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EXECUTIVE SUMMARY

The Transit Risk Project focuses on the development of models from historical
casualty data to predict the risk of navigational vessel casualties during transits into and
out of port. During the first year, the project has focused on a modet of grounding risk at
the port level, with special emphasis on the contribution of inaccuracies in navigation
charts. In the second year, the project will continue this work and supplement the port-
level analysis with a more detailed model at the waterway segment level. In the third year,
it is expected that the focus will shift to other casualties, such as collisions.

Much of the first year’s work centered on the collection, evaluation, and analysis
of data available on groundings in five U.S. ports (Boston, New York/New Jersey,
Tampa, Houston/Galveston, and San Francisco) between 1981 and 1995. U.S. Coast
Guard casualty data and U.S. Army Corps of Engineers transit data were used to
construct time series of grounding rates for the study ports. These grounding rates, and
how they are affected by factors specific to each port, are the guantity to be predicted by
the model. A set of parameters were examined to determine whether they are meaningful

“contributing factors” to the risk of grounding, and therefore useful in the development of
a port-level model of grounding risk.

Vessel type and size were found to be useful parameters; barge trains have higher
historical grounding rates than self-propelled vessels, and large ships have higher rates
than small ships. Uncertainty in hydrographic surveys, on which nautical charts are based,
does not appear to be a useful parameter. Wind speed and visibility conditions were found
to be useful parameters; historical groundings are associated with higher average wind
speeds and lower average visibility than safe transits. Other parameters, such as
operators’ skill (as represented by proxies such as flag of registry) and complexity of the
transit (using summary measures of channel complexity) are still being evaluated.

The results of the first year's work suggest that while the data available on
historical groundings are far from complete or ideal for the construction of a mode!, there
is sufficient information in the available data to construct a port-level model with some
explanatory and predictive ability. Descriptions of the available data and specific
recommendations for future data collection to improve the basis for modeling of this kind
are included in the progress report. A separate model of economic risk has been
developed, making use of a large body of previcus work by the U.S. Coast Guard and
others, to related physical grounding risk to expected economic losses.

In the second year, completion of work on the port-level risk model will proceed in
parallel with development of a larger-scale model of risk within a segment of a single
waterway. This model will incorporate results of the port-level analysis, and also capture
features not included in the port-level model, such as specifics of the channel design,
navigational aid configuration, currents, and water levels.
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1. INTRODUCTION
A. Background and Objectives

Starting in the fall of 1995, researchers at the Massachusetts Institute of
Technology (MIT) Ocean Engineering Department and the Marine Policy Center (MPC)
of the Woods Hole Oceanographic Institution (WHOI) have collaborated on a project on
Formulation of a Model for Ship Transit Risk. The project was developed by MIT, in
collaboration with MPC staff, as a three-year research activity. The focus of the first year
was on collection and assimilation of data to support an improved understanding of the

factors contributing to vessel groundings. This report describes the research findings of
the first year of the project.

Groundings of commercial ships account for about one third of all commercial
maritime accidents, including some of the worst in the United States' history, such as the
Exxon Valdez. Many factors contribute to vessel groundings. Some of these factors are
of particular concern to federal agencies charged with responsibility for certain aspects of
the nation's marine transit routes. For example, the National Oceanic and Atmospheric
Administration (NOAA) is responsible for the survey of U.S. waters and for the
publication of nautical charts. The U.S. Coast Guard (USCG) and the U.S. Army Corps
of Engineers (ACE) are responsible for navigation aids and for channel design and
maintenance, respectively. All of these factor may influence how likely groundings are to
occur.

The main objective of the first year's work has been to investigate the relationship
between various factors, such as environmental conditions and uncertainty in nautical
chart depth data, and historical grounding incidents. This has been done with a view to
the eventual development of a model of the probability of grounding (physical risk), with
particular emphasis on aspects of such a model that might inform the prioritization of
areas for re-survey. A secondary objective has been to develop a means of estimating the
economic consequences of groundings (economic risk). Qur work over the past year
suggests that, while the historical data on circumstances surrounding groundings in U.S.
waters are neither perfect nor complete, they contain information useful to understanding
why groundings occur, and therefore justify further effort on the development of a
physical risk model. The reasons for this conclusion are documented in this report. We
also find that existing data and models support the development of an associated economic

risk model. A simple version of this has been assembled and is also described in this
report.




