICEGRID was developed to provide BEAMPLT with the
ability to solve the ice-structure problem.

The problem considered is to find the collapse load for a plated
grillage of perpendicular beams subjected to a set of transverse
loads. The strength of the plating is accounted for by altering the
yield moments due to the beams alome (25). This structural model is
valid vhen plate failure modes are not important. Coburn (43)
reports that the U.S. Coast Guard's-experieﬁce with ice damage has
been primarily due to frame failures and no significant failures of
plates between frames have been observed.

The applied transverse loads are converted into statically
equivalent point loads located at the appropriate intersections of
beams by using the lever arm principle. Once the equivalent point
loads have been determinedICEGRID follows the same procedure as
BEAMPLT for finding the safety factor and the associated moment
distribution. Included in Ref. (25) is a detailed description and
listing of subroutine GRID which converts the general loads into

statically equivalent loads located at beam intersections.

BASIC ASSUMPTIONS

It is assumed that the grid is made of a perfectly plastic
material and that deformations are infinitesimal prior to collapse.
The torsional strength of the beams is neglected and each beam has a
maximum bending moment (yield moment) that can be transmitted across
its eross—-section. Based on these assumptions the lower bound theorem

of limit analysis iz used to calculate PP.
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It is assumed that the yield moments of the beams in the horizontal
direction are all equal, as are those in the vertical direction.

The simulated ice loads are represented as uniformly distributed
rectangular patch loads, uniform line loads, or point loads as
discussed previously.

The major assumption made is that distributed loads can be
adequately modelled as statically equivalent nodal point loads.
Clearly the two cases do not provide the same collapse load estimate.

A method is presented in Ref. (25) to account for these differences.

INPUT DATA

The input data required by ICEGRID consist of the beam yield
moments, the number of nodes along the top and side, the horizontal
and vertical spacing between beams, the number of loads, the locad
data-including load type, magnitude, dimensions and centroid location

and the boundary conditions specified along the grillage's boundaries.

GRID SUBROUTINE

Once the load data have been specified ICEGRID branches to
subroutine GRID to convert the original loads into statically
equivalent loads located at the intersections of beams. GRID finds
the location of .the load within the grillage and determines the load
distribution for each grid. The lever arm principle is then used
within each grid to determine the statically equivalent forces at the
four corners of the grid. The nodal forces are then summed for nodes
that are common to two or more grids which are subjected to loading.
The resulting nodal forces are then transferred back to ICEGRID at the
appropriate nodal points. A detailed description of GRID is provided

in Reference (25).

4.2 PROBLEM FORMULATION
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EQUILIBRIUM EQUATIONS

A detailed discussion of the formulation of the equilibrium
equation is presented in Reference (76)}. A brief summary is given
below.

The matrix system used to identify the nodes and moments is shown
in Fig. 29. The row and columm indicating the location of a node is
given by i and j respectively. Figure 29 shows a free body diagram of
an interior node i, j, and the associated beam lengths, bending moments
and shear forces.

Since the torsional moments are neglected, the two horizontal

moments M, j at the nodes are numerically equal, as are the two
’
vertical moments Hi j* Moment equilibrium of the beam segment with
y

length {j—l requires that
V" = Vz = (Hi’i - M;,i_‘ )/ {i-. (232)

Similar expressions can be obtained for the other beam segments.

Force equilibrium at the node i,j in Figure 29 is satisfied by
V, +V, +7, +V, = (PP) 5,’5 (233)

where PP is the load factor and fi i is the applied point load at node
’

i,j. Substituting the shear force expressions (equation (232)) into

equation (233) gives the governing equation for node i,j which is

solved by ICEGRID in terms of the nodal moments and safety factor PP:

1 1 1 1
Mi,-Mk,j-1 Mi,{-Mi,i+1 Mi,j-Mi-1,d M1, -Mi+l,]
- __

-1 % 21 Y

LA

This equation satisfies equilibrium for an interior node. For
nodes located at, or adjacent to, the grillage boundaries equation
(234) may be simplifed depending upon the boundary conditions. The
two boundary conditions considered by ICEGRID are the clamped, and simply
supported cases. If the boundaries are clamped an unknown moment will

exist at each of the boundary nodes, but if the
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boundaries are simply supported boundaries.

