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PREFACE 

It is with great pleasure that the Climate Prediction Center and the Office of Science and 

Technology offer you this synthesis of the 38th Climate Diagnostics and Prediction Workshop.  The 

CDPW remains a must attend workshop for the climate monitoring and prediction community.  As is 

clearly evident in this digest, considerable progress is being made both in our ability to monitor and 

predict climate.  The purpose of this digest is to ensure that climate research advances are shared 

with the broader community and also transitioned into operations.  This is especially important as 

NOAA works to enhance climate services both across the agency and with external partners.  We 

hope you find this digest to be useful and stimulating.  And please drop me a note if you have 

suggestions to improve the digest. 

I would like to thank Dr. Jiayu Zhou of the Office of Science and Technology / NWS, for 

developing the digest concept and seeing it through to completion.  This partnership between OST 

and CPC is an essential element of NOAA climate services. 

Michael Halpert 

Mike Halpert 

Acting Director, Climate Prediction Center 

National Centers for Environmental Prediction 

NOAA’s National Weather Service 
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OVERVIEW 

NOAA's 38th Climate Diagnostics and Prediction Workshop was held in College Park, 

Maryland, on 21-24 October 2013. It was hosted by the Climate Prediction Center (CPC) of National 

Centers for Environmental Prediction (NCEP) and the Cooperative Institute for Climate and 

Satellites (CICS) of University of Maryland; and co-sponsored by NOAA Climate Program Office 

(CPO) Modeling, Analysis, Predictions and Projections (MAPP) Program, and the Climate Services 

Division (CSD) of National Weather Service (NWS). The American Meteorological Society (AMS) 

was a cooperating sponsor. 

To accelerate improvements in NOAA operational products and datasets, and delivery of climate 

information, this workshop brought NCEP and the broader climate community together to address 

the following themes: 

1. Exploring potential sources of predictability 

on intra-seasonal to interannual (ISI) time 

scales; 

2. Realizing prediction skill by improving 

forecast tools and techniques through 

dynamical models and statistical methods, 

forecaster practices and protocols, data quality 

and assimilation, and scientific best practices; 

3. Enhancing monitoring and timely attribution 

and assessment of recent high impact weather, 

water, and climate events;  

4. Improving the forecast evaluation process, 

including verification techniques, performance 

metrics, evaluating existing forecast tools, the 

process of phasing out old tools and 

implementing new forecast tools, and 

engaging users in the evaluation process; 

5. Developing applications that enhance NOAA 

climate services by improving understanding 

of user needs and delivering the best available 

climate information for the NOAA societal 

challenges in water, coasts, extremes, and 

marine ecosystems. 

This Digest is a collection of extended summaries of the presentations contributed by 

participants. The workshop is continuing to grow and expected to provide a stimulus for further 

improvements in climate monitoring, diagnostics, prediction, applications and services. 
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Observed Linkages between the Northern Annular Mode/North Atlantic 

Oscillation, Cloud Incidence, and Cloud Radiative Forcing  

Ying Li and David W. J. Thompson 
  Department of Atmospheric Science, Colorado State University 

Fort Collins, Colorado, U.S.A. 

Yi Huang and Minghong Zhang 

Department of Atmospheric and Oceanic Sciences, McGill University  

Montreal, Quebec, Canada 

1. Introduction 

The northern annular mode/North Atlantic Oscillation (NAM/NAO) is the dominant pattern of climate 

variability in the Northern Hemisphere extratropical circulation (e.g., Hurrell 1995; Thompson and Wallace 

2000; Hurrell et al., 2003). The NAM/NAO is associated not only with significant changes in the zonal wind 

but also in the mean meridional circulation and thus presumably the vertical structure of cloud incidence. The 

objective of this study is to examine and interpret the signature of the NAM/NAO in the horizontal and 

vertical structures of cloud incidence and cloud radiative forcing using nearly five years of 

CloudSat/CALIPSO data.  

2. Data and methodology 

2.1 Data 

We use the cloud fraction data obtained from the combined radar and lidar retrievals 2B- GEOPROF-

LIDAR product (version P2R04; Mace et al. 2009). The results are presented in terms of “cloud incidence”, 

which provides a quantitative estimate of the likelihood of a cloud within a given volume sensed by the 

satellite (Verlinden et al., 2011; Li and Thompson 2013; Li et al. 2014). The analyses here are based on ~5 

years of CloudSat observations from June 2006 through April 2011. 

Various fields are also derived from monthly-mean output from the European Centre for Medium Range 

Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) (Simmons et al. 2007). The ERA-Interim is 

used to calculate the surface temperature, atmospheric temperature, specific humidity, surface albedo, top of 

the atmosphere (TOA) radiation fluxes anomalies associated with the NAM/NAO. It is also used to 

supplement the satellite derived cloud incidence. 

2.2  Decomposition of radiation anomalies associated with NAM/NAO 

We apply the radiative kernel method (Huang et al. 2007; Soden et al. 2008; Shell et al. 2008) to 

diagnose variations in TOA radiative fluxes associated with the NAM/NAO. The longwave radiative flux 

anomalies are decomposed into contributions from changes in surface and atmospheric temperature, 

atmospheric water vapor, and cloud; the shortwave radiative flux anomalies are decomposed into 

contributions from changes in surface albedo, atmospheric water vapor, and cloud. 

Taking the longwave radiation anomalies as an example, the clear- and all-sky anomalies are decomposed 

as: 

           
         

                                                                    ( ) 

         
       

             
                                                       ( ) 
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where    denotes the TOA longwave radiation anomalies associated with the NAM/NAO,    ,     and 

        represent contributions from change in surface and atmospheric temperature, atmospheric water 

vapor, and cloud, respectively.   is the residual term, which provides a measure of the fidelity of the linear 

decomposition assumption. 

The non-cloud contributions are calculated as follows: 

    
  

  
          

  

  
                                                                                                          ( ) 

where 
  

  
 and 

  

  
 are the pre-calculated global radiative kernels based on the Geophysical Fluid Dynamics 

Laboratory (GFDL) general circulation model (GCM) (Soden et al. 2008);    and    correspond to 

regression anomalies in surface and atmospheric temperature and atmospheric water vapor, respectively, 

associated with the NAM/NAO. 

The cloud contribution is derived by combining equations (1) and (2): 
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Note that the cloud radiative forcing (CRF) is defined as the difference between all- and clear- sky radiative 

anomalies (                 ) so that         obtained by adjusting the CRF for the impacts of 

changes in   and   is often referred to as adjusted CRF (Shell et al. 2008; Soden et al. 2008).  

Fig. 1 Regressions of zonal-mean (a) pressure vertical motion (shading; ω has been multiplied by −1 so that 

positive values correspond to upward motion) and zonal wind (contour), (b) temperature (shading) and 

zonal wind (contour), and (c) cloud incidence (shading) and zonal wind (contour) onto standardized 

monthly-mean values of the anomalous NAM/NAO index. Results are based on October–March data from 

June 2006–April 2011. The seasonal cycle has been removed from the data. Units are K (temperature), hPa 

day
−1

 (pressure vertical motion) and % (cloud incidence). Contour interval of zonal wind is 0.5 m s
−1

 

(dashed contours indicate negative values). The red and blue lines in (c) indicate the climatological-mean 

tropopause height plus and minus the regression of tropopause height onto the standardized NAM/NAO 

index, respectively. Tropopause height is identified using the WMO lapse rate definition. 
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3. Results 

3.1 . Zonally averaged circulation 

Figures 1 reviews key aspects of the signature of the NAM/NAO in the zonal-mean circulation (Figs. 1a 

and b), and corresponding changes in cloud incidence (Fig. 1c). The positive polarity of the NAM/NAO is 

characterized by increases in zonally averaged cloud incidence north of ~60ºN, decreases between ~25–50ºN, 

and increases in the subtropics (Figure 1c). For the most part, the largest anomalies in upper tropospheric 

cloud incidence coincide with the largest changes in vertical motion: downward anomalies in vertical motion 

at middle latitudes overlie decreases in cloud incidence; upward anomalies in vertical motion at high latitudes 

overlie increases in cloud incidence.  

Figure 2 quantifies the zonal-mean downwelling TOA longwave radiation anomalies associated with the 

NAM/NAO. The very close agreement between the solid (calculated directly from the ERA-Interim 

reanalysis) and dashed lines (calculated from radiative kernel method) in panel a and c indicates that the 

residual terms in equations (1) and (2) are very small, and thus that the linear decomposition of TOA radiation 

Fig. 2 (a) Zonal-mean TOA downwelling longwave clear-sky radiation anomalies associated with the 

NAM/NAO calculated directly from the ERA-Interim reanalysis (solid line) and derived from the 

sum of the contributions from various physical factors using the radiative kernel method (see Eq. 1; 

dashed line). (b) downwelling longwave radiation anomalies contributed from changes in 

temperature (solid line) and water vapor (dashed line). (c)-(d) As in (a)-(b), but for all-sky 

conditions. (e) adjusted cloud radiative forcing (CRF) estimated using the radiative kernel method 

[solid line, see Eq. 4)], and CRF anomalies estimated as the simple difference between the all- and 

clear-sky radiative fluxes (dashed line). (f) adjusted CRF based on AIRS (solid line) and CERES 

EBAF (dashed line) observations. 
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anomalies by the kernel method is robust. The non-cloud contributions to the net changes in longwave forcing 

are dominated by the changes in surface and atmospheric temperature (solid lines in panels b and d). 

Figure 2e shows the changes in longwave CRF (dashed) and adjusted longwave CRF (solid) associated 

with variability in the NAM/NAO. Both results indicate: 1) longwave warming due to clouds north 

of ∼60N, where the NAM/NAO is associated with increases in cloud incidence; and 2) longwave cooling 

due to clouds between ∼25–50ºN, where the NAM/NAO is associated with decreases in cloud incidence. The 

difference between the two longwave estimates within the latitude band ~50-70N is centered over Northern 

Eurasia (not shown), where the large surface warming associated with the NAM/NAO is accompanied by 

strong cooling in the troposphere, and thus a large increase in the temperature lapse rate. As noted in Huang 

and Ramaswamy (2009), such a large change in the lapse rate may be mistaken for a cloud radiative effect in 

simple differences between all- and clear-sky radiation. 

3.2 North Atlantic sector 

Variations in the NAM/NAO are marked by a range of cloud incidence anomalies over the North Atlantic 

sector. A key result of Figure 3 is that the changes in upper tropospheric cloud incidence indicated by 

CloudSat are reproducible in the ERA-Interim reanalysis (compare Figure 3b and 3c), and they are 

qualitatively consistent with the attendant changes in anomalous vertical velocity (compare Figure 3a and 3b). 

Figure 4 shows the geographical distribution of the downwelling TOA radiation anomalies associated 

with the NAM/NAO. The large contributions of the TOA longwave radiation anomalies due to changes in 

surface and atmospheric temperature are found over the continental areas, and are consistent with the negative 

Planck and lapse rate feedbacks. 

The longwave cooling due to clouds peaks in a region extending eastward from the east coast of the U.S. 

to eastern Europe (Figure 4b), and is coincident with the decreases in high cloud incidence found over those 

locations (Figures 3b, c). The longwave warming due to clouds peaks over the subtropical North Atlantic and 

the subpolar North Atlantic (Figure 4b), and is coincident with the increases in high cloud incidence found 

over those regions (Figures 3b, c). The spatial consistency between the longwave adjusted CRF and the 

anomalous high cloud incidence from two independent datasets further corroborates the robustness of our 

estimate of variations in cloud radiative forcing due to variability in the NAM/NAO. 

The shortwave adjusted CRF is negligible over high latitudes where the incident solar radiation is very 

weak during winter. Over the North Atlantic mid/low latitudes, the shortwave adjusted CRF is still a factor of 

2–3 smaller in magnitude than that due to the longwave forcing. Thus, the total adjusted CRF associated with 

the NAM/NAO is dominated by the longwave component (Figure 4c).  

Fig. 3  Regressions of monthly-mean (a) pressure vertical motion (upward motion is positive) at 300 hPa, (b) 

cloud incidence averaged between 6–12 km based on CloudSat/CALIPSO dataset and (c) high-cloud 

fractional coverage based on ERA-Interim reanalysis onto standardized monthly-mean values of the 

anomalous NAM/NAO index. Stippling indicates results that exceed 95% confidence level based on a 

two-tailed test of the t-statistic, with the effective degrees of freedom computed given by equation (31) in 

Bretherton et al. (1999). The results in (a) and (b) have been smoothed with a NCAR Command 

Language (NCL) built-in 9-point smoothing function for the purpose of display only. 
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4. Concluding remarks 

We have explored the signature of the NAM/NAO in the vertical and horizontal distribution of clouds and 

adjusted CRF in both CloudSat/CALIPSO data and ERA-Interim reanalysis. The positive polarity of the 

NAM/NAO is marked by coherent and robust changes in cloud incidence that largely mirror its attendant 

changes in vertical motion. The changes in cloud incidence associated with the NAM/NAO, in turn, lead to 

marked anomalies in adjusted CRF. Over the North Atlantic, the anomalies in net adjusted CRF are due 

primarily to changes in the fluxes of longwave radiation, and are comparable in amplitude to the changes in 

radiative flux due to the NAM/NAO-related temperature anomalies. The primary cloud incidence and 

adjusted CRF anomalies associated with the NAM/NAO were found to be reproducible in independent data 

sources and using different analysis techniques (Figure 2e and compare Figure 3b and c). 