Following a decision reached with the project advisory group, the first year's work
focused on five study areas: San Francisco Bay, Houston/Galveston, Tampa Bay, Port of
New York/New Jersey, and Boston Harbor. Site visits and meetings with maritime safety
organizations were held in San Francisco and Houston/Galveston. Data on historical
groundings, transits, environmental conditions, and aspects of navigation infrastructure
were collected for each study area for the period 1981 to 1995 from sources including
national and local units of the U.S. Coast Guard and the U.S. Army Corps of Engineers;
NOAA's National Ocean Service, National Climate Data Center, National Geophysical
Data Center, and National Data Buoy Center; and local port authorities, marine
exchanges, and pilots.

B. Physical Risk Model and Variable Selection

The general hypothesis behind the physical risk model is that the probability of
grounding on a particular transit depends on a set of explanatory variables. Formally, the
model can be described as follows: let G denote the event that a transit results in a
grounding, and let X = (X.; X3, X;, ..., X;) be the vector of explanatory variables. These
variables may be categorical (including binary) or continuous. The model attempts to
estimate the conditional probability of G given a specified value x of X. By Bayes'
Theorem, this probability is given by:

p(Glx) = IxIG) p / ((x|G) p + I(x[S) (1-p))

where p is the unconditional probability of G and where I(x|G) and I(x|S) are the
likelihoods of x given G and S, respectively, where S denotes the event that the transit is
completed safely.

To implement this approach, it is necessary to select the set of explanatory
variables that best discriminates between G and § (Hand, 1981) and to estimate the
unconditional grounding probability p and the likelihoods I(x|G) and 1(x|S). We have used
USCG, NOAA, and ACE data to determine p for the study ports, and to construct
samples representing transits G and S, The main challenge lies in the design of the vector
of explanatory variables X, which must capture the attributes of the transit that can be
expected reasonably to contribute to the likelihood of a grounding. This task occupied
most of the analytical effort over the past year. The attributes were thought to include,
among others:

a. skill, training, and experience of vessel operator(s)

b. topographic difficuity of the transit

¢. environmental difficulty of the transit

d. quality of operator(s)’ information about topography

e. quality of operator(s) information about environmental conditions
f. vessel maneuverability




For each attribute, explanatory variables (x;) must be extracted from historical data
as numerical or categorical indicators. Existing data support the inclusion of these
attributes in the analysis to varying degrees, as described in the sections that follow.
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2. TRENDS IN GROUNDING RATES

A. Groundings

Grounding data are drawn from the USCG’s CASMAIN (1981-90) and MSIS
(1992-95) databases. Data for 1991 are sparse and obviously incomplete in each dataset;
we replace the 1991 counts by averages of the four surrounding years for purposes of
analysis. From the USCG data we selected for inclusion in this study only accidental,
navigational groundings, and ignored those identified as intentional or due to mechanical
failure or other, clearly non-navigational cause. We consider separately large (draft
greater than 30 feet) and small tankers and dry cargo vessels, tank barge trains and dry
cargo barge trains (a barge train is defined as a tug/towboat attached to one or more
barges). Table 2-1 shows the number of groundings in the data for each study port and
year.

Seasonal trends appear in the grounding counts of both ships (Figure 2-1) and
barge trains (Figure 2-2), most significantly for the Port of Houston and, less strongly, the
Port of New York. This may be due in part to seasonal environmental conditions {see
Figures 5-1 and 6-1) and/or to seasonal fluctuations in traffic volumes. We will examine
seasonal fluctuations in traffic volumes once more detailed transit data are obtained.

B. Transits

Transit data are based on ACE Waterborne Commerce Statistics annual
summaries, 1981-1994. We have assumed that 1995 transits are the same as 1994, since
1995 data are not yet available. Monthly summaries are being obtained for 1992-94 to
investigate seasonal fluctuations. To avoid double counting, we based our transit count
for each study port on data for only one “waterway” in each port, as follows:

waterways code

Port of Boston 0149
New York and New Jersey Channels 0388
Tampa Harbor 2021
Houston Ship Channel 2012
San Francisco Bay Entrance 4320

This procedure leads to underestimation of actual vessel movements, especially for
Houston and New York. Unfortunately, there appears to be no simple way to build more
accurate time series of transits for study port areas.
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We examine transit data using the same vessel type and size breakdown as for
grounding data. Figures 2-3, 2-4, and 2-5 illustrate transits for ships and barge trains in
each study port over the study period. The only explicit adjustment we made to ACE
annual trip data is in the small dry cargo vessel category for the port of Boston, which

included a large number of very small vessels (local passenger ferries). These have been
removed from the data.