The yield moments of symmetric beam with at least one axie of
symmetry are computed form the material yield stress and the
cross—sectional dimensions of the beam.

ICEGRID assumes that all horizontal beam have a yield moment of

Ho' The unknown nodal moments must therefore satisfy teh following

relations

Mg .é Mi,s \QMO

! f
—ML & M £ ™M (235)

L)
The lower bound theorem of limit analysis is now used to solve
the following problem:
"Find a distribution of moments Mi,j amd Hi,j which maximizes the
load factor PP subject to the conditions given by equation (234) and
inequalities (235)."

LINEAR PROGRAMMING PROBELEM

A linear programming procedure is used to solve for the load
factor and unknown moments. The formulation of the linear programming
problem is discussed in detail in reference (76) and a brief summary
is given below. A typical linear programming problem seeks to

maximize a scalar objective function 4’ which is defined as

d =2 G¥ (236)

=1
where the Xj represent the components of the unknown vector (X;, Xj...

X ) and Cj are the objective function coefficients. ¢ is linearly

dependent upon xj and must satisfy a set of constraints

i a;; X (R )by (237)

=
where the symbol (+R+) may stand for any of =, £ or 2> . The
variables b. must be non-negative. The vector components Xj are also

subject to the constraint



. (238)
% %0

The linear programming problem may now be stated as:

"Find the vectors Xj which maximize 4) subject to equations (237)
and inequalities (238)."

In order to satisfy the requirement imposed by inequality (238)
the horizontal and vertical moments are related to the vertor

components Xj by

Yo = My + Mo ( Hotizomtad)
3

| I
Ke= Mi; & Mo (Verkica?) (239)

so that the imfqualities (238) are transformed to

0 & Xe £ 2Mo

| (240)
0 < K € 2™,
An additional vector component Xz is defined as:
FP = X {241)

Replacing PP by Xi in all of the equations (234) will transform them
to the form of equation (237).

The lower bound problem has now been converted to a linmear
programming problem. After solving for the vector components Xj’ the
load factor and moments can be obtained from equations (241) and
(239).

ICEGRID uses the International Mathematical and Statistical
Library (IMSL) subroutine ZX3LP to solve the linear programming
problem. A detailed discussion of ZX3LP including a simple example
showing how ICEGRID arranges the input data for ZX3LP is given in
Reference (25).
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4.3 DISCUSSION

Several problems are solved using the ICEGRID program to study
the effect of adding frames and/or stringers to a square plate
subjected to a uniformly distributed patch load. The safety factors of
two loading conditionsare plotted n Figures 30 and 31 for several
grillages. The loading for both cases is assumed to be
symetrically located between the main deck and inner bottom and to
extend across the entire width of the grillage structure. The
grillage length and height are taken to be equal to one as are the
horizontal and vertical yield moments (any consistent set of units may
be used). The forces per unit area of the patch load is also equal to
one. Figures 30 and 3! show the results obtained for the cases of the
vertical extent of the load (=ice thickness) being equal to .2 and .3
times the vertical dimensions of th plate respectively.

It is interesting to note that the grillages having three
intermediate loﬁgitudinal stringers apparentlyhavé a lower safety
factor than grillages with only two longitudinal stiffeners. This is
due to the geometry of the problem and the conversion of the
distributed load to statically equivalent loads acting at beam
intersections. The grillage containing two longitudinals has the patch
load centered between the stringers with each carrying half the load.
The grillage having three stringers has the load centerd upon the
middle stringer which supports most of the load. Thus the force
supported by the middle stringer is greater than the force shared by
the two adjacent longitudinal stringers and a smaller safety fartor is
calculated for the grillage containing three intermediate stringers.
Once the ICEGRID program is modified to azllow the formation of
intermediate plastichinges between beams it should be possible to
correct this descrepancy.

A close look at the results shown in Figures 30 and 31 reveals
that non~symmetric collapse mechanisms are obtained for the 5x5, 6x5,
and 5x6 grillages. Since the grillages are symmetrically loaded and a
symmetric soldtion must exist this implies that the solution is not

unique. The possilibity of multiple solutions is discussed by Tait
and Hodge (76). The lack of uniqueness explains the fact that in may

cases yield moments are obtained that are not yield hinges. In

general there will be at least as many excess yield moments as there
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are degrees of indeterminancy.