In the absence of land-sea contrasts, the adjusted CRF anomalies associated with annular variability might 

be expected to shorten the timescale of the attendant temperature anomalies. For example: Regions of large-

scale ascent and cooling are marked by increases in cloud incidence, and the resulting positive anomalies in 

longwave adjusted CRF should act to shorten the timescale of the negative atmospheric temperature 

anomalies (e.g., north of 60ºN in Figure 1 and 2e). 

In the presence of large land-sea contrasts, the temperature anomalies associated with the NAM/NAO are 

dominated by horizontal temperature advection (as opposed to vertical motion). Over the high latitudes of the 

North Atlantic, the cloud and temperature radiative forcing anomalies associated with the NAM/NAO do not 

clearly coincide with each other (compare Figure 4a and 4c). Over the mid/low latitudes of the North Atlantic, 

the TOA adjusted CRF anomalies generally reinforce those due to the changes in temperature (e.g., see green 

boxes of Figure 4). Hence over the mid/low latitudes of the North Atlantic, the adjusted CRF should act to 

shorten the timescale of the mid/low latitude temperature anomalies associated with the NAM/NAO. The 

importance of cloud and temperature radiative feedbacks in determining the timescale of large-scale 

atmospheric phenomena will be examined in a companion study.  
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Prospects of “Useful” Predictions for Weeks 3 & 4?  
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1. Introduction 

In the operational NOAA’s seamless suite of weather 

and climate forecast products that are now issued to the 

public, there are products on “almost” all time scales 

ranging from minutes  (in the form of alerts and warnings)  

to seasons and years (as guidance and outlooks). The 

Climate Prediction Center is responsible for forecast 

products beyond a week.  At present, as can be seen from  

Fig.1, there are no official forecast products in the weeks 

3-4 time frame, sometimes referred to as the ‘black hole’ in 

the forecast suite.  In fact this “hole” has remained  

unfilled, even though NWS started issuing 5-day mean 

forecasts (circa 1940), monthly (early 1950s) and seasonal 

(early 1970s) climate outlooks a long time ago.  In the 

early 1990s, while analyzing the Dynamical Extended 

Range Forecast (DERF)  experiments’ products data at former NMC (now NCEP),  Huug van den Dool (1994) 

showed that  there was very little forecast skill in the anomaly correlations of  NMC’s  operational model’s 

forecasts of daily mean 500mb geopotential height  during weeks 3-4 (Fig. 2).  About  fifteen years later in 
Europe, Weigel et al. (2008) showed that the time averaged weeks 3 and 4 temperature forecasts skill 

remained still low with anomaly correlations hovering only between 0.1 and 0.2 all through the year for 

Northern/Southern  Hemisphere or for Tropics. (Fig. 3).  

Then recently at NCEP  (Saha et al. 2013), a large dataset was created of 45-day forecasts, made 4 times a 

day (now 16) for about 12 years (1999-2010), using  the latest state of the art  data assimilation system and  

coupled ocean-sea ice-atmosphere climate forecast system (CFSv2) model.  The schematic is  shown in Fig. 4.  

Using this recent CFSv2 data set, we again evaluated 

the skill of week 3 (purple) and week 4 (light green) mean 

forecasts of 500 mb Geopotential height,  and it is shown in 

Fig. 5 for the globe (top panel) and for a rectangular region 

over the continental US (bottom panel). To place the skill 

of weeks 3 and 4 in perspective, for comparison purposes, 

we also show the  skill for days 1, 2, 5, wk1P (dys 6-10), 

and week 2.  But weeks 3 and 4 forecasts still remain very 

low. 

So the question becomes, when will the forecast skill of 

weeks  3-4  time scale improve?  Do we just wait and hope 

the skill improves sometime in the future?  Or do we need 

to think differently about the way we want to issue forecasts or the metrics we use for weeks 3-4 forecasts, 

since this time period is beyond weather time scale (up to 7-10 days) and less than climate time scale (month-

season)? 

Fig. 2 
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While it is clear that for weather time scale, the 

future state of the atmosphere is sensitive mainly to the 

initial conditions of the “fast atmosphere”, and for the 

longer climate time scales (month-season) the future 

climate is sensitive to the initial condition of the “slow 

ocean” as well as the intermediate land surface 

components, it is not even clear exactly what  to call the 

weeks 3, and 4.  Is it weather or climate? 

Also note that the metric that was used in Figs. 2, 3 

and 5 is the traditional anomaly correlation coefficient, 

where the anomalies for weeks 3 and 4 are computed as 

departures from some long term climatology. That is,  

we are treating this period as “climate”. Is it really 

climate? Is this really the metric we want to use for this 

time scale? Is this why our forecast skill score as noted 

in Figs. 2, 3, and 5 has not improved over the last few 

decades in spite of the great advances and understanding 

in weather prediction and climate? Note that the typical 

weather forecast for tomorrow, the next few days up to a 

week (up to ten days in weather.com, or in 

accuweather.com) is NOT anomalies but the actual 

(total) temperature or precipitation amount. 

Since the weeks 3-4 time period is neither weather, 

nor climate, we need a ‘paradigm shift’ in the way we look at forecasts for weeks 3 and 4.  As this period is 

“weather-to-climate” transition period, why don’t’ we look at forecasts of “something new”, that is neither the 

total field (weather) nor anomaly from a traditional long term mean climatology (climate)?  

2. Propsal and discussion 

I propose that on any given day, while issuing forecasts for weeks 3 and 4, we use terminology such as 

‘departure’ from ‘yesterday’ or the ‘past week’s mean average conditions (see Fig. 4), since most likely 

people will remember how ‘yesterday's weather was like, or the immediately previous week’s weather was 

like. Such as, if it was too hot or cold. Was it dry or was it rainy? Is the general public more likely to 

remember this than some climatology? This kind of information will definitely be ‘useful guidance’ to the 

public regarding upcoming weeks 3 and 4 weather/climate conditions, with reference to something they 

experienced very recently. In Figs. 6 and 7 below, we show respectively the forecast skill score results for 

Weeks 1P, 2, 3 and 4 for Global 500 mb Heights and T2m respectively. 

In Figs. 6 and 7, the top right panel shows results for week 3 forecast and bottom right panel is for week 4 

forecast. Also shown for reference and comparison are week 1P (days 6-10) and week 2 forecast in top left 

and bottom left panels. The different lines are the average skill scores for the 1999-2010 period by different 

methods. 

In each panel, the blue line, all the way at the bottom, 

corresponding to the traditional anomaly correlation method 

(cf. Figs. 2, 3, and bottom 2 lines in both panels of Fig. 5), 

the skill is expectedly low. The yellow/orange line at the top 

is for the ‘null’ forecast, where the observed climatology 

(1999-2010 mean) itself is prescribed as forecast for each 

appropriate period in years 1999, 2000, … 2010.  The black 

line near the top is the spatial ‘correlation’ among the full 

fields (not anomaly). 

 

Fig. 3 

Fig. 4 
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Here, as expected the skill is high since the fields 

are dominated by climatology. It is interesting however, 

that ‘on average’ using climatology for forecast (yellow 

line) is better than the black line.  The red line is the 

correlation between the observed (analysis) and the 

forecast for week 3 (or week4, etc.) after subtracting 

the “previous 7 day mean” from both the verifying 

analysis and forecast fields.  Note in both Figs. 6 and 7,  

the distance/difference between the blue and red lines 

gradually increases as we move farther out from wk1p 

forecast (top left panel) to week 4 (bottom right) 

forecast, thus showing how the ‘traditional’ skill score 

falls rapidly from wk1p to wk4.  One criticism with the 

red line being so high is the presence of the residual 

effect of climatology among the correlated fields.  To 

remove this effect from the red line, we further remove 

the ‘climatology difference or tendency’, - that is the 

climatology of the future verifying period minus the 

climatology of the previous 7 day mean - from the 

correlated fields. This result is shown in the green 

curve, which is below the red line. Forecasts for weeks 

3-4 mean as departures from ‘previous 1-day mean’ 

(purple) are also shown. The correlation skill of the 

forecasts, if thought of as departures from previous 7-day or 1-day means, is quite high. It is hoped that this 

kind of guidance will be useful to public and industry alike.  

3.  Summary 

At present we do not have any official 

forecast products (or even guidance) in the 

weeks 3-4 time frame.  Based on the 

traditional anomaly (from a long term 

climatology) correlation skill metric,  the 

forecast skill of operational models have 

remained very low (below 0.2) over the past 

2-3 decades in spite of great improvements 

in other weather and climate prediction. 

Weeks 3-4 period is neither weather nor 

climate. This study proposes that we think 

differently about issuing weeks 3-4 forecast 

guidance to the public. Instead of treating 

weeks 3-4 as “climate” by evaluating the 

forecast anomaly as departures from some 

long term climatology, and then computing 

the correlations, which stil remains low, it is 

suggested that we treat the anomalies of 

weeks 3-4 as departures from most recent 1-

day or 7-day means, which people are most 

likely to remember. In other words, we forecast the ‘tendencies’.  These tendencies in weeks 3 and 4 have 

much higher skill (~0.6 or higher) throughout the year even after accounting for and subtracting the 

“climatology  tendency”. It is hoped that forecasts for weeks 3-4 presented this way, will be useful to the 

public and industries alike. 

Fig. 6 

Fig. 5 
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ABSTRACT 

The North American Monsoon (NAM) is a seasonal shift in the large-scale circulation that supplies 

summertime precipitation in northwestern Mexico and US southwest.  An understanding of the NAM’s 

major governing processes is necessary to improve global and regional climate modeling, including the 

NAM’s remote impacts on the summer circulation, precipitation and drought over North America. 

In this study, we suggest a partial mechanistic understanding of the NAM.  In the local scale, this 

mechanism helps to explain how the low-level moisture from the Gulf of California (GC) fuels the NAM 

rainfall.  The proposed hypothesis is supported by satellite observations, ship soundings launched over the 

GC, and regional model (WRF) simulations. 

North American Monsoon Experiment (NAME) field campaign in summer 2004 provides unique 

enhanced observational data such as multi network composite rainfall and Multiplatform-Merged (MPM) 

SST for evaluation of the model.  WRF simulations show that warmer GC SSTs tend to enhance low-level 

moisture during this period and as a result more precipitation occurs over the foothills of Sierra Madre 

Occidental (SMO) and over US southwest.  However, predicted inversions are stronger than those 

observed.  This discrepancy may represent an opportunity to improve WRF performance over North 

America during summer. 

 

1. Introduction 

The North American Monsoon (NAM) 

provides about 60% - 80%, 45% and 35% of 

the annual precipitation for northwestern 

Mexico, New Mexico (NM) and Arizona 

(AZ), respectively (Douglas et al. 1993; 

Higgins et al. 1999).  An intercomparison of 

regional climate models by Mearns et al. 

(2012) has shown that summer precipitation 

prediction over North America is the poorest 

in the NAM region.  NAM rainfall is 

relevant to the amplification and northward 

shift of the upper level anticyclone over the 

southwestern US, called the monsoon 

anticyclone or monsoon high (Carleton et al. 

1990; Higgins et al. 1999). 

Several studies investigated the 

importance of GC SSTs on NAM rainfall.  

An empirical study of six monsoon seasons 

by Mitchell et al.  (2002) indicated that no 

monsoon precipitation was observed in the 

Fig. 1  Temporal evolution of Arizona rainfall rates and N. 

GC SST in June and July 2012.  Similar results were seen 

in Mitchell et al. (2012) for five June–August seasons. 
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NAM region when GC SSTs did not exceed 26°C.  They also showed that 75% of June-August precipitation 

in Arizona-New Mexico region occurred 0-7 days after the northern GC SSTs exceeded 29.5°C.   

Although various observational and modeling studies showed some characteristics of the NAM, a 

mechanistic understanding of the NAM is still elusive.  In this study, we offer a partial mechanism that 

addresses mesoscale processes.  Section 2 discusses the relationship between GC SSTs, inversion cap and 

relative humidity based on both observations and numerical simulations.  Conclusions are presented in section 

3. 

2. Results 

In this research, we utilized sea 

surface temperature (SST) and 

rainfall amount observed from 

satellite, temperature and moisture 

profiles from ship soundings 

launched over the GC, and regional 

scale model simulation over the 

NAM region by WRF. 

Following Mitchell et al. (2002), 

we have analyzed three other 

monsoon seasons at higher resolution 

regarding SST and AZ rainfall 

amounts, resulting in similar findings. 

Figure 1 shows the most recent 

example.  All these findings indicate 

rainfall begins after the northern GC 

SST exceeding a threshold of 29.5°C. 