C. Grounding Rates

Grounding rates are calculated by dividing annual groundings by transits for each
port. The raw grounding rate data are shown in Appendix 1. To clarify the trends, we
show smoothed (five-point moving average) grounding rates for all ships in Figure 2-6 and
all barge trains in Figure 2-7. Caution is in order when comparing these grounding rates
across ports. Local USCG offices may employ different reporting criteria from one port
to another (which could lead to apparent reductions in groundings), and our procedure for
building transit counts may underestimate actual traffic densities to varying degrees in
different ports (which would lead to inflated grounding rates).

Given these caveats, it appears that the time-averaged grounding rate for ships is
highest in Tampa, lowest in Boston, and clustered in between around (0.75 groundings per
1000 transits, one grounding in 1300 transits) for New York, Houston, and San Francisco.
The most obvious temporal change occurred in Tampa, where ship grounding rates rose
significantly from 1986 to 1990 and then declined again to pre-1985 levels.

Grounding rates for barge trains appear to be lower in Boston and New York than
in other ports. The Houston barge train rate declined during the early and mid 1980s but
has risen again since then. In Tampa, the barge train grounding rate surged and then
declined again, much like the ship grounding rate, but slightly earlier in time.

These underlying historical grounding rates form the basis for an estimate of p, the
unconditional probability of grounding, in the physical risk model.
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Figure 2-4
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Figure 2-5
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3. FACTOR: VESSEL TYPE AND SIZE

Other things equal, a more maneuverable vessel may be expected to have a lower
probability of grounding than a less maneuverable vessel. It is difficult to obtain
meaningful summary measures of maneuverability. As a result, our analysis has to rely on

proxies such as vessel type, vessel size, and whether tugs were present/used during the
transit.

Our data suggest that barge trains are more likely to ground than ships, except in
the port of New York. This is consistent with our expectations about maneuverability:
barge trains are, in general, likely to be less maneuverable than ships. Table 3-1 shows 15-

year average grounding rates for ships and barge trains, abstracting from the grounding
rate data reported in Appendix 1.

Table 3-1: Average Grounding Rates, Ships and Barge Trains, 1981-95

Baoston New York Tampa Houston San Francisco
ships 0.32 0.72 1.32 0.89 0.65
barge trains 0.37 0.18 1.84 1.28 2.28

Our data also suggest that larger ships are consistently more likely to ground than
small ships (draft less than 30 feet). Figure 3-1 shows time-averaged grounding rates for
small and large ships in each study port. This result is also consistent with our
expectations about maneuverability.

These findings suggest that factors such as vessel type and size can usefully be
employed in developing the physical risk model. We are beginning to investigate related
factors, such as the presence and use of tugs during vessel transits.

15
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4. FACTOR: UNCERTAINTY IN SURVEYS/CHARTS

Other things equal, a transit through an area for which perfect charts are available
may be expected to involve less risk of grounding than a transit through an uncharted or
poorly charted region. Historically, navigators® knowledge of their own position was
uncertain enough that they were very cautious of approaching charted hazards. The charts,
and their underlying surveys, had generally far greater accuracy, and were constructed
with much better instruments than those available to the average mariner. However,
during the last 15 years we have experienced a shift in the technology available to
navigators. Today, GPS users can position themselves with more accuracy than most of
the surveyors were able to when they collected the data on which most charts navigators
use today are based. This may have eroded some of the safety margin that was previously
incorporated into the charts (Kielland and Tubman, 1994). Our objective has been to
examine the possibility that the uncertainty in paper charts based on older surveys have
made a contribution to the incidence of groundings in U.S. ports. To do so, we are
analyzing hydrographic data for uncertainty using a program called Hydrostat and
combining the results with grounding locations data to check for correlations between
cartographic uncertainty and historical groundings.

A. Hydrostat Algorithm

The main function of the Hydrostat software is quality control of bathymetric data
(Kielland et al, 1992). This hydrographic data processing program was developed by
Geostat Systems International Inc. under contract with the Canadian Hydrographic
Service (Dagbert, 1993). It is based on the requirement to make survey procedures more
efficient, and the theory that survey errors no longer are negligible compared to other
uncertainties facing navigators. By providing electronic chart users with statistically valid
error estimates for the data they are using, for example, it is believed that this program will
increase the utility and improve the safety of nautical chart data.