The results of Johansson are also plotted in Figures 30 and 31.
Johansson did not consider longitudinal stringers in his model and his
results therefore do not change when additional stringers are added.
The ICEGRID program allows various collapse mechanisms to form and the
prediction of the collapse load is therefore expected to be lower than
the collapse load predicted by Johansson who considered only one
collapse mechanism. However, from the results plotted in Figures 30
and 31 it appears that Johansson's values are more conservative. The
primary reason for this is that the ICEGRID program in its present
state of development only allows plastichinges to form at beam
intersections. Whtn ICEGRID is modified to allow the formation of
intermediate plastichinges between beams it is expected that the
results will be more conservative than Johansson's.

Another plot showing the effeect of increasing the number of
intermediate frames and stiffeners is shown in Figure 32. This figure
plots the ratio of the safety factor of a particular grillage (PP) to
the safety fartor of a grillage with only one intermediate frame (PPI)
versus the number of intermediate frames. It appears that these
ratios remain constant for the loading conditions previously described
as long as the loading height does not extend beyond the top or bottom
of the grid it is centered in.

It must be re-emphasized that the results given here should only
be used when the applied lopads are:actingat the nodal points of the
grillage structure since the ICEGRID program does not allow the
formation of intermediate plastic hinges and therefore does not allow
many potential collapse mechanisms to occur. When the program is
modified to allow intermediate hinges to form between beams then many

of the shortcomings of the ICEGRID program could probably be resolved.
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5., CONCLUSIONS

The present report very briefly summarizesexisting methods to
predict the maximum ice pressure exerted on the walls of the side
shell structure of an Ice-Transiting Vessel., Furthermore methods are
developed to define stiffness and strengthening criteria for the
structural design of Ice-Transiting Vessels.

Methods to obtain structural criteria for ice navigation are
given for the basic structural elements of the side structure: plates,
stringers, frames and the grillage assembly. Plate criteria were
suggested in References 41 , 62 , and 63 . These give very useful
practical suggestions for plate damage due to ice loading.

First-yield structural criteria for stringers and transverse
frames are given in section 3.1 and Reference 82 . Ultimate plastic
strength criteria for stringers and transverse frames are given in
section 4 and References 25 , and 26 . Elastic-plastic buckling
ecriteria for transverse frames are given in sections 3.2 and Referenre
84 .

Structural buckling criteria for transverse frames are very
important since as reported in Referemce 41 structural damage due to
ice loading has always been associated with frame buckling or
erippling of its web. As reported in Reference 39 these
elastic-plastic frame buckling criteria are valid when the web depth
to thickness ratio for flatbar sections is lower than about 0.44‘E7;;
where E is the Young's modulus and fy is the yield stress in
compression. For higher values of this ratio web crippling is likely
to occur and the method presented in Reference (67)is applicable.

Structural criteria for the grillage assembly can be obtained
using the methods reported in section 4. We adopted to ice loading
the limit analysis method presented in Reference (76) . The listing of
the resulting computer program is given in Reference (25).

More details of the work dome on this project are reported in the
following Referemces: (14}, (22}, (25}, (26), (36), (38}, (40, (44},

(83) and (88 . 1In section 8.2 a bibliography search on torsional
buckling and tripping is included.
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6. RECOMMENDATIONS

There are two important aspects of the strengthening criteria
problem that should be further inmvestigated. The first one is the
coupling of local frame buckling modes with the grillage mechanisms of
collapse. The second one is the development of fracture-tearing
criteria for the stiffened panel assembly.

The coupling of local modes to grillage mechanisms ghould be
considered. One should check if this coupling results in lower
collapse loads than the ones predicted without considering this
effect. One way to develop this method is to incorporate into the
grillage code presented in section 4 the numerical buckling method
presented in section 3.2. Alternatively one may want to use the
approximate method presented in section 3.2.

Another important area for further work from the practical
viewpoint is the development of fracture-tearing criteria for the
stiffened panel assembly. The photographs of ice damage included in

Reference 42 show an example of such a mode of failure.
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NOMENCTIATURE OF ICE TERMS

FLOATING ICE:

SEA ICE:

FIRST YEAR

ICE:

OLD ICE:

CPEN WATER:

ICE FREE:

FIQOE:

BRASH ICE:

Any form of ice found floating in water. This
term includes ice that is stranded or grounded.