The mechanism for this relates to the 

marine boundary layer (MBL) over 

the northern GC (Figure 2). For SSTs 

< 29°C, the air over GC is capped by 

a strong inversion of ~ 50-200 m 

above the surface, restricting 

moisture to MBL in GC. The 

inversion generally disappears once 

SSTs exceed 29°C, allowing MBL 

moisture to mix with air in free 

troposphere. This results in a deep, 

moist layer that can be advected 

inland to produce thunderstorms. 

A set of carefully designed 

simulations using WRF is conducted 

to investigate the dependence of 

NAM precipitation and onset on 

SSTs in the GC.  WRF is able to 

simulate low level jet (LLJ) parallel 

to the GC axis during the 2004 

monsoon onset.  In agreement with 

observations, WRF simulations show 

that warmer GC SSTs tend to weaken 

the inversion that caps the GC MBL 

and increase low-level moisture 

Fig. 3  Time series of precipitation rate in Arizona region for both 

observations and WRF simulations from 8 to 17 July 2004. 

Fig. 2 Vertical profile of temperature (left panels) and relative 

humidity (RH) (right panels) for 10% of soundings having the 

strongest inversion cap over GC (upper panels) and for 10% of 

data having the weakest inversion cap over GC (lower panels) 

based on RV balloon sounding. 
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during this period.  This leads to the rainfall enhancement in AZ region (Figure 3). However, WRF simulates 

a stronger inversion compared to observational soundings and as a result, moisture profiles in WRF 

simulations are drier compared to observational soundings (figure not shown).  This might explain the 

underestimation of rainfall in WRF simulations compared to observations as shown in figure 3. 

3. Conclusions 

 We suggest a mechanism to physically understand key processes governing NAM. The mechanism at the 

local scale is related to the MBL over northern GC.  The strong low-level inversion, capping the top of 

shallow MBL, weakens with increasing SST and generally disappears once SSTs exceed 29°C, which allows 

the trapped MBL moisture to mix with free tropospheric air. This leads to a deep, moist, well-mixed layer that 

can be transported inland to form thunderstorms.  WRF simulations generally agree with the observations, 

however overestimate the inversion and underestimate the moisture profile and rainfall. This discrepancy may 

represent an opportunity to improve WRF performance during summer over North America.   
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1. Introduction 

The Madden-Julian Oscillation (MJO) greatly modulates the onset and intensity of the South 

Asian summer monsoon (e.g. Wu and Schubert 1999). The MJO also modifies the large-scale 

environment that leads to tropical cyclone (TC) development, such as those in the Bay of Bengal 

(BoB); (Kikuchi and Wang 2010). However, the extent to which the MJO affects monsoon onset and 

TC activity collectively and/or concurrently has not been analyzed. This study shows the extent to 

which certain MJO events provide favorable conditions for springtime (pre-monsoon) TCs in the 

BoB to occur concurrently with the monsoon onset in Myanmar.   

Having only recently opened to the western world after years of civil unrest and political instability, 

Myanmar employs 65 percent of its active labor force in agriculture, an industry that is heavily reliant on 

monsoon rainfall. This country is also very vulnerable to TCs, such as Cyclone Nargis in May 2008 that killed 

about 126,000 people. The purpose of this study was to provide insight into predicting the Myanmar monsoon 

onset and to aid in disaster planning. 

2. Data and methodology 

The identification of yearly monsoon onset dates over Myanmar was focused on western and central 

Myanmar (16-23°N and 92-97°E). The APHRODITE gridded daily precipitation dataset (Yatagai et al. 2012) 

available on a 0.5° resolution was used from 1979-2010. In order to deal with the strong seasonal variability 

associated with the monsoon, we used the 5-days running mean of rainfall to define onset. The procedure is as 

follows: beginning April 1, the onset selection criterion was met on a day from which the accumulated rainfall 

of the preceding 14 days was less than the accumulated rainfall of the following 14 days. To ensure the 

difference between the two totals was substantial, as is expected for monsoon onsets, it had to be greater than 

a third of the total May precipitation (Fig 1). Using the selected onset dates, a composite rainfall evolution 

was constructed based on the relative day of onset in each year. The evolution starts with composites of 

rainfall sixty days prior to each onset, up until 40 days afterwards resulting in a 101-days composite of 

monsoon evolution. Day 0 is the composite onset, or May 20 on average. 

Next, the European Centre for Medium Range Forecasts reanalysis dataset available on a 1.5° by 1.5° 

latitude and longitude grid (Dee et al. 2011), was used to derive 850-hPa streamfunction (ψ and velocity 

potential (χ). 

Based on the 101-days evolution, two ψ fields were composited and averaged over longitude 80 -100°E: 1) 

total (shaded) and 2) 30-60 day band passed (contours, to depict the MJO signal). Furthermore, we made 

composites of χ using 30-60 days band passed fields. But unlike ψ, these composites were based on 

springtime cyclogenesis dates (e.g. Ventrice et al. 2011). 

Lastly, empirical orthogonal functions (EOFs) of daily band passed VP fields were constructed from May 

1 to June 30. The corresponding principal components (PCs) of the first two modes were used to construct 

phase-space diagrams. The PCs were normalized with their variances as a way to gauge the strength of the 

MJO at any time. 

The tropical cyclone data was obtained from UNISYS 

(http://weather.unisys.com/hurricane/n_indian/index.php).  Genesis day was defined when a disturbance was 
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first classified as a tropical depression in the North Indian Ocean (NIO).  The tropical cyclogenesis days are 

plotted relative to the composite onset in Fig. 2, at the same latitude they occurred. 

Fig. 1  Histograms of the mean daily 5-days running mean precipitation from March-July averaged 

over 16-23°N and 92-97°E (1979 to 2010).  Each year is normalized with its corresponding mean 

May precipitation. The red lines show the onset dates. 
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3. Results and discussion 

 Fig. 2 shows the composite onset lies 

within the positive MJO phase. In the 

analysis, 26 out of the 32 onsets occurred 

during the positive phase of the MJO (not 

shown). This phase of the MJO enhances 

rising motion and acts to induce lower 

tropospheric convergence that leads to the 

intensification of the monsoon trough, as 

opposed to the dry phase, which suppresses 

rising motion. The monsoon is not a constant 

deluge of rainfall but it is characterized by 

regular breaks that have been associated with 

the negative phase of the MJO, otherwise 

known as monsoon breaks. Fig. 2 also shows 

the monsoon break occurs within the negative 

phase of the MJO. In addition, 11 of the 27 

cyclogenesis cases are clustered around the 

composite onset, coinciding with the positive 

phase of the MJO. The large-scale positive 

circulation patterns of the MJO provide 

favorable conditions for tropical 

cyclogenesis, and also modulate the onset and 

breaks of the monsoon. It is now apparent 

that monsoon precipitation of western and 

central Myanmar is very sensitive to the 

phasing of the MJO with respect to the 

seasonal cycle. In general, the onsets (breaks) 

are associated with an increase (decrease) in 

cyclonic vorticity and a decrease (increase) in 

surface pressure over the central monsoon 

trough region, and a subsequent deepening 

(weakening) of the low level trough caused 

by the enhanced (suppressed) convection 

tendencies of the MJO positive (negative) 

phase.   

It is possible to see the relationship 

between TCs and the MJO in Fig. 2; however, 

the interpretation is different since those 

composites were made relative to the 

evolution composite of rainfall. By treating 

the TC genesis itself as part of a stochastic process that is driven by large-scale intraseasonal variability, and 

employing a composite χ method that averages all 27 TCs together as shown in Fig. 3, we are able to depict 

the synoptic convective and divergent variations associated with the eastward propagating MJO and bring out 

the large-scale environmental features favorable for TC formation in five-day increments. 

The results so far illustrate how the MJO modulates the Myanmar monsoon onset and the majority of TC 

geneses in the BoB. But why did some TCs occur with the onset whiles others did not? In an attempt to 

explain this relationship, we analyze two groups of the EOF phase space diagrams and spatial plots: the 

coupled group comprises years where with TC and the Myanmar monsoon onset are coupled within 10 days 

of occurrence of one from the other. The other, which we will call the “decoupled group”, was the years 

having no observed coupling (Fig 4). Comparisons of the two groups reveal that the coupled group has well 

Fig. 2 (a) Evolution composite of rainfall accumulated 

averaged over western/central Myanmar (16-23°N and 

92-97°E; 1979-2010. The composite onset day is May 

20 (day 0, black line).  (b) Evolution composite of 850-

hPa total SF fields (raw data, shaded); superimposed 

with 30-60 days band passed streamfunction (SF, 

contours), averaged over longitude 80-100°E; and the 

locations of tropical cyclogenesis (red marks) relative 

to the onset from 1979-2010. The black box shows 

coupled onset-cyclogenesis events. 
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defined tracks of sequential days, which signifies a 

strong and systematic eastward propagation of the 

MJO. The second group shows the opposite for most 

years. We see weak MJO activity as rather random 

motions near the origin in most of those years. As we 

have already mentioned, since 1979, 11 out of the 27 

monsoon onsets were coupled with TC genesis in the 

BoB within 10 days of formation, with at least 8 of 

them occurring earlier than the onset (Fig. 2b).  

It appears when the tropical storm is formed 

(especially the stronger ones), the associated latent 

heating contributes to the intensification of the lower 

tropospheric westerlies. Together with the warm 

ocean waters in the NIO at this time, a low-level 

cyclonic circulation and an upper level anticyclone 

are formed, enhancing local cyclonic vorticity. As the 

positive phase of the MJO coincides with the 

emerging westerlies, the disturbances act to enhance 

local convection, westerly surface winds and low 

level cyclonic rotation that initiates the Myanmar 

monsoon onset. Thus the MJO helps the TC to form 

with the tendency of tracking eastwards toward 

Myanmar (Wang et al. 2013). The storm then 

releases substantial latent heating that concurrently, 

together with the MJO acts to intensify local 

convection and the emerging westerlies leading to the 

beginning of the onset over western and central 

Myanmar.   

4.  Concluding remarks 

The work presented here suggests strong MJO 

events favor the coupling of spring TCs in the BoB 

with the Myanmar monsoon onset. It does so by 

modifying large-scale environmental features that 

favor TC geneses that subsequently initiate or 

intensify the monsoon onset over western and central 

Myanmar. 

We have also showed that the large-scale 

circulation patterns of the MJO provide favorable 

conditions for tropical cyclogenesis, and in the 

meantime also modulate the onset of the Myanmar 

monsoon. 

These results may provide guidance for seasonal 

and/or short-term prediction during the spring and 

early summer season in the BoB. 
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1. Introduction 

Since early 2002, the International Research Institute for Climate and Society (IRI) has issued, each 

month, a collection of the forecasts from a large number of ENSO forecasting institutions, in the form of an 

ENSO prediction plume (Fig. 1). The forecasts predict the Nino3.4 index in the tropical Pacific (SST 

averaged over 5ºN-5ºS, 120º-170ºW). 

In late 2011 this forecast plume became a product of both IRI and the NOAA Climate Prediction Center 

(CPC). Although the product has been popular and frequently viewed on the Web, it has had several 

significant problems: 

• The forecast producers do not 

form their anomalies with respect to the 

same 30-year base periods as encouraged, 

and IRI/CPC does not correct for such 

(usually minor) deviations. 

• The forecast spread within 

individual models, indicative of model 

uncertainty, is ignored and only the mean 

forecast is shown. 

• Model biases, evident upon 

examination of hindcasts, are not 

corrected; and some forecasts are from 

models that lack hindcasts. 

• No attempt is made to provide a 

final forecast probability distribution; 

users see the spread of the model forecasts 

and are left to surmise the uncertainty on 

their own.   

Of the four problems listed above, the 

third one appears most serious, because 

some of the dynamical models are known 

to have substantial (>0.5ºC) biases. Hence, some of the spread in the model forecasts shown in Fig. 1, even at 

very short lead times, may well be due to differing model biases. The ENSO forecast plumes posted on the 

CPC Web site from the North American Multi-model Ensemble (NMME) project (Kirtman et al. 2014) have 

undergone hindcast-based bias correction by start month and lead time, and the resulting plume is noticeably 

less wide than the IRI/CPC plume at short leads. The NMME plume also shows all ensemble members of all 

models, forming a very dense cluster of lines on the plot.  

Fig. 1  Example of an IRI/CPC ENSO prediction plume product, 

issued in mid-August 2013. 
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The current work attempts to develop a protocol for 

selecting and processing the incoming forecasts for the IRI/CPC 

plume so as to eliminate or greatly reduce each of the problems 

identified above. Because the most serious problem (lack of bias 

correction) requires a multidecadal hindcast history to evaluate 

bias, it appears that forecasts from models lacking an adequate 

hindcast history will not qualify for a higher quality version of 

the plume.  

This work uses as test cases a set of 6 models from the 

NMME project, because those models all have 29-year hindcast 

data that is conveniently available. The 6 models include (1) 

NCAR/Univ. Miami CCSM3 (6 members), (2) NOAA/NCEP 

CFSv2 (24 members), (3) Canada CMC#1 (10 members), (4) 

Canada CMC#2 (10 members), (5) NOAA GFDL model (10 

members), and (6) NASA model (11 members). All 6 models 

have a 1982-2010 hindcast period. Models’ maximum lead times 

vary from 9 to 12 months. Besides looking at the forecast 

characteristics of each model, those of the combined forecast 

(our MME) are studied. The MME is formed by combining the 

individual ensemble members of all of the models. Because 

some models have many more members than others, the number of members acts as an effective weighting 

system: e.g., the NOAA/NCEP CFSv2 has 4 times as many ensemble members as the NCAR /Univ. Miami 

CCSM3, so it will exert 4 times the weight of CCSM3 in forming the MME forecast. Here, we forecast 1-

month mean SST rather than seasonal mean SST as done in the IRI/CPC plume. 