There are three main error sources when charts are designed from survey data:
instrumental errors, interpolation errors, and design errors. Instrumental errors consist of
positioning errors and depth measurements errors, and are assumed to be constant over
the survey. The approximate size of these errors depends on the particular survey, but they
are usually smaller than interpolation errors. Design errors are document handling errors
and safety biased errors when data are transferred to navigational documents. Since both
design errors and instrumental errors are well known and incorporated in the charts, they
are of no particular interest to our investigation. Interpolation errors are bathymetric
uncertainties that exist in the unsounded zones between measured soundings. They are the
least controllable error for chart design and the focus of our investigation. If the surveyed

17




depths are far apart then, depending on the topography of the sea floor, these interpolation
errors can be much greater than the instrumental errors in the measurements themselves.
They vary continuously and are unique to every location on a chart.

The Hydrostat software computes the depth in the unsounded zones between
measured soundings using a geostatistical depth interpolation algorithm which also
predicts the depth estimation errors inherent to each point on the interpolated bathymetric
model. The results of the computation are two specific features: a bathymetric surface and
a stochastic surface. The bathymetric surface is the digital terrain mode! interpolated from
the observed sounding profiles, and is strictly a function of water depth. The stochastic
surface is composed of the vertical error estimates for every point on the bathymetric
surface. This surface is a function of both seabed texture and data sampling density. We
are currently using the stochastic surface (the interpolated errors of the depth estimate) as
a proxy to check for correlation between cartographic uncertainty and historical
groundings. This is further described below.

B. Survey Data

Within the five study areas, for the period 1981-90 and 1992-95, we found 886
groundings in the Coast Guard accident database of interest to this investigation. Of these
886 groundings, 125 accidents (14%), all from the CASMAIN database (1981-90), have
no latitude/longitude location information. This leaves 761 accidents to evaluate (see
Table 4-1). Based on plots of these remaining locations on nautical charts, 612 of these
accidents happened around dredged channels or rivers, 109 accidents happened in areas
amenable to investigation with Hydrostat, and the remaining 40 had an obviously faulty
entry for location (they plotted within very shallow areas or on dry land). Groundings
around dredged channels are not due to the sort of bathymetric uncertainty for which
Hydrostat is designed (Hydrostat assumes the sea floor to be isotropic and the variation in
depth variation to be normally distributed). Hence the basis for this part of our evaluation
was reduced to 109 accidents, or 12% of the original number.

Unfortunately, not all of these 109 accidents are reported to sufficient accuracy to
be useful for this analysis. In theory, the location of the accidents are given in the USCG
database to an accuracy of +/-0.1 minutes latitude/longitude, or +/-150 to 200 meters in
the areas we are examining, However, many of the accident locations are reported
without the last decimal, which results in an accuracy of +/- 1500 to 2000 meters and
makes them worthless to our study (see Table 4-3). This leaves us with between 58 and 83
useful groundings for this part of the evaluation. Although we would prefer to have more
data available, this is still a statistically useful sample.

The hydrographic survey data were obtained from the National Geophysical Data
Center (NGDC) of NOAA, and includes depth measurements and bottom features. These
data are part of the base from which NOAA charts are designed. We analyzed the most
recent surveys for the areas of interest. These surveys differed greatly in age, quality, and
density of data.
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The analysis proceeds as follows: the locations of the accidents are plotted on a
chart. The underlying hydrographic survey data are identified and reformatted and
analyzed by Hydrostat to produce the interpolated error estimates. Both the interpolated
errors at the location of the accidents and a general distribution of the errors are
computed. These two results are compared to check for correlation between cartographic
uncertainty and historical groundings. A correlation would be indicated by a
concentration of the point-errors on the high side of the general error distribution.

C. Results to Date

To date, we have examined charted depth uncertainty for two of the five study
ports in detail: New York and Houston/Galveston. Only 6 of the 114 New York accidents
are located in the right kind of region and have good enough location accuracy to be
evaluated by Hydrostat. Figure 4-1 shows depth error, depth curves, and accident
locations for a sample New York survey area. Figure 4-2 shows the overall distnbution of
interpolated errors of estimated depth in the same survey, as well as the interpolated errors
of the depth estimates at locations where the accidents occurred. Results are similar for
other New York survey areas, and for survey areas in the Houston/Galveston region.
There is no evidence that “open water” groundings tend to happen in high uncertainty
areas. (In fact, 85 percent of groundings happens around dredged channels.)