Any form of ice found at sea which has originated
fram the freezing of sea water.

Sea ice of not more than one wintetr's growth.
Thickness, 30 am to 2m. (12" to 6').

Sea ice which has survived at least one summer's
nmelt.,

A large area of freely navigable water in which
sea ice is present in concentration less than

1/10.

No sea ice present. There may be same ice of
land origin (icebergs, growlers) present however.

Any relatively flat piece of sea ice (65') or more

across.

A massive piece of sea ice composed of a hummock

or a group of humrocks frozen together and separated

from any surrounding ice. It may float up to Sm
(16') above sea level.

Accumalations of floating ice made up of fragments
not more than 2m (6') across, the wreckage of other
forms of ice.
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APPFNDIX A (cont.)

ICEBERG: A massive piece of land formed ice of greatly varying
shape and size, showing more than 5m (16') above sea
level. Icebergs in heights above sea lewvel of 450'
have been sighted in Canadian and Greenland Arctic
waters.

MILTTI YEAR 0ld ice -up to 3m (10') or more thick which has survived

ICE: at least two summers' melt.

PACK ICE: Any accumulation of Sea Ice other than fast ice, no
matter what form it takes or how disposed.

ICE COVER: The ratio of an area of ice of any concentration to the
total area of sea surface within same large geographic

locale.
QONCEN- The ratio in tenths of the sea surface actually
TRATION: covered by ice to the total area of sea surface,

both ice covered and ice free, at a specific location

or over a defined area.

COMPACT Pack ice in which the concentration is 10/10 and no water

PACK ICE: is visible.

COONSOLIDATED Pack ice in which the concentration is 10/10 and the
PACK ICE: “floes are frozen together.

CPEN PACK Pack ice in which the concentration is 4/10 to 6/10
ICE: with many leads and polynyas, and floes are generally
not in contact with cne another.

BERGY BIT: A large piece of floating glacier ice, generally
showing less than 5m (16') above sea lewel, hitk mnre than
Im (3') and of 100 sg. to 300 sq. metres (109 to 328 sg. yds.)
iln area.
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APPENDIX A {cont.)

GROWLER: Smaller piece of ice than a Bergy Bit or FLOEBERG,
extending less than Ilm (3') above the sea surface
and with an area of about 20 sq. metres (65 sq. ft.).

ICE UNDER Ice in which d&formation processes are actually occurring

PRESSURE : and hence a potential impediment or danger to shipping.

HUIMMOCKING: The pressure process by which sea ice is forced inte
hamocks.  When the floes rotate in the process it is
termed screwing.

RIDGING The pressure process by which sea ice is forced into
ridges.

RAFTING: The pressure process by which sea ice is forced into ridges.

FRACTURE : Any break or rupture through very close pack ice, con—
solidated pack ice, fast ice, or a single floe, resulting
from deformation processes. Fractures may contain brash
ice.

CRACK: A fracture that has not parted.

LEVEL ICE: Sea ice which is unaffected by deformation.

DEFCRMED General term for ice which has been squeezed together

1CE: and forced upwards or dowrwards, e.g., rafted ice, ridged
ice, hummocked ice.

RIDGE : A line or wall of broken ice forced up by pressure. The
sukmerged volume of broken ice under a ridge, forced
downward by pressure, is known as Ice Keel.

HUMMOCK ¢ A hillock of broken ice which has been forced upward

by pressure. The submerged volume of broken ice under
the hummock, forced dowrward by pressure, is known as a
Hurmmock.



APPENDIX B
TRANSVERSE FRAME FOUNDATION MODULUS PREDICTION
The derivation of equation (17) is presented in this Appendix.
The deflection v at the midlength of the longitudinal stringer
in way of ice loading length L, subjected to uniformly distributed ice
loading of magnitude g per unit length is

vg = 5qL’/384ET (B.1)

for simply supported boundary conditions, where E is the Young modulus
of the hull structural material and IL is the longitudinal stringer
cross-sectional moment of inertia. For fixed ends the deflection Vp

is
v = qL4/384E1L (B.2)

In reality the ends of the longitudinal stringer are elastically restrained.
An estimate of the resulting longitudinal stringer deflection v is made
by taking the gecmetric mean of Vg and Ve

v = 0.005823@4/3&_ (B.3)

For closely spaced longitudinal stringers the discrete elastic supports
can be replaced by an imaginary continuous elastic foundation with elastic
modulus

3

K.L = qL/vsL = 171.73ELL/SLL (B.4)

where s is the longitudinal stringer spacing. The above condition is
satisfied if Sy, satisfies the inequality provided by (18).
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9. TITLES OF FIGURES

Figure 1. Stress-strain rate curve for uniaxial campression and
indentation of 52 ice at -10°C.