2. Results 

The basic discrimination skill of each of the 6 models is examined using the temporal correlation (or 

“anomaly correlation”) between Nino3.4 SST hindcast and observation for each start month and each lead 

time up to 12 months lead. Although the model skill profiles differ from one another in their details, all are 

seen to have acceptable profiles with the expected seasonal distribution (not shown). However, an 

examination of mean bias indicates major differences in bias among the models, both in general severity and 

in distribution over start months and leads. It is clear that each model should be bias-corrected prior to being 

shown on an improved ENSO prediction plume. The net bias of the MME, shown in Fig. 2, lacks the severity 

of the biases of individual models due to some bias cancellation, but still reveals a moderate negative bias at 

long leads and at intermediate leads for some times of the year. 

Another kind of bias that individual models may carry is forecast amplitude bias. The interannual 

standard deviation of the forecasts should not be larger than that warranted by the model’s correlation skill, 

which would be approximately that of the observations multiplied by the skill (Hayes 1973). Such a 

prescription for the amplitude of the ensemble mean forecast would minimize mean squared errors and 

produce probabilistically reliable forecasts. However, each model has its “own world”, with signal-to-noise 

ratios that may not agree with that of the real world. It turns out that the amplitude of the MME forecast does 

not deviate greatly from the ideal amplitude, so that correction of the amplitude by start month and lead does 

not greatly change the performance of the forecasts. Figure 3 shows the root-mean-square error (RMSE) skill 

score, defined as 1 – (RMSEfct / RMSEcli) where fct refers to the forecasts and cli refers to perpetual 

climatology forecasts (i.e., zero anomaly). Figure 3 shows that the RMSE is generally substantially improved 

with bias correction, and only slightly more by forecast amplitude correction. 

Although amplitude correction does not change the RMSE skill score dramatically, the amplitude 

corrections are not minor. Figure 4 shows the MME forecast-to-observation standard deviation ratio before 

and after correction for the amplitude, and it is clear that the forecasts tend to have too high a standard 

deviation before correction, especially at intermediate and long leads. While the standard deviation of 

individual ensemble members is expected to be comparable to that of the observations for all start times at all 

Fig. 2  Bias of the MME in forecasts of 

Nino3.4 SST, by start month (from Jan 

to Dec along x-axis) and lead time 

(from 1 to 12 from bottom to top along 

y-axis). 
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leads, that of the ensemble means should be in proportion to the lack of predictability. Although predictability 

within each model’s world is estimated by its signal-to-noise ratio (interannual standard deviation of 

ensemble mean forecast versus ensemble spread), the actual predictability is better estimated by the 

correlation between the forecasts and observations. It is this latter measure of realized predictive skill that 

should govern the interannual standard deviation of the forecasts. 

The most appropriate interannual standard deviation for each start month and lead time is determined by 

the actual temporal correlation skill of the hindcasts with observations, such that a correlation of 0.5 would 

imply an ideal MME forecast standard deviation of 0.5 that of the observations. Using this indirect way to set 

the forecast amplitude corrects for model signal-to-noise ratios that do not properly reproduce that in nature.  

An important characteristic of a forecast is its uncertainty. For individual forecasts, uncertainty is ideally 

expressed by the spread of the ensemble members. Even the shape of the distribution of the member forecasts 

may occasionally be meaningful if it is based on the physics at play in the forecast rather than just accidental 

Fig. 3  RMSE skill score for the MME forecasts, by start month (x-axis) and lead time (y-axis). See the text for 

the definition of the score. The left panel shows skills without any corrections, the middle panel with 

individual model bias corrections, and right panel with both bias and amplitude corrections. 

Fig. 4  Standard deviation ratio of MME forecasts versus observations. Left panel shows ratios without 

amplitude correction, middle panel with amplitude correction, and right panel the ratio of the values 

without correction to those with correction (note the different scale for the right panel).  
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sampling variability in the finite set of ensemble members. A check for a reasonable magnitude of ensemble 

spread is the standard error of estimate, based again on the actual correlation skill of the MME forecasts over 

the hindcast period, by start month and lead time. The standard error of estimate (SEE) is defined by 

  

The above formula implies that high-skill forecasts should have a smaller spread than lower-skill forecasts. Is 

this formula followed to first order in the MME hindcasts? Figure 5 shows the ratio of the MME spread 

(across all model members) and the skill-based SEE for the cases of no corrections, only bias corrections, and 

bias and amplitude corrections. The ratios in Fig. 5 indicate far too much spread in model members without 

bias correction, and a much more realistic spread after bias correction. Further improvement of the ratio 

(toward 1) occurs with amplitude correction. 

One contribution to 

the spread of the MME 

forecasts is that among 

the members of each 

model with respect to its 

own ensemble mean, 

while a second 

contribution is that of the 

differing ensemble means 

across the models. We 

ask how much the first 

component of the spread 

is contributing to the total 

spread. Figure 6 shows 

this aggregated “internal” 

member spread before 

and after amplitude 

correction. The internal 

spread after the amplitude 

correction is generally 

Fig. 5  Ratio of the MME spread (across all model members) to the actual hindcast skill-based standard error of 

estimate. Left panel shows the ratio for no corrections, middle panel for only bias corrections, and right 

panel for both bias and amplitude corrections. The ideal ratio is 1. 

Fig. 6  Spread of the MME forecasts coming from the variation of the members 

of each model with respect to its own ensemble mean (“internal” model 

spread). Left panel shows internal spread before amplitude correction, right 

panel following amplitude correction. 
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well below the level that 

is compatible with the 

SEE. 

Figure 7 illustrates an 

example of the effects of 

the bias and amplitude 

corrections in an 

individual forecast case—

here, for forecasts from 

June 2009 for what turned 

out to be a moderate 

strength El Niño during 

late 2009 and early 2010. 

Without any correction, 

the MME forecast 

substantially 

underestimates the 

strength of the event, and 

the uncertainty is 

overestimated (especially 

at short lead times) due to 

the differing biases of the 

ensemble means of the 

various models. Note that 

the ensemble mean 

forecasts of the different 

models differ greatly 

without any correction. 

Correction of the mean 

biases leads to a much 

improved MME forecast 

(middle panel) and more 

realistic width of the 

uncertainty distribution. 

Correction for the 

amplitude as well as the 

bias results in slight 

underestimation of the 

strength of the event, and 

some underestimation of 

the amount of uncertainty 

at short leads. The 

strength underestimation 

may be partly a result of the more conservative forecast amplitude following amplitude correction. 

3. Summary and discussion 

Findings from this study so far are as follows:  

Multi-model ensemble spread is considerably larger than the SEE-based (more likely realistic) spread 

when the models’ differing biases are uncorrected. The ratio between the two spreads is about 1.5 to 1.8 

before bias correction, and about 1.2 to 1.4 after individual model bias corrections.  
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Fig. 7  MME forecasts from June 2009 for the period of the 2009/2010 El Niño 

event. Top panel shows forecasts without any corrections, middle panel after 

bias correction, and bottom panel after bias and amplitude correction. The 

blue line and solid dots show the MME mean forecasts; the black line and 

dots show the observations. The horizontal ticks on the vertical line for each 

month show individual model ensemble mean forecasts. The thin blue vertical 

vertical Gaussian distribution curves show forecast uncertainty based on the 

MME spread, and the thin red vertical distribution curves show uncertainty 

based on the hindcast skill-based standard error of estimate. 
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The ratio of internal spread around individual model ensemble means (i.e., the spread of individual model 

ensemble members) to the standard error of estimate is in 0.8 – 1.0 range, showing slightly too tight an 

ensemble distribution. This result is expected in view of individual models having their own universe, and 

often (not always) recognizing less noise in that universe than there is in the real world. 

Correcting forecasts so that the ratio of their interannual SD equals that of observations multiplied by 

their correlation skill (i.e., amplitude correction) makes less difference in the RMSE of the MME forecasts 

than model bias correction, but brings the spread of the MME forecasts within the neighborhood of that 

indicated by the skill-based SEE for intermediate and long leads. For shortest leads, the MME spread 

becomes smaller than the SEE-based spread. 

A clear conclusion is that individual model biases should be corrected before the merging into a MME is 

done: 

Correction of model amplitude biases should also be done. It reduces the interannual variability of the 

MME forecasts to be lower than that of the observations, to minimize squared errors and to create 

probabilistic reliability (lack of overconfidence). The lower the hindcast-based skill, the smaller the 

interannual variability of the MME forecasts should become.  

A final thought concerns best way to display the forecast plume for users. Both the mean of the MME and 

the associated uncertainty must be shown in an easily understood and usable way.   

References 

Hayes, W. L., 1973: Statistics for the Social Scientists, Second Edition. Holt, Rinehart and Winston, Inc. 

Kirtman, B. P., D. Min, J. M. Infanti, J. L. Kinter, D. A. Paolino, Q. Zhang, H. van den Dool, S. Saha, M. P. 

Mendez, E. Becker, P. Peng, P. Tripp, J. Huang, D. G. DeWitt, M. K. Tippett, A. G. Barnston, S. Li, A. 

Rosati, S. D. Schubert, Y.-K. Lim, Z. E. Li, J. Tribbia, K. Pegion, W. Merryfield, B. Denis and E. Wood, 

2014: The US national multi-model ensemble for intra-seasonal to interannual prediction. Bull. Amer. 

Meteor. Soc., 95, in press.  



Science and Technology Infusion Climate Bulletin 

NOAA’s National Weather Service  

38
th
 NOAA Annual Climate Diagnostics and Prediction Workshop  

College Park, MD, 21-24 October 2013 

______________ 

Correspondence to:  Xingren Wu, Environmental Modeling Center, NCEP/NWS/NOAA, 5830 University Research 

Court, College Park, MD 20740-3818;  Email: Xingren.Wu@noaa.gov 

 

Sea Ice in the NCEP Climate Forecast System Reanalysis  

Xingren Wu
1, 2

, and Robert Grumbine
1
 

  1
Environmental Modeling Center, NCEP/NWS/NOAA 

2
I.M. Systems Group, Inc., Rockville, MD 

ABSTRACT 

The NCEP climate forecast system (CFS) reanalysis (CFSR) was recently completed using the 

NCEP coupled atmosphere-ocean-land surface-sea ice system. This paper describes the sea ice 

concentration data used and how sea ice concentration is assimilated in the CFSR. The near record 

minimum of Arctic sea ice is clearly shown in the CFSR output. Because of the realistic sea ice 

distribution, there have been many improvements in the CFSR compared to the previous 

NCEP/NCAR Reanalysis-1 and NCEP-DOE Reanalysis-2. For instance, the surface air temperature 

improved in the fall over the Arctic Ocean. 

1. Introduction 

 Sea ice is known to play a significant role in the global climate system. Realistic representation of sea ice 

is essential for good performance of atmospheric and oceanic data assimilation models over the polar regions 

in the CFSR. Global climate modeling studies show that sea ice concentration has a strong impact on the 

climate over the Antarctic regions (e.g., Simmonds and Budd 1991; Simmonds and Wu 1993). Recent studies 

(e.g., Overland and Wang 2010; Screen and Simmonds 2010; Liu et al. 2012) demonstrate that the declining 

Arctic sea ice has a significant impact on the atmospheric circulation, surface latent heat flux and winter 

snowfall. We note that, there was no sea ice concentration in the previous NCEP reanalysis, the NCEP/NCAR 

Reanalysis-1 (R1) (Kalnay et al. 1996) and NCEP-DOE Reanalysis-2 (R2) (Kanamitsu et al. 2002), although 

sea ice concentration data from analysis were used to present the sea ice coverage in R1 and R2 with 55% 

cutoff (i.e. when sea ice concentration is greater than 55% it is considered as 100% sea ice coverage). The 

new CFSR at NCEP (Saha et al. 2010) allows us to add sea ice concentration from analysis into the reanalysis 

system, which leads to more realistic interactions between sea ice and atmosphere in the polar regions. This 

paper describes the sea ice data used in the CFSR, how sea ice concentration is assimilated, and discusses the 

implications for improvement in the products of the CFSR. 

2. The sea ice concentration analysis 

The sea ice analysis produces a global record of sea ice concentration for the CFSR for all points that may 

freeze anywhere in the globe. This is done daily on a grid of 0.5 degree latitude-longitude resolution 

throughout the period of the CFSR. When there are discontinuities in the production of the data set, newer 

data sets and newer methods are used.  

From 1979 to 1996, the sea ice concentrations for most of the globe are regridded from Cavalieri et al. 