Our analysis of uncertainty in charted depths and locations of historical groundings
so far suggests that while it is in theory a compelling factor, operators' uncertainty about
topography appears to have made a negligible contribution to the incidence of historical
groundings in U.S. ports in recent decades.
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5. FACTOR: WIND SPEED

Other things equal, a transit through an area characterized by unfavorable
environmental conditions, such as high wind, poor visibility, or strong currents, may be
expected to involve a greater risk of grounding than a transit through the same area under
more favorable conditions. We have tested two environmental variables: wind speed
(discussed in this section) and visibility (see next section).

Two sources of wind speed data are used. The USCG casualty data provide
reported wind speed at grounding incidents (these data are not complete). NOAA’s
National Climatic Data Center (NCDC) maintains hourly average wind speed data from
sensors located at airports near the study ports, covering the entire study period. Seasonal
fluctuations in mean wind speed are shown in Figure 5-1. Table 5-1 shows mean daily
wind speeds for “grounding days” and “safe days” for the five study ports.

To characterize wind conditions on “safe” days, we can calculate the mean wind
speed on all days during the study period when no groundings took place in the port. This
is shown in first row of Table 5-1. Another characterization, shown in row 2 of Table 5-1,
considers a smaller sample of “safe” days that coincide in month and date with grounding
days for the port. The second approach reduces the influence of seasonal weather effects
on the safe days mean. Note that the differences between means computed in these ways
are small for ports with little seasonal wind speed fluctuation (Tampa) and larger for those

(New York, San Francisco) with more significant seasonal wind speed effects (see Figure
5-1).

To analyze wind conditions when groundings took place, we first compute the
mean daily wind speed from NOAA/NCDC data for grounding days (row 3, Table 5-1)
and extract the average hourly wind speed from NOAA/NCDC data at the time of the
groundings for those accidents (1992-95) for which time of day is known (row 4, Table 5-
1). We also calculate the mean wind speed reported in the USCG data during grounding
incidents (row 5, Table 5-1). USCG-reported wind speeds at grounding incidents are
markedly higher than NOAA/NCDC average daily wind speeds for grounding days,
probably because winds on the water tend to be higher than winds on land (where the
airport sensors are located), and because the NOAA means are daily averages. We plan to
refine the NOAA data analysis for grounding days by taking into account the time of day
of each grounding, to the extent that this information is available in the USCG data.

Notably, the mean wind speed on safe days is less than the mean wind speed on
grounding days for all ports, regardless of the analytical approach or data source. This
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suggests that wind speed is a significant contributing factor to groundings and can be used
in the development of the physical risk model.

The distribution of mean wind speed on safe and grounding days is shown
graphically for each port, and for ship and barge train groundings, in figures in Appendix
2. New York data are shown as an illustrative example in Figure 5-2. These plots show
the cumulative distribution of mean wind speed w, p(w>x), given either grounding or safe
days. A higher “tail” of this distribution in the higher wind speed range for grounding
days, which is evident in many of the plots {see Figure 5-2), indicates that higher wind
speeds are more commonly associated with groundings. The “all vessels” plots also show
the distribution for the USCG wind speed data and the NOAA hourly data for
comparison.

We have assumed here, in the absence of any but annual transit data, that safe
traffic is uniformly distributed over the year. We are now obtaining some monthly transit
statistics from ACE and will revise this assumption, and the associated distributions, if
seasonal transit data suggest otherwise. We also plan to refine the analysis by truncating
the safe distributions on the right to reflect port closures (no safe transits) at times when
winds are very high. These truncations will be based on information supplied by port
operations personnel in each study port. It may be appropriate to use different high-wind
cutoffs for ships and for barges. This refinement will amplify existing differences in the
safe and grounding wind speed distributions.
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6. FACTOR: VISIBILITY

The same two sources of data are used for visibility information. USCG casualty
data include reported visibility at grounding incidents (again, the data are not complete).
NOAA/NCDC hourly average horizontal visibility data are from sensors located at
airports near the study ports. Seasonal fluctuations in mean visibility are shown in Figure

6-1. Table 6-1 shows daily mean visibility for “grounding days” and “safe days” for the
five study ports.

The analysis of visibility data for “safe” and “grounding” days follows the
approach described above for wind speed. Mean visibility for all days during the study
period when no groundings took place in each port is shown in the first row of Table 6-1.
Row 2 shows means of the sample of “safe” days that are anniversaries of grounding days.
Here, also, the differences between means computed in these ways is largest for the port
with the greatest seasonal fluctuation in visibility (San Francisco).