Figqure 2. Maxirmum ice pressure as a function of ice thickness;
vertical sided structures; I =1, m= 1, K = 1A2,

O = 1958kPa (284 p.s.1.}, Tg — 296 kpa (43 p.s.i.),

5
P

1000 kg/m> (62.4 1b/Et7), E; = 3.9%10°KPa
(5.7#10% p.s.i:), vy = 0.34 and n = 1.

Figure 3. Ice sheet forces (sloping structure).
Figure 4. Gecmetry of the side shell structure.

Figure 5. Beam of rectangular cross—section subjected
to pure bending.

Figure 6. Bilinear stress—strain relation.
Figure 7. Bending deformation of beam segment.

Figure 8. Stress distribution in the elastic-plastic
range in the pure bending case.

Figure 9. Stress distribution in the elastic region when both
bending moment and axial campression are consicered.

Figure 10. Elastic-plastic stress distributions when both bending
moment and axial compression are considered, a) Primary
plastic, b) secondary plastic, c) fully plastic.

Ficjure 11. Generalized Shanley model.

Figure 12. Relation between curvature and rotation of the spring.

Figure 13. Displacement Uy due to change in gecmetry.
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9. TITIES OF FIGURES (cont.)

Figure 14. Stress and strain distibution in secondary plastic regime
when strain hardening is included.

Figure 15. Moment-curvature relation in pure bending.

Figure 16. Moment-curvature thrust coordinates in the transition
state between primary plastic and secondary plastic
behavior.

Figure 17. Moment-curvature thrust. relations.

Figure 18. Reduction of sectional area parameter A with
extent of partial yielding.

Figure 19. Reduction of sectiocnal area parameter S with exttent
of partial yielding.

Figqure 20. Reduction of sectional area parameter T with extent
of partial yielding.

Figure 21. Non-dimensional axial force versus axial displacement
variation for Shanley model with L/H = 12.25.

Figure 22. . Non—dimensiocnal axial force versus axial displacement
variation for Shanley model with L/H = 28.58.
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9. TITLES OF FIGURES {cont.}

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Figure 2%.

Figure 28.

Grillage problem sclved by: a) BEAMPLT, b) ICEGRID.
Free body diagram of an interior node.

Collapse load of grillages; load height/grillage
height = 0.2. '

Collapse load of grillages; load height/grillage
height = 0.3.

Non—-dimensional collapse load of grillages.

Ice pressure versus contact area from Reference (9).
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The second case is the same as the first one except for L/r which
now is equal to 70, This corresponds to L/H = 28.58 for a colum of
rectangular cross-section. The p-s relation for this second case
with IL/H = 28.58 is shown in Fig. 23 and the oorresponding p-k
relation shown in Fig. 24.

The third case corresponds to WO/L = 0,0005, ks = 1/270, E/fy = 638
and L/r = 49.504. This value of L/r corresponds to L/H = 20,21 for a
colum of rectangular cross-section. The p-§ relation for this third
case with L/H = 20.21 is shown in Fig. 25, and the corresponding p-k
relation is shown in Fig. 26. The final case corresponds to the third
except for the value of WO/L which now equals 0.013. The p-$ relation
for the final case is for the sake of comparison also plotted in Fig. 25,
while the p-k relation is plotted in Fig. 27.

In order to evaluate the results from the Shanley model analysis
it is now highly desirable to coampare the results from the Shanley
model with the exact solutions. The eicact solution is however very time
consuming to obtain. We can get around this problem by camparing the
Shanley model results with the results from the approximate analysis.

We can do this because we have already shown that these approximate rela-
tions are very close to the exact ones in Fig. 17. The approximate non-
dimensional axial force curvature p—k relations are given by eq. (231).
The resulting p-k relation corresponding to the cases analyzed by the
Shanley model is plotted in Figs. 22, 24, 26, and 27 for oomparison.

The agreement between these two independent analysis methods is seen to

be good.