(1996, updated 2007) (GSFC Ice), except for (i) possibly ice-covered regions that lie outside that grid, (ii) 

large Canadian lakes, (iii) the Great Lakes, and (iv) sea surface temperature-based filtering of erroneous ice in 

the analysis. For the Great Lakes, the data used are Assel et al. (2002) from 1979 through the end of the data 

set in Spring, 2002, and passive microwave thereafter. Those grids are available 1-3 times per week 

throughout the period they are available. Concentrations were linearly interpolated between the observation 

dates, and those interpolated values are used here, averaged on to the target 0.5 degree grid from the native 

2.55 km Mercator projection. For large lakes in Canada, the Canadian Ice Service (CIS, personal 
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communication) analyses were used for all lakes which were analyzed from November 1995 through October 

29, 2007 (initially 34, in November, 1995, increasing to 137 by October, 2007). From October 30, 2007 

onwards, the concentrations are the operational NCEP passive microwave sea ice concentration analyses. 

There are regions which may freeze but lie outside the domain analyzed in GSFC Ice. These large water 

bodies were analyzed by proxy over 1979-1996, as was done for portions of the North American Regional 

Reanalysis (Mesinger et al. 2006). Proxies were generated anew for the CFSR as the domain is much larger, 

and more data are available. During the period 1 January 1997 - 30 June 2006 when both NCEP ice and 

GSFC ice were available, the NCEP ice analysis was used to identify points (one by one) which lay inside the 

GSFC ice domain and which had high correlation to concentrations analyzed for points outside the GSFC ice 

domain - but still inside the NCEP domain. This includes large lakes such as Lake Ladoga, Lake Onega, and 

the Caspian Sea. Due to changes in sea surface temperature (SST) sources for filtering sea ice concentration 

analyses, some regions such as the Aral Sea, Lakes Balkhash, and Hulun Nur could not be consistently 

analyzed and were assigned zero ice concentration. Some lakes were assigned land flags in the CFSR when 

they could not be observed strictly by modern passive microwave due to land contamination issues and the 

lack of available data; these lakes include Lake Athabasca, Lake of the Woods, Lake Nipigon (outside the 

period of CIS data), Iliamna Lake, and Lake Vanern.  

From January 1997-February 2000, the global ice concentration analysis was the NCEP operational ice 

analysis (Grumbine 1996) (outside the Great Lakes and Canadian Lakes). From 1 March 2000 to 29 October 

2007, the sea ice analysis is the newer NCEP sea ice analysis system applied to archived passive microwave 

data for DMSP F-13, F-14, and F-15. The old NCEP system was based on the NASA Team1 algorithm 

(Cavalieri 1992) as was the GSFC ice. The newer system is based on the Team2 algorithm (Markus and 

Cavalieri 2000). In the newer NCEP system, the sea ice concentration for each day is computed by regression 

of the Stokes-like parameter (T85V
2
 -T85H

2
)

0.5
 (where T85V is the 85 GHz brightness temperature at vertical 

polarization, and T85H is likewise for the horizontal polarization) against the Team2-derived concentration - 

for those points that are greater than 100 km from land, and are poleward of 60 degrees latitude. The 

regression provides an unbiased estimator, and, due to the small footprint of the 85 GHz channel, a higher 

resolution estimate, permitting analysis closer to the coast and inside smaller lakes than would otherwise be 

possible with the pure Team2 algorithm. This operational system used the SSMI (Special Sensor 

Microwave/Imager) instruments on DMSP F-13, F-14, and F-15 while those were all available. F-14 stopped 

providing data in October 2008. F-15 suffered progressively more severe corruption of the 22 GHz channel in 

late 2008 and was removed from NCEP sea ice production 5 March, 2009. AMSR-E was added to the 

operational sea ice system on 13 May 2009, using the AMSR-E Team2 algorithm with January, 2009 tie 

points as described in Markus and Cavalieri (2009). That date was concurrent with a data flow outage from 

AMSR-E and data corruption in F-13. This simultaneous failure degraded the quality of the sea ice analysis in 

May 2009. Sea ice data were reprocessed for the CFSR using F-13 and AMSR-E from February to April. The 

passive microwave weather filters are imperfect, meaning that ice concentrations can be reported from the 

microwave for reasons other than ice being on the surface, so that an SST filter is also used (Grumbine 1996). 

The sea ice concentrations were in general produced before the SST analyses used for the CFSR. Therefore, 

an a posteriori filter was used for retrospective analyses through 29 October 2007 (Grumbine 2009). The 

usual SST filtering was also done using AVHRR-Only analysis (Reynolds et al. 2007) for 4 January 1985-10 

February 2000. The real-time global (RTG) low resolution analysis (Thiebaux et al. 2003) was used 11 Feb 

2001 through 29 October 2007 and RTG high resolution analysis (Gemmill et al. 2007) thereafter. 

3. The coupled model 

The model used for the CFSR is the NCEP coupled atmosphere-ocean-land surface-sea ice model. The 

atmospheric model is based on the previous NCEP operational global forecast system (GFS) model with 

improvements including new radiation and physics (Saha et al. 2010). The horizontal resolution is T382 with 

64 hybrid vertical layers. The ocean model is from GFDL Modular Ocean Model version 4p0d (MOM4, 

Griffies et al. 2004), with 40 vertical layers. The zonal resolution of MOM4 is 1/2
o
. The meridional resolution 

is 1/4
o
 between 10

o
S and 10

o
N, gradually increasing through the tropics becoming 1/2

o
 poleward of 30

o
S and 

30
o
N. The ocean model uses a tripolar grid north of 65

o
N. The land surface model is the NOAH land surface 
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model (Ek et al. 2003), which is 

imbedded in the GFS. The sea ice 

model is described below. Full details 

of the model description for the 

atmosphere, ocean, and land surface 

can be found in Saha et al. (2010). 

4. The sea ice model 

The sea ice model is from GFDL 

Sea Ice Simulator with slight 

modifications. Similar to the ocean 

model, sea ice model components use 

a tripolar grid north of 65
o
N, i.e., a 

grid that has “poles” located in the 

land masses of northern Canada and 

northern Russia, in addition to the 

normal South Pole. There are three 

layers for the sea ice model, including 

two equal layers of sea ice and one 

(optional) layer of snow with five 

categories of sea ice thickness (0-0.1, 

0.1-0.3, 0.3-0.7, 0.7-1.1, and the 

category greater than 1.1 m). The 

snow has no heat capacity, the upper 

ice layer has sensible and latent heat 

capacity (i.e. a variable temperature/ 

salinity dependent), and the lower ice 

layer has only sensible (fixed) heat 

capacity. The base of ice is fixed at 

the (salinity dependent) seawater 

freezing temperature. Sea ice 

dynamics is based on Hunke and 

Dukowicz (1997) using the elastic-

viscous-plastic technique to calculate 

ice internal stress. The ice strength 

follows that of Hibler (1979). Ice 

thermodynamics is based on Winton 

(2000). It is possible for ice to be 

transferred conservatively between the 

snow layer and the two ice layers 

when there is snowfall, evaporation, 

freezing, or melting. When sea ice 

forms over the ocean, it releases latent 

heat and salt to the ocean. Details can 

be found in Griffies et al. (2004).  

5. The assimilation of sea ice 

concentration in the CFSR 

Due to the lack of observations of 

sea ice thickness and motion covering 

the CFSR period starting 1979, a sea ice merging scheme is used in the CFSR to add sea ice concentration 

into the system. The 6-hour model guess field and the analyzed sea ice concentration are used to produce a 

Fig. 2  As in Fig. 1 but for the Antarctic. 

Fig. 1  Sea ice concentration (%) in the Arctic averaged from 1979 to 

2010 for December-January-February (DJF), March-April-May 

(MAM), June-July-August (JJA) and September-October-

November (SON) from the CFSR (top), the analysis (middle) 

and the difference between the CFSR and the analysis (bottom). 

The contours are 15/30/45/60/70/80/90/95 for the sea ice 

concentration and -8/-6/-4/-2/2/4/6/8 for the difference. 
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new initial condition. During the merging process, a quality control is applied to prevent the failure when 

there is a feedback between the ice analysis and the SST analysis. This is done on the sea ice model grid after 

the interpolation (regridding) is performed for SST and sea ice concentration. When the SST from the analysis 

is warmer than 275.3 K, or the sea ice concentration from the analysis is less than 15%, no sea ice is allowed 

to exist, so sea ice is removed from the CFSR initial condition. When the sea ice concentration from the 

analysis is greater than (or equal to) 15% and the SST is not warmer than 275.3 K, the CFSR initial sea ice 

concentration is reset to the analyzed value. If the model guess contains more sea ice, thin ice is removed first 

before thicker ice. In summer, the melt pond effect on ice albedo is considered1, which is done for the Arctic 

sea ice cover north of 70
o
N only. When there are serious problems for sea ice concentration data from 

analysis, we only use model predictions. This happens for May 1-13, 2009.  

6. Sea ice in the CFSR 

Because sea ice concentration has been “assimilated”, there is no doubt that the ice field is very close to 

the observations for sea ice concentration and ice coverage.  Figure 1 shows the sea ice concentration 

averaged from 1979-2010 in the CFSR for December-January-February (DJF), March-April-May (MAM), 

June-July-August (JJA), and September-October-November (SON) for the Arctic, the corresponding analysis, 

and the difference between the CFSR and the analysis. It can be seen that the difference is very small and 

mostly along the coast. The Antarctic sea ice concentration for each season from the CFSR and the analysis is 

shown in Figure 2 with the difference given. The difference over the Antarctic is even smaller and almost 

negligible.  

The Arctic region sea ice reaches its maximum coverage in late February or early March and minimum 

Fig. 3   Monthly mean sea ice extent (10
6
 km

2
) for the Arctic (left) and Antarctic (right) from the CFSR. 

Fig. 4  Arctic sea ice extent (106 km
2
) from the CFSR in March (left) and September (right). 
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coverage in September. From November to June, sea ice covers 90% of the Arctic Ocean, where the open 

water region is very small. The Antarctic sea ice reaches its maximum coverage in September and minimum 

coverage in February. Much larger seasonal variation of sea ice exists in the Antarctic than in the Arctic. Sea 

ice extent, which is defined as the total area with sea ice present (including open water) for which each grid 

cell has at least 15% sea ice, is shown in Figure 3. It can be seen that the maximum sea ice extent is about 

three times the minimum sea ice extent for the Arctic, but it is about nine times for the Antarctic. Large 

reductions in sea ice are obvious in the CFSR for both 

summers of 2007 and 2008 over the Arctic. Inter-

annual variability for the total sea ice extent is 

relatively small for both hemispheres but regional 

inter-annual variation for the marginal sea ice zone is 

very large (not shown). The overall trend over the 32-

year period is slightly positive for the Antarctic and 

negative for the Arctic, which is consistent with 

previous studies (e.g., Comiso and Nishio 2008; 

Parkinson 2006). The March and September Arctic 

sea ice extent is shown in Figure 4. This is 

comparable to that from Stroeve et al. (2007), in 

particular for the sea ice trend for September. The 

plots in Stroeve stopped at 2006, whereas our CFSR 

data includes 2007-2010.  

The seasonal sea ice thickness for the 32-year 

mean is shown in Figure 5. Sea ice is much thicker 

over the Arctic than over the Antarctic. The averaged 

sea ice thickness in the CFSR is reasonable in the 

Arctic for the first 20 years but it is too thick for the 

last decade; it might also be too thick in the Antarctic 

Fig. 6  Sea ice thickness (m) for April from 2003 to 

2006 in the Arctic from the CFSR. The contours 

are 0.05/0.2/0.5/1/1.5/2/3/4. 

Fig. 5  Sea ice thickness (m) in the Arctic (top) and Antarctic (bottom) averaged from 1979 to 2010 for 

DJF, MAM, JJA and SON from the CFSR. The contours are 0.05/0.2/0.5/1/1.5/2/3/4 for the Arctic 

and 0.05/0.2/0.4/0.6/0.8/1/1.25/1.5 for the Antarctic. 
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as the observed Antarctic sea ice is mostly less than 1 

m (e.g., Wadams et al. 1987; Worby et al. 1994). 

Maslanik et al. (2007) showed a large interannual 

variation of Arctic spring sea ice thickness between 

2003 and 2006. The sea ice thickness for April from 

the CFSR is shown here (Fig. 6) for 2003-2006. The 

interannual variation from the CFSR is not as large as 

the observations shown in Maslanik et al. (2007). The 

sea ice thickness errors can result from deficiencies in 

any component of the coupled atmosphere-ocean-land 

surface-sea ice model and their interactions. One 

example is the downward shortwave radiation. When 

the CFSR model is used to do seasonal forecast there 

is a cold SST bias in the Tropics, leading to an El 

Nino/Southern Oscillation variability that is too weak 

(Saha et al. 2014). Nevertheless, the CFSR is able to 

simulate the large reduction in sea ice over the past 20 

years. Figure 7 shows the sea ice concentration and 

thickness for September of 1987 and 2007 for the 

Arctic. Record minimum Arctic sea ice cover was 

observed in September 2007 (e.g. Comiso et al. 2008), 

which was broken again in 2012. The sea ice 

thickness in the CFSR also shows a large reduction 

from 1987 to 2007. 