Visibility conditions on grounding days are characterized from NOAA/NCDC data
as daily averages in row 3 and as hourly averages in row 4 of Table 6-1. USCG data on
visibility during grounding incidents is shown in row 5. USCG-reported visibilities at
grounding incidents are markedly lower than NOAA/NCDC average daily visibilities for
grounding days, probably because visibility on the water tends to be worse than on land
(San Francisco is a clear example), and because the NOAA means are daily averages. We
plan to refine the NOAA data analysis for grounding days by taking into account the time
of day of each grounding, to the extent that this information is available in the USCG data.

With the exception of Houston, the mean visibility on safe days is higher than the
mean visibility on grounding days for ail ports, regardless of the analytical approach or
data source. This suggests that visibility is a significant contributing factor to groundings
and can be used in the development of the physical risk model.

The distribution of mean visibility on safe and grounding days is shown graphically
for each port, and for ship and barge train groundings, in figures in Appendix 3. Tampa
data are shown as an illustrative example in Figure 6-2. These plots show the cumulative
distribution of mean visibility v, p(v<x), given either grounding or safe days. A higher
“tail” of this distribution in the lower visibility range for grounding days, which is evident
in many of the plots (see Figure 6-2), indicates that lower visibilities are more commonly
associated with groundings. The “all vessels” plots also show the distribution for the
USCG visibility data and the NOAA hourly data for comparison.
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As with the wind data, we have assumed that safe traffic is uniformly distributed
over the year. We will revise our estimates appropriately if seasonal transit data suggest
otherwise. Here, too, we expect to truncate the safe distributions on the left to reflect
port closure on days when visibility is very low, possibly using different cutoffs for ships
and for barges. Again, this refinement will amplify differences in the visibility
distributions.
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7. FACTOR: PERSONNEL

Other things equal, more highly skilled or seasoned operators, and those with
better local knowledge, may be expected to experience a lower risk of grounding. The
only proxies for this factor that can be readily constructed from historical data are the flag
of the vessel and, possibly, the use of pilots in the transit.

The USCG casualty data include information about the registry of each vessel
involved in a grounding. To date, we have obtained data from local marine exchanges and
port authorities for three of the study ports on the overall distribution of registries of
vessels calling on the ports. This analysis is relevant only to ships; tugs/tows and barges in
U.S. waters are almost without exception U.S -registered.

Table 7-1 shows the number of U.S.- and foreign-registered ships using the two
ports for which more or less complete data have been obtained to date. U.S.-registered
ships account for 16 percent of transits but 36 percent of groundings in Tampa; and the
relationship is reversed in San Francisco, where U.S. ships account for 67 percent of
transits but only 29 percent of groundings. In the other port for which partial transits data
are available, Houston, U.S. ships account for 13 percent of transits and 43 percent of
groundings. In the two remaining ports, for which we do not yet have transit
distributions, U.S. registered ships account for 11 percent of groundings in Boston and 52
percent of groundings in New York.

While there appears to be a distinct signal in the data for Tampa and San Francisco
(and possibly Houston), this factor requires further exploration before it can be endorsed
as useful in the development of the physical risk model. size distribution of U.S. vs. non-
U S. ships in general not known from available data.

A separate factor related to personnel issues is the presence of a pilot on board
each vessel. The USCG data contain information about the presence of state or federally
licensed pilots on board vessels involved in groundings (only through 1990). We will
obtain similar information from the study ports for overall transits, and conduct a similar
comparison.
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8. FACTOR: CHANNEL COMPLEXITY

Other things equal, a transit through a region that is relatively shallow, or via a
channel that is relatively narrow and/or requires sharper turns, may be expected to involve
a greater risk of grounding. Unfortunately, we have no good data cn water depth relative
1o vessel draft. Reconstructing water (tidal) levels during grounding incidents is difficuit
because water level models and historical data are incomplete, and the USCG casualty
data do not include information about vesse! draft and trim. The best we can do is to rely
on general indicators of relative depth, such as vessel type and size, described above.

We are investigating the use of other indicators to capture aspects of channel
complexity. Measures of effective channel width and characterizations of the number and
severity of channel bends were developed for the Port Needs Study (USCG, 1991). Some
possible measures of this kind are shown in Table 8-1.

The inclusion of channel complexity factors in the physical risk model will allow
comparisons across different ports and waterways, as well as the evaluation of design
changes for a given waterway. This work will receive priority during the second year of
the project.
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Boston
approaches
convergence
open harbor/bay
enclosed harbor
constricted

New York
open approach
convergence
open harbor/bay
open harbor/bay
constricted

Tampa
open approach
open harbor/bay
enclosed harbor

Houston
open approach
constricted
enclosed harbor

San Francisco
open approach
convergence
open harbor/bay
enclosed harbor
river

length
(nm)

8.5
4.5
40
4.5
2.9

257
7.3
3.2
29

15.3

2840
315
10.9

273
112
27

298
220
32.2

46
68.0

min. width
(meters)

400
€00
400
200

75

266
266
2686
266

75

233
130
100

275
275
350

666
666
200
116

66

avg. width
{meters)

6684
5745
5266
329
125

402
268
852
1656
517

1431
212
149

7711
282
350

566
749
262
145
3568

# of tums

AW NN

R

11

L

Table 8-1: Channel Complexity Measures. Source: PNS (USCG, 1991).
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avg. head
changeftum
{degrees)

29.3
272
232
23.5
32.6

4.1
30.4
80.7
372
30.1

8.7
245
43.9

9.5
254
19.2

0.0
56
249
24.3
13.5




9. OBSERVATIONS ABOUT GROUNDING RATES AND FACTORS

As mentioned above, it is important to use caution when comparing grounding
rates across ports because of possible differences in reporting criteria and because of
distortions in transit counts.

Promising explanatory risk factors identified by our research to date include vessel
type, vessel size, wind speed, visibility, and (possibly) ship registry. We expect to refine
our understanding of these factors, and examine others, during the second year of the
project, leading up to the development of a physical risk model.

One factor we have not explicitly analyzed, but about which the present data from
Tampa may suggest interesting results, is operators’ quality of information about
environmental conditions. Other things equal, better information about currents, tide
levels, and winds may be expected to reduce the likelihood of grounding. This factor can
be tested by distinguishing between study areas and time periods for which information
from real-time monitoring systems was available to vessel operators (such as Tampa Bay
in the 1990s) and those for which it is not. Qur data show that grounding rates in Tampa
have indeed declined dramatically, for both ships and barge trains, in the 1990s. Further
analysis is required to determine how much of this decline is attributable to the availability
of real-time environmental information.
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10. ECONOMIC LOSSES

The economic loss associated with a grounding can be calculated as the sum of all
costs associated with the grounding. Costs are classified as either internal or external.
Internal costs are those arising from the vessel involved in the grounding and other parts
of the marine transportation system; they include damage to the vessel, loss of cargo,
injury or death of crew members, cleanup costs, and delays due to blockage of the route,
among others. External costs are those incurred outside the transportation system,
including environmental degradation, human health risks, lost fishery revenues, and lost
recreational benefits, among others. Both external and internal costs will vary with the
severity of the grounding; the size of the vessel, its construction, and its cargo; and other

factors. External costs will also vary greatly with the environmental and human health
sensitivity of the location.

An algorithm has been developed to estimate the cost of groundings as a function
of relevant parameters such as vessel size, nature of cargo, and nature of the transit area,
following the approach taken in the Port Needs Study (PNS) (USCG, 1991). PNS
provides information about the number and nature of groundings that can be avoided in
each PNS port (including the five study areas of this project} with certain vessel traffic
service (VTS) systems, and the associated (avoided) losses. The PNS study included in its
loss estimation each of the following categories of losses (see Schwenk, 1991):

- loss of human life and personal injuries,

- vessel hull damage,

- cargo loss and damage,

- economic cost of the vessel being out of service,
- spill clean up costs,

- losses in tourism and recreation,

- losses in commercial fish species,

- impacts on marine birds and mammals,

- losses due to LPG/LNG fires and explosions, and
- bridge and navigational aids damage.

Not included in the estimation procedure are damages to on-shore facilities and water

supplies, legal fees for litigation over vessel casualties, cumulative effects of consecutive
spills, effects of chemical releases into the air, and non-use values.

A summary of the PNS loss estimation procedure is provided by Schwenk (1991).
In addition to its own procedures, PNS draws on several sources for damage estimation
models. These include the Natural Resource Damage Assessment Model (see below);
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several models developed by A.T. Kearney (1990) for losses in tourism, property values,
and subsistence households; and models by ERG (1990) for losses due to cleanup costs
and to vessel damage and repair. The PNS data, which reflect inputs from all of these
models, are used to estimate the losses associated with one grounding involving various
vessel types (tanker, dry cargo, tug/barge) and sizes in each transit risk project study area.