8. Summary 

We have described the sea ice data used in the 

NCEP CFSR and how sea ice is assimilated. This is 

the first reanalysis at NCEP where sea ice 

concentration is assimilated into the reanalysis system. 

Because of the realistic sea ice distribution and other 

improvements in the CFSR, it is expected that the 

coupled reanalysis has been improved in many 

aspects over the polar regions compared with the 

previous R1 and R2 (e.g. Wang et al. 2010). Figure 8 

shows the difference in surface air temperature (SAR) 

among CFSR and R1, R2, and ERA40 (ECMWF Re-

Analysis System, Uppala et al., 2005) for the Arctic 

in September. It can be seen that, due to the lack of 

open water in the sea ice zone in R1 and R2, the 

surface air temperatures from R1 and R2 are colder 

than CFSR in September, but there is good agreement 

between CFSR and ERA40. Large and Yeager (2004) 

showed that the mean SAR in R1 for September 

during 1979-1998 north of 70
o
N is about 1.7

o
C colder 

than observations. For our case during 1979-2009, 

CFSR is 1.8
o
C warmer than R1 over the same region, 

1.3
o
C warmer than R2, and 0.2

o
C warmer than 

ERA40. This cold bias in R1 for September has been completely removed in the CFSR. 

Acknowledgements. We acknowledge all members of the CFSR team at NCEP. 

Fig. 7   Sea ice concentration (%) and thickness 

(m) for September 1987 and 2007 from the 

CFSR for the Arctic. 

Fig. 8  Mean surface air (2m) temperature (
o
C) 

averaged 1979-2009 for September from the 

CFSR for the Arctic (top left), and the 

difference among CFSR and R1, R2 and 

ERA40. The surface air temperatures from R1 

and R2 are also averaged over 1979-2009, but 

averaged over 1979-2001 for ERA40. 
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1. Introduction 

 This study assess the impact of reducing the number of years, number of ensemble members, 

and frequency of reforecasts on the skill of week-2 calibrated surface temperature and precipitation 

forecasts using the current Global Ensemble Forecast System (GEFS) model reforecasts. These 

week-2 forecasts are referred to as the week-2 ‘Reforecast Tool’ and are evaluated over the 

Contiguous United States (CONUS) for this assessment. 

Previously, the NOAA Earth System Research Laboratory (ESRL) had been producing reforecasts, which 

the Climate Prediction Center (CPC) has used to create 6-10 and 8-14 days calibrated (week-2) forecasts. 

However, ESRL will no longer be generating these reforecasts, and it was proposed to be created by the 

Environmental Modeling Center (EMC) at the National Centers for Environmental Prediction (NCEP) 

therefore enabling reforecasts to be updated more frequently with the real-time GEFS. The EMC requested 

input from the CPC regarding what they deemed necessary (for CPC’s forecast timescales) in terms of the 

amount of reforecasts that would be produced in the future by EMC. 

To evaluate the sensitivity of week-2 reforecast tool skill to reforecast sampling, 11 configurations (cases) 

of reforecast sampling are selected to produce skill scores of calibrated week-2 forecasts. The goal is to 

determine how the skill of the week-2 reforecast tool varies based on various reforecast configurations to help 

determine what would be considered a sufficient number of reforecasts needed without a significant loss in 

skill. A lower configuration of reforecasts would require less computational resources on behalf of EMC to 

produce these reforecasts. 

TABLE 1  Explanation of cases used in the study. 

Case # # Training Years # Ensemble Members Model Run Frequency 

0 1985-2010 (26 yrs) 11 daily 

1 2001-2010 (10 yrs) 11 daily 

2 1985-2010 (26 yrs) 6 daily 

3 1985-2010 (26 yrs) 11 once every 3-4 days (2/week, Mon and Thurs) 

4 1985-2010 (26 yrs) 11 once every 7 days (every Thurs) 

5 1985-2010 (26 yrs) 6 once every 7 days (every Thurs) 

6 2001-2010 (10 yrs) 11 once every 7 days (every Thurs) 

7 2001-2010 (10 yrs) 6 once every 7 days (every Thurs) 

8 1993-2010 (18 yrs) 6 once every 7 days (every Thurs) 

9 1985-2010 (26 yrs) 3 once every 7 days (every Thurs) 

10 2001-2010 (10 yrs) 3 once every 7 days (every Thurs) 

11 1985-2010 (26 yrs) 1 once every 7 days (every Thurs) 
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Three different parameters are evaluated with varying configurations of reforecasts to calculate the 

statistics used to “train” the reforecast tool – the number of training years, the number of ensemble members, 

and the model run frequency. The model run frequency is the number of times a week a reforecast dataset is 

used in the statistics calculation for training the reforecast tool.   

2. Data and methodology 

The reforecasts used in this study are from the Global Ensemble Forecast System (GEFS) with physics 

operational during 2012, provided by ESRL. The reforecast dataset includes daily reforecasts for 26 years 

(from 1985-2010) with 11 ensemble members (including a control run). 16 months of real-time GEFS data 

(from Feb 26, 2012 to June 11, 2013), with physics also operational in 2012 are used in the calibration. 

Forecasts are formatted as probabilities of three different categories, below-normal, above-normal, and near-

normal. The observations used to calculate the skill scores are station-based 5 and 7 day means of CPC’s U.S. 

station-based daily precipitation and temperature data. About 200 stations of data are utilized. 

Fig. 1  Line plots of Heidke Skill Score for various configurations of reforecast sampling for 3 different 

parameters for temperature and precipitation. Pairs of skill scores that have a value difference significant to 

the 90% level or greater are circled in matching colors. Multiple points in one circle on a plot with a 

matching circle of point(s) of the same color denotes the skill value difference at significance levels >= 

90% for the same variable. The pink box indicates the colors of circles and the associated significance level. 

For example, in the plot for the # training years (top left), the difference in skill of both 26 and 18 years 

compared to the skill value of 10 years have a significance >= 95%. 

To create forecasts, for each of the cases, first statistics are generated by using the reforecasts and 

associated observations. The model analysis fields from the reforecasts are used as the “observations” in the 
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calibration to train the model. It should be noted that using an actual observation dataset did not greatly alter 

verification results, so the model analysis is used for the statistics calculation. 

Next, these statistics are used to calibrate the real-time ensemble forecasts (2012-2013) using the 

ensemble linear regression method (Unger, 2009). This produces tercile probabilistic forecasts of temperature 

and precipitation. The three categories of the forecast are above-normal, below-normal, and near-normal. 

Finally, skill scores are generated using CPC’s verification system. These steps are done for each of the cases, 

by sampling the reforecast dataset according to the configuration specified by each case to calculate the 

statistics that go into the calibration step. 

This study is designed so that there are a reasonable number of cases to evaluate the skill to capture a 

sufficient range of reforecast sample configurations, while keeping the number of cases to a minimum due to 

the significant computational time it would take to step through the process to create skill scores.  11 cases 

were created with differing combinations of the three parameters being evaluated. Case 0 represents the 

maximum configuration, with all 26 years, 11 ensemble members, and daily reforecasts used per week. 

Subsequent cases use sub-samples of the pool of available reforecasts. Table 1 shows the details of each of 

these configurations.  

Three skill scores are used in this evaluation, including the Heidke Skill Score (HSS), Rank Probability 

Skill score (RPSS), and the Reliability Skill Score. The HSS and RPSS are calculated by aggregating over the 

CONUS for each time step of the 16 months of available forecasts, then the mean skill from these time series 

of scores are computed. A 1-tail two-sample t-test was performed for testing the significance of the mean skill 
differences from each of the different cases. 

3. Results 

 The cases selected for each chart are based on ease of comparing cases isolating impacts by changing 

each of the parameters. Line plots and reliability diagrams in this study shows how skill of forecasts change 

with decreasing configurations of each of the three parameters, while keeping the other 2 parameters constant 

at a selected case. The caveat of using these types of charts is that the skill associated with the decreasing 

configurations of the changed parameter only reflect one case of the other 2 fixed parameters (e.g. changing 

training years for 26, 18, and 10 years, while keeping the members and model runs constant at 6 and 1, 

Fig. 2  Bar histograms of Heidke Skill Score for 2 

different configurations of reforecast sampling for 

temperature and precipitation. Differences 

between two compared values that have 

significance levels >= 90% are printed above the 

two skill values being compared. 
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respectively). Bar histograms are also created for Heidke and RPSS, which allows multiple cases of the 2 

fixed parameters to be compared but for only 2 different configurations of the changing parameter (e.g. for 

changing the number of training years, 26 vs. 10 years are compared for 11 members/daily model run, 11 

members/1 run/week, etc.).  

 

Analysis of line plots of HSS (Fig. 1) shows the most significant drop in skill by changing the number of 

training years used in the reforecast sample and the least loss of skill from changing the model frequency, for 

both temperature and precipitation for the shown cases. For temperature, the significant drop in skill (with 6 

members and 1 model run/week) occurs when using 10 years instead of 18 (HSS decreases by 1.2), whereas 

for precipitation the drop occurs when dropping from 26 years to 18 years (HSS decreases by 1.4). These skill 

differences have a significance level of 95% or greater. 

For the selected line plot cases, changing the number of ensemble members only causes a significant drop 

in skill when using only one member (control run only) for both temperature and precipitation. The model run 

frequency only causes a noticeable drop in skill when going from 2 runs/week to 1 run/week for precipitation. 

The HSS of temperature is not greatly impacted by changing the number of ensemble members.   

Bar histograms of HSS (Fig. 2) show similar results as the line plots of HSS, with the number of training 

years impacting the skill most and the number of ensemble members the least. The model run frequency 

impacts the skill of precipitation forecasts slightly more than temperature. In general, the line plots and 

Fig. 3  Similar to Fig. 1 except for the Rank 

Probability Skill Score (RPSS). 
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histograms of HSS show skill loss of about 2 when using 10 years instead of 26 for both temperature and 

precipitation.  

An interesting feature of the results is that for some cases, a lower configuration of some parameters led 

to an increase in skill. For temperature, using 6 ensemble members instead of 11 for the case with 26 years 

and 1 run/week shows a small increase in skill. This is also true for using 1 run/week instead of daily runs 

(also for temperature). However, these examples do not have a high significance, although some examples 

shown later on do.    

Like the line plots of HSS, the line plots of RPSS also show that the greatest loss in skill results from 

lower configurations of the number of training years and the least skill loss from changing the model run 

frequency.  Similar to the HSS temperature line plots, the drop in skill occurs when using only 10 years. For 

precipitation, using 18 years instead of 26 caused a significant decrease in skill. Interestingly, the number of 

ensemble members shows a noticeable decrease in RPSS when dropping down to 3 members instead of just 1 

in the case of the HSS. This would indicate that even though using 3 members does not greatly impact the hit-

based aspect of skill assessing the number of correctly forecast, it does affect the ability of the forecast to 

properly issue the probabilities associated with the forecast. 

 The bar histograms of RPSS also show the greatest decrease in skill associated with the number of 

training years. Across the shown cases, the drop in skill from using 10 training years instead of 26 is about 

0.02 for both temperature and precipitation. Precipitation has a more varied skill response amongst cases than 

temperature. Similar to the RPSS line plots, using 6 instead of 11 members across 3 different cases does not 

yield a significant difference in skill. The impact of model run frequency on skill in the line plot cases was not 

impressive, although, the cases in the histogram show varying results. The variance of skill difference is 

especially noticeable for precipitation, where the case of 26 years and 11 members yields a RPSS drop of 

Fig. 4  Similar to Fig. 2 except for Rank 

Probability Skill Score (RPSS). 
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0.004 (case shown on line plot) but for 10 years and 11 members, there is a skill drop of 0.025. This 

exemplifies the importance of evaluating the impact of skill on decreasing training data configurations across 

various cases, varying the fixed parameters in different ways. 

For the case where 10 training years and 1 run/week are used, using 6 ensemble members instead of 11 

actually increases the skill by a small amount for temperature and precipitation (0.006 for temperature, 0.004 

for precipitation). These results are significant to the 90% level for temperature, and 95% level for 

precipitation. Improvements in skill by lowering the reforecast sampling configuration would likely be due to 

overfitting of data, meaning that it is potentially useful to select a lower configuration to improve skill. Doing 

so, however, may impact the skill in different ways depending on the verification metric or method, such as 

scoring by separate categories, the type of score, etc.  

 

Reliability diagrams are shown for temperature (Fig. 5) and precipitation (Fig. 6) with the same cases as 

the line plots. These cases show that temperature forecasts have generally good reliability. The cases that 

cause the lowest reliability is using one ensemble member only (the control run) and using 10 training years. 

Using only the control run leads to forecast probabilities that are too low (for forecast probabilities 40% or 

greater) and using 10 years leads to forecast probabilities that are too high (for forecast probabilities of 60% 

or greater). The forecast probabilities that are too low or high are reflected by curves on the reliability 

diagram that lie above and below the perfect skill line, respectively. 

Overall, the reliability of the precipitation forecasts (for the selected cases) show worse reliability than 

temperature, which is to be expected due to the inherent nature of it being a harder quantity to forecast. There 

is greater spread amongst the precipitation reliability curves across the cases compared to temperature, 

indicating that precipitation is more sensitive to reforecast sampling than temperature. These diagrams 

indicate the greatest decrease in skill results from using only 10 members and only the control run, while the 

model run frequency impacts skill the least, which is similar to the behavior of the reliability scores of 

temperature. 

Fig. 5 Reliability diagrams for different 

configurations of reforecast sampling for 

temperature. 
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It is evident that the reliability curves start deviating from the perfect score line at lower probabilities in 

precipitation than temperature which may indicate that there is a greater range of forecast probabilities that 

are less reliable for precipitation. Regardless of these differences, the overall behavior of the skill seems to 

react in a similar manner for both temperature and precipitation when changing the parameters of the 

reforecast sampling. 

 

4.  Conclusions 

Evaluation of skill scores of the week-2 reforecast tool indicate that temperature and precipitation 

forecasts are most sensitive to the number of training years of reforecasts used in the calibration and the least 

sensitive to the model run frequency. In general, precipitation forecasts are more sensitive to decreasing 

configurations of reforecasts than temperature. 

It is important to assess the skill of forecasts using different score types. Skill metrics that assess forecast 

quality based on probabilities were impacted differently than those that assess the number of correctly 

guessed forecasts. Using 3 members or less of reforecasts did not impact the Heidke skill score, but it did 

noticeably decrease the RPSS. 

The skill of precipitation forecasts is more sensitive to decreasing configurations of reforecasts than 

temperature, especially when evaluating the probabilistic aspect of skill. This shows that the forecast skill of 

different atmospheric variables may be sensitive to the configuration of different reforecast parameters. 

Therefore, determining the minimum required reforecasts for reforecast production should be driven by the 

atmospheric variable (of the variables desired to be forecast) that exhibits the most skill sensitivity to 

changing configurations of reforecast sampling. Despite the differences between temperature and 

precipitation regarding skill sensitivity, the type of impact to each are similar (e.g. using the control run only 

leads to forecast probabilities that are too low and using only 10 training years produces probabilities that are 

too high). 

Fig. 6 Reliability diagrams for different 

configurations of reforecast sampling for 

precipitation. 
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Even though decreasing the configuration of reforecasts may lead to some forecasts’ decrease in skill, it is 

also evident that selective lower configurations can still produce skillful week-2 forecasts with minimal skill 

loss. Dropping down from 11 members to 6 and daily reforecasts to 1 model run per week only causes a 

minor decrease in skill, if sufficient training years are used.  

CPC’s recommendation for a lower configuration of reforecast sampling without significant week-2 

forecast skill loss is to produce as many years as possible with 6 ensemble members and 1 run/week (weekly). 

In this case, the maximum years available for this study was 26 years, but 30 years would be desirable since it 

would be consistent with the standard CPC follows for their climatology and may allow forecasts to see 

further improvements in skill than the reforecast tool currently has. This configuration seems optimal from 

these evaluations based on significantly reducing the required resources needed to produce reforecasts without 

causing a great drop in skill for week-2 temperature and precipitation forecasts. Compared to real-time 

ensemble forecasts with 21 members per cycle and 4 cycles per day, weekly 6 member (5 members plus 

control run) reforecasts for 30 years would cost approximately 26% of the computing of the real-time 

ensemble reforecasts. 
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1.  Introduction 

In this study the performance of dynamical seasonal forecast systems is evaluated for the prediction of 

short rain anomalies over equatorial East Africa. The evaluation is based on observational data and the Asia-

Pacific Climate Center (APCC) Ocean-Atmosphere coupled Multi-Model Ensemble (MME) hindcasts. The 

ensembles of individual models and their MME mean are evaluated. Hindcasts initialized on 1st August for 

24 years covering 1982-2005 periods alone are considered, as these are the most relevant to short rain 

predictions. This study is motivated by the desire to use the output of best seasonal forecasts over East Africa.  

 The climate of equatorial Eastern Africa is dominated by March to May (long rains) and September to 

November (short rains). Interannual variability of short rains over equatorial East Africa is dominated by 

changes on the large-scale with a clear link to tropical ocean-atmosphere variability. The Indian Ocean Dipole 

(IOD) and its influence on climate variability over surrounding regions have been reported by Saji et al. 

(1999). After the discovery of this mode, several studies focused on the Indian Ocean to understand 

variability of the short rains over East Africa (Black et al. 2003; Behera et al. 2005; Ummenhofer et al. 2009; 

Bahaga et al. 2013). These studies indicated that SON rainfall over East Africa (Indonesia) is increased 

(decreased) during positive IOD events. 

2.  Data, models and evaluation methods 

2.1  Verification data 

The observed rainfall data used in this study are derived from Climate Prediction Center (CPC) Merged 

Analysis of Precipitation (CMAP) (Xie and Arkin 1996). The observational SST data are obtained from 

Fig. 1 Year-to-year variation of IOD derived from observation, Individual coupled models ensemble mean 

and MME mean hindcast SST anomalies normalized by standard deviation along with their correlation 

coefficient with respect to verification data. 
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improved Extended Reconstruction SST (ERSSTv3b, which includes satellite data) of Smith et al. (2006). 

This data was downloaded from http://www.ncdc.noaa.gov/ersst/ and is available from 1871 to present. 

2.2  Coupled forecast models 

 The coupled models that are examined in this study are ten state-of-the-art fully coupled atmosphere-

ocean-land seasonal prediction systems and are obtained from operational seasonal prediction models 

participating in the APCC MME seasonal forecast (Sohn et al. 2012).  

2.3  Forecast quality measures 

To measure the quality of a deterministic forecast, MME mean prediction was constructed using the 

simple average of ten models ensemble means. The metrics used to measure and evaluate prediction skill of 

individual coupled models ensemble mean and MME mean forecasts includes the spatial map of anomaly 

correlation coefficient (ACC) and simple correlations. Calculation of these quantities is standard (e.g., Wilks 

1995) and uses anomaly data, whereby the observed seasonal cycle and the hindcast climatology are removed 

from the observations and forecasts, respectively. 

3.  Results 

3.1  IOD prediction in coupled models and MME 

Bahaga et al. (2013) has shown that the IOD in the SST dipole mode index has high prediction skill for 

the variations of short rains. Here we consider SON mean SST anomalies for hindcast verification, which is 

the peak season in the evolution of IOD. In addition, IOD and equatorial East Africa short rains have strong 

contemporaneous relations at this time of the year. 

Figure 1 show the forecast of interannual variation of SON season mean Dipole mode index (DMI) 

normalized by the corresponding standard deviation and derived from ten coupled models ensemble mean and 

MME mean hindcast initialized on the 1st of August. It is seen from Figure 1 that there is a large skill of IOD 

predictions for almost all models and their MME mean, as reflected in the large significant correlation of 

predicted SST anomalies with observation.  

Fig. 2  Anomaly correlation coefficient (ACC) between SON observed rainfall and forecast rainfall derived 
from coupled models ensemble and MME mean during the period of 1982-2005 with a) NCEP, 

(b)NASA, (c) POAMA, (d) SUT1, (e) SINT, and (f) MME. Shaded positive values are significant at 

95% confidence level. 



SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

 

 

46 

The forecast skill for the SST anomalies in almost all models exhibits skill greater than 0.5 and also 

highly significant above 99.9% level, except for the SINT model (with a correlation of only 0.42). Models 

with high DMI forecast skill are NCEP, NASA, POAMA ensemble mean and MME mean.  On the other hand, 

SUT1, PNU, and CANCM3 are characterized by relatively lower correlation. Moreover, DMI prediction 

shows very good skills with the major positive IOD events like 1982, 1994 and 1997 captured well in nearly 

all forecasts (Figure 1). In general, it can be concluded that the APCC coupled models and MME mean 

initialized on 1st August produce excellent predictions of the temporal behavior of the SST anomalies over 

the Indian Ocean. 

3.2  Equatorial East Africa short rain prediction 

Previous studies have demonstrated that IOD is the source of predictability for East African short rains 

(Behera et al. 2005; Bahaga et al. 2013). The skill of SON rainfall anomaly forecast is evaluated based on the 

Anomaly Correlation Coefficient (ACC) between the observation and coupled models forecast over Indian 

Ocean basin (Figure 2). Overall there is little or no skill found over most of land points, with the exception of 

the coast of East Africa and countries east of tropical Indian Ocean region where significant skill can be 

identified. A similar lack of rainfall predictability over most land regions has also been reported by Wang et 

al. (2009). On the other hand, most coupled models and MME mean show significant skill over ocean points 

in the south eastern Indian Ocean and western Indian Ocean (Figure 2a-f). 

3.3  Short rain forecast skill 

The interannual variation of equatorial East Africa rainfall index (EEARI) (5ºS-5ºN, 35-45ºE) and the 

correlation between observed and each coupled models ensemble and MME mean is shown in Figure 3. The 

figure illustrates that five coupled models predict equatorial East Africa rainfall with statistically significant 

skill. NCEP prediction giving the strongest correlation of all and SUT1, UHT, POAMA and CANCM3 also 

show significant skill. The other models have relatively lower skill and are unable to produce significant 

correlations. Despite insignificant skill in some individual models, MME mean produce the fourth largest 

significant correlation at 95% confidence level.  

3.4  MME mean forecast skill improvements by model selection  

Finally we consider improvements of forecast skill in the MME mean hindcasts of SON equatorial East 

Africa rain-fall by selecting five good models according to their correlation skill in predicting the EEARI 

index (Figure 3). Only models that show at least 90% statistically significant correlations are selected. The 

resulting models are UHT1, NCEP, POAMA, SUT1 and CANCM3. Such a selection should be revisited once 

more hindcast data is available. The correlation between observed and ensemble mean of EEARI for the 

selected coupled models and their MME mean is shown in Figure 4. The 90% significant level is indicated by 

Fig. 3  Interannual variation of SON normalized anomaly over equatorial East Africa in APCC coupled 

models hindcast and MME mean verified against observation along with the spatial correlation between 

observed and predicted SON equatorial East Africa rainfall index (EEARI) (5ºS-5ºN, 35-45ºE) for a 

period of 1982-2005. 
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the horizontal dashed line. Thus the skill of the MME 

based on this model selection improves its skill from 0.44 

for all models to 0.67.  

4. Conclusions 

Hindcast experiments from 10 APCC coupled models 

ensemble mean and their MME mean were analyzed 

regarding their predictive skill of East African rainfall. 

Coupled model hindcast also evaluated for prediction of 

SST anomalies over tropical Indian Ocean. Nearly all 

models and MME mean shows statistically high 

significant skill in forecasting the peak phase of the IOD 

in the boreal autumn season, which is typically when the 

IOD is best defined and most climatically important. 

Furthermore, out of ten models five coupled models and 

MME mean show statistically significant skill in 

predicting equatorial East Africa short rains. The results of 

this study reveal an encouraging potential for real time forecasts of East African rainfall with about one month 

lead time. Such forecasts would be of substantial societal importance. 
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1. Introduction 

In the United States, drought is among the costliest natural hazards, with an annual average of 6 billion 

dollars in damage (NCDC 2013).  Drought prediction from monthly to seasonal time scales is of critical 

importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management.  Started in 

December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized 

Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to 

support CPC's monthly drought outlooks and briefing activities.  The current NMME system consists of six 

model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, 

CanCM3, and CanCM4 models (Kirtman et al. 2013).  Detailed information about the NMME project and 

forecasts can be found on CPC website (http://www.cpc.ncep.noaa.gov/products/NMME).  In this study, we 

conduct an assessment of the meteorological drought predictability using the retrospective NMME forecasts 

for the period from 1982 to 2010.  The standardized precipitation index, which measures precipitation deficits 

over a period of time, is used to predict meteorological drought.   

2. Methodology  

The current NMME SPI prediction framework is similar to the CFSv2 SPI prediction system that 

developed by Yoon et al. (2012).  For each model, monthly-mean precipitation (P) forecasts were first bias 

corrected and spatially downscaled (BCSD) to regional grids of 0.5-degree resolution over the contiguous 

United States based on the probability distribution functions (PDFs) derived from the hindcasts.  As a result, 

BCSD scheme corrects both the climatological mean and standard deviation of the hindcasts.  Specifically, for 

each month and lead time, the PDF at each grid point is computed based on model hindcasts excluding the 

target year.  The bias-corrected percentile for the target year is then obtained from the inverse PDF of the P 

analysis based on the percentile calculated from the PDF of the hindcasts.  The BCSD method was applied to 

each member and each lead of the P hindcasts.  The corrected P forecasts were then appended to the CPC 

Unified Precipitation Analysis (Chen et al. 2008) to form a P time series for computing 1-month, 3-month, 6-

month, and 12-month SPIs.  The NMME-ensemble SPI forecasts are the equally weighted mean of the six 

model forecasts.  Two performance measures, the anomaly correlation coefficient (ACC) and root-mean-

square errors (RMSE) against the observations, are used to evaluate forecast skill.  In this study, CPC Unified 

Precipitation Analysis is used as the observations for forecast evaluation.  

3. Results and discussions 

Figure 1 shows the relation of SPI forecast skill to lead time for January and July.  In this figure, color 

lines are for model forecasts and the bold black line is for the ensemble forecasts.  The values plotted in the 

figure are the averages over the continental U.S.  For 3-month SPI (SPI3), skill quickly drops and is very 

close to the P forecast skill after Lead 3, when observations are no longer included in the 3-month window.  

Similar results are observed for 6-month SPI (SPI6).  When P observations are no longer included in the 6-

month window at Lead 6, SPI6 forecast skill converges to the P forecast skill.  We also notice that when there 

are more observations include in the time window, for example, Month-1 SPI6 forecasts include 5 months of 

observations, its skill is higher than Month-1 SPI3 forecasts, which include 2 months of observations.  

Therefore, P observation is a dominant factor contributed to the SPI forecast skill and the small differences 
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among models.  Similar results are 

observed for using ACC and RMSE as 

performance measures and for different 

months. 

Another thing we notice from this 

figure is that for both SPI3 and SPI6, the 

ensemble forecasts, which are on top of 

most model forecasts in the ACC plots and 

on the lower end of most model forecasts 

in the RMSE plots, have higher skill than 

that from individual models, but the 

differences are not large.  If we use 0.5 as 

a threshold for ACC and 0.8 as a threshold 

for RMSE to determine skillful forecasts, 

both ACC and RMSE suggest similar 

results that SPI6 forecasts are skillful out 

to four months. 

Figure 2 shows the ACC 

maps of Month-1 SPI3 forecasts 

for all 12 months.  We can see 

that predictive skill is seasonally 

and regionally dependent.  Skill 

generally is higher for the winter 

season (e.g., January) and lower 

in the Spring (e.g., April).  Areas 

with high forecast skill in the 

month generally correspond to 

the dry climatology in the region.  

For example, over central U.S. 

for January and along the West 

Coast in July.  Areas with low 

forecast skill in the month 

generally correspond to the 

wetter climatology in the region.  

For example, springtime over the 

central U.S. is the time of rain 

showers, and July over the 

Southwest is their monsoon 

season.  

4. Conclusions 

For P forecasts (figures not 

shown), errors vary among 

models and predictive skill 

generally is low after the second 

month.  All model P forecasts have higher skill in winter and lower skill in summer.  BCSD improves RMSE 

for both P and SPI forecasts, but the differences in ACC between with and without BCSD are marginal (and 

not statistical significant).  Most RMSE improvements are over the western mountainous regions and along 

the Great Lake.  Although P forecast skill is not large and quickly drops after one month, SPI predictive skill 

is high and the differences among models are small.  Generally, model with lower P forecast skill has lower 

SPI forecast skill.  The skill mainly comes from the P observations appended to the model forecasts.  This 

Fig. 2  ACC maps of Month-1 SPI3 forecasts for all 12 months. 

Fig. 1  Relation of SPI forecast skill to lead time for January and 

July. 
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factor also contributes to the similarity of SPI prediction among the six models.  Still, NMME SPI ensemble 

forecasts have higher skill than those based on individual models or persistence. 

Overall, SPI predictive skill is regionally and seasonally dependent, and NMME SPI6 forecasts are 

skillful out to four months.  SPI forecast skill at a region corresponds to local rainfall climatology and 

variability.  Dynamical models improve SPI predictive skill from baseline skill when and where P forecasts 

are skillful.  The improved skill of SPI prediction during the wet seasons spanning roughly late autumn to 

early spring over the Southwest and Gulf Coast region is attributed to the known impacts of ENSO signals on 

these regions’ cold-season precipitation, which is consistent with the findings by Quan et al. (2012) from 

CFSv2 SPI prediction. 
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1. Overview 

The climate-weather-water connection is a grand challenge for NOAA.  The weather to climate 

continuum demands a unified modeling and seamless prediction framework.  Since the predictability of long-

term climate is largely uncertain and demands increased basic research, the service is advised to put the 

emphasis on short-term climate applications, by expanding the current weather service to provide much 

needed weather-climate services, incorporating short-term climate monitoring and prediction with reliable and 

skillful information.  

2. Long-term climate is what you get 

a. Correction on weather-climate classification 

According to an analysis of observed variability characterized by spectral composites (Lovejoy and 

Schertzer 2013), only the average of short-term climate/macroweather (10 days to 10-30 years) converges to 

normal, so that products of probabilistic prediction with shallow uncertainty are well justified for application 

uses. However, long-term climate processes (10-30 years to 100,000 years) are “weather-like”, of which the 

variability grows with an increase of time scale. 

This important characteristic is known to be missing in current Earth system model simulations due to a 

lack of internal long-term processes that interact with boundary conditions and are coupled with external 

forcings (Lovejoy, Schertzer and Varon 2013). 

b. Profound uncertainties in long-term projection 

 Natural long-term climate change at any time or place is (qualitatively and quantitatively) unexpected in 

very much the same way that the weather is unexpected due to the variability growing with time.  Most 

people understand the greenhouse effects of anthropogenic greenhouse gases.  The real problem is the 

projection of future long-term climate, for which greenhouse gases are only one of the players.  The others 

and interactions among all players with chaotic internal dynamics are far from well explored and understood, 

which brings out concerns about the reliability of current long-term climate projection products and present a 

barrier to clear-cut policy and decision making. 

i)  Climate change on hold?  

Recent CO2 emissions have actually risen even more steeply than people feared.  As a result, according to 

most climate models, the temperature should have risen about 0.25°C over the past 10 years.  However, the 

increase over the last 15 years was just 0.06°C.  Model deficiencies are increasingly getting the attention of 

climate scientists as to what could be the fundamental problems (von Storch et al. 2013). 

ii) Warming of deep ocean 

Warming really means heating that could be felt in many ways.  Recent observational studies show 

ongoing warming of deep oceans at an alarming rate (Balmaseda 2013), which could be related to the 

slowdown of global surface air temperature rising. This part of the energy imbalance induced by the 

greenhouse gases was not observed throughout previous record.   
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iii) Cooling in near future?  

Though greenhouse gases play a role in the earth’s energy balance by trapping energy and radiating it 

back to earth, the ultimate heat source of the Earth-atmosphere system is incoming solar radiation.  By 

analyzing the average annual balance of the thermal budget, it has been demonstrated that the negative energy 

balance that has occurred since the 90’s (Abdussamatov 2012), will likely continue during the next a few 11-

year solar cycles. 

3. Toward unified probabilistic modeling for reliable weather-climate seamless prediction 

  No forecast can be considered reliable without an accurate assessment of forecast uncertainty.  With the 

power law behavior for atmospheric energy, uncertainties in subgrid processes propagate upscale by nonlinear 

dynamical effects.   The errors with conventional numerical algorithms based on deterministic closures, which 

represent subgrid processes by the bulk-average effect of some putative large ensemble, appear to lead to 

substantial biases and considerable uncertainty in simulating climate. With increasing resolution, the 

convergence to the ‘true’ underlying equations is exceptionally slow.   

The development of explicitly probabilistic weather and climate models, in which the inherent uncertainty 

is recognized explicitly without scale separation (Palmer 2012), gives more reliable estimates of uncertainty 

that pave the way for significant advancement of weather-climate prediction. 

4.  Guidance for effective development 

a. Embrace seamless prediction and unified modeling framework 

The seamless prediction concept, which emphasizes the interdependency in predictability between 

weather and climate, is increasingly recognized as a critical paradigm.  In particular, a unified modeling 

framework for seamless prediction is required not only to optimize the usage of NOAA modeling resources 

but also accelerate improvement of the weather-climate model performance. 

b. Meet challenges 

NOAA is facing considerable challenges in continuously improving its operational Climate Forecast 

System, finding the resources needed to develop multiple climate models with high resolution and full physics, 

and at the same time running large ensemble integrations from states initialized with contemporary 

observations. To be successful, the agency is reorganizing to mobilize all positive factors by remove obstacles, 

e.g. fragmentation etc. (Rood 2013).    
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1. Background 

The national Earth System Prediction Capability (ESPC) initiative arose from an agreement between DoD 

(Navy, Air Force) and NOAA leaders signed in 2010 to design and build the next generation global 

environmental analysis and prediction capability, covering time scales from days to decades.  Due to the 

research needed, the effort was expanded in 2012 to include DoE, NASA, and NSF to improve 

communication and synergy for global prediction of weather, ocean, and sea ice conditions and for 

coordination of research-to-operations at weather to short-term climate variability timescales. 

By coordinating efforts across agencies, ESPC hopes to develop a U. S. national research agenda that will 

lead to improved operational prediction across time scales.  While acknowledging separate agency missions 

and requirements, this research agenda will encourage a common core capability based on common prediction 

requirements, interoperability, and forecast model standards; and lead to a global coupled air-sea-land-ice 

prediction capability based on multi-model ensembles. 

In a series of articles in a special issue of the Bulletin of the American Meteorological Society, an 

international group of scientists put forth a strong argument for rationalizing investment in numerical 

prediction and accelerating capability to meet current and emerging requirements.   Shapiro et al. (2010) calls 

for a holistic approach to NWP, linking observations, models, assimilation and analysis systems, and high-

performance computing.  Brunet et al. (2010) calls for a seamless weather-to-climate prediction system with 

special focus on the need for improvement of the representation of processes, particularly tropical convection, 

to improve prediction.  The National Earth System Prediction Capability intends to meet these needs by 

fostering connections among the various modeling agencies and computing advances, taking a unified view 

across time scales.  

2. National ESPC goals 

The next-generation national operational environmental prediction system will use coupled model 

development to advance computational and environmental numerical prediction science and technology, and 

implement a computation suite across partner operational prediction centers.  The system will use guided, 

focused process studies to enhance our understanding of the complex interactions of the earth environmental 

system that influence predictability at these longer time scales.  The system will provide better quantification 

and display of uncertainty and forecast risk through probabilistic prediction techniques, and will improve 

assessments of predictive capability with better skill scores and metrics appropriate for the longer time scales.  

In this way ESPC’s goal is to better inform public and private safety and policy decisions for the United 

States in an increasingly complex and changing global human enterprise. 

3. Programmatic strategy 

ESPC builds on the past successes achieved by interagency efforts.  Notable among these successes is the 

Hurricane Forecast Improvement Program (HFIP) (Gall et al. 2013), which is providing rapid improvement in 

research-to-operations for both US (via NOAA) and global (via Navy) tropical cyclone track and intensity 
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prediction capability.  HFIP uses a distributed computing concept to leverage the resources of multiple 

agencies. 

Another interagency success on which to build is the National Unified Operational Prediction Capability 

(NUOPC) (Sandgathe et al. 2011), which is using multi-model ensembles to improve medium-range (5-16 

day) forecasts and provide probabilities of specific events.  NUOPC also uses the distributed computing 

concept by combining the operational model output from several prediction centers to improve the medium-

range capability. 

ESPC also benefits from the National Multi-Model Ensemble (NMME) (Kirtman et al. 2013), which 

provides guidance out to 12 months using multi-model ensembles of climate models from both operational 

and research agencies and offices.  NMME began as a proof-of-concept research initiative; even though the 

models are run at sub-optimal resolution leaving room for skill improvement with resolution, the project has 

quickly found a much-needed niche and will develop to better meet forecast needs over this time scale.  

Expanding on the other interagency efforts, NMME distributes computing and maintenance across not just 

operational but also research facilities. 

In building the interagency “system of systems” ESPC will rely on existing collaborative community 

models to characterize parts of the earth environment.  The Hybrid Coordinate Ocean Model  (HYCOM) 

(Bleck 2002) and its data assimilation system have been developed to provide daily, weekly, and extended 

forecasts of global ocean conditions at high (~3km) horizontal resolution.  WaveWatch III (Tolman et al. 

2011) provides surface wave growth, decay, refraction and other properties of the wave fields.  Both HYCOM 

and WaveWatch III are used extensively in academia for continued research.  Additionally, the Los Alamos 

Sea Ice Model (CICE) was developed for coupling to various global and regional models, including those 

participating in the Fourth and Fifth Assessment reports of the Intergovernmental Panel on Climate Change.  

Land models such as NASA’s Land Information System and NOAA’s Noah Land Model permit partners to 

access the latest model improvements. The Naval Research Laboratory is in the process of integrating these 

models into a short to medium range (0-90 days) Earth system coupled prediction capability that has shown 

good progress in initial case studies and sensitivity tests (Metzger et al. 2014).  

To improve coupling and sharing across component models, ESPC relies on the Earth System Prediction 

Suite (ESPS) common model architecture (Collins et al. 2005).  ESPS is a collection of earth system 

component models and interfaces that are interoperable, documented, and available for community use.  With 

a focus on coupled modeling systems across weather and climate scales, ESPS is intended to formalize code 

preparation for cross-agency use, establishing plug-and-play capabilities via the NUOPC interoperability 

layer and simplify toolkit code selection for the broader research community.  By increasing interoperability, 

ESPS is intended to leverage the legacy investments from NASA, NOAA, NSF, DOE, and Navy. 

4. Scientific strategy 

a. Coupled Modeling 

Coupling between Earth system components improves predictive skill across time scales. While this is 

relatively  well established at climate scales and in highly forced mesoscale conditions such as in tropical 

cyclones, recent UKMO work
1
  identifies ocean