Perhaps the most volatile element in the PNS loss estimation procedure is the
model used to calculate natural resource damages. These damages -- loss of fish, birds,
marine plants, and other species -- account for between 10 and 40 percent of total
damages, depending on the location and nature of the accident. The PNS results are based
on a version of the Department of the Interior's Natural Resource Damage Assessment
Model for Coastal and Marine Environments (NRDAM/CME) which is in the process of
being replaced by a new version of NRDAM/CME (see Federal Register 59(5):1062-
1189). The new version includes a new model of restoration costs and makes use of
updated biological, chemical, and economic data. Preliminary analysis of the new model's
parameters suggests that there is no consistent way to scale resuits from the previous
version to reflect the likely new model resuits. Present cost estimation algorithms
therefore include natural resource damage estimates based on an "old" version of the
NRDAM/CME.

Table 10-1 shows the total average economic losses estimated by these models for
tanker and dry cargo ship groundings in the five study ports. These averages take into
account the distribution of vessel size and cargo for each port, and also reflect seasonal
averages for environmental losses.

Table 10-1: Average Economic Losses Associated with Ship Groundings
Numbers in millions of 1993$. Based on PNS (USCG, 1991).

tanker grounding  dry cargo ship grounding

Boston 10.7 03
New York 1.7 0.5
Tampa 1.0 0.4
Houston 24 0.5
San Francisco 1.3 04
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11. DATA ISSUES

In the course of our evaluation to date, some deficiencies and limitations have been
identified in the available historical data. We describe these briefly for each major data
source.

A. USCG Vessel Casualty Data

The USCG vessel casualty databases, CASMAIN and MSIS, are the most
comprehensive source of commercial vessel casualty information for U.S. waters available.
However, these databases (particularly the older CASMAIN data} are occasionally
difficult to work with because of missing data, duplicate entries, and inaccuracies. Also,

some useful information for the analysis of casualties is not collected in these datasets at
all.

The locations of groundings (and other accidents) are reported in theory to tenths
of minutes latitude/longitude. As discussed above, this level of accuracy is not met for
many entries; 18 percent of CASMAIN grounding records have no latitude/longitude
information at all; and several groundings have erroneous location information (they plot
on dry land). In several cases, a single casualty is described by two (slightly different)
entries, one of which is probably erroneous and should have been removed from the
database.

No data are presently collected on the actual draft or trim of vessels at the time
they were involved in groundings; and it is difficult to reconstruct actual water depth at
the time of the accident from the environmental data. Further, the presence and use of
escort tugs is not quantified in the data, and the new MSIS data no longer include
information about the presence of pilots on board vessels. These data could be usefuily
included in future USCG casualty data.

The USCG casualty dataset could be further improved by the adoption of a
consistent set of criteria to govern what incidents are included in the dataset and how the

information is to be obtained (i.e. wind speed, visibility, water level at time of the accident,
etc.).

B. ACE Transit Data
The ACE Waterborne Commerce transit data annual summaries are useful but

suffer from several limitations for the purposes of our analysis. Dry cargo and passenger
vessels are mixed in a single reporting category, requiring adjustments based on
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approximations (see discussion above). The breakdown of transits by specific waterways
is useful, but makes the compilation of a composite “port region” transit history difficult
because of potential double counting. Finally, barge movements are reported for
individual barges, and there is no completely accurate way to determine the number of
barge train movements.

Monthly statistics are said to be available for recent years; these will be obtained
for ongoing work on this project.

C. NOAA Environmental Data

NOAA wind and visibility are available as hourly averages, allowing for fairly
detailed time-analysis. However, they are general to each port area, and measured at an
airport location that does not necessarily reflect conditions on the water. We will
investigate the possibility of using these data together with data from nearby buoys to
establish on-water baselines.

Historical water level (tidal and meteorological forcing) and current information is
not available with the same detail and consistency as wind and visibility, and water level
and current conditions during historical groundings therefore cannot be reconstructed.
This will change as real-time oceanographic data systems, such as PORTS in Tampa,
become more common in U.S. ports.

D. Port-Specific Traffic Data
More detailed information about safe transits would be useful for several aspects

of our investigation. Ideally, monthly (or even daily) counts by flag, vessel type, vessel
size, with tug escort and piloting information could be used.
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APPENDIX 1: GROUNDING RATES
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APPENDIX 2: WIND SPEED DISTRIBUTION PLOTS

(See discussion in section 5.)
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APPENDIX 3: VISIBILITY DISTRIBUTION PLOTS

(See discussion in section 6.)
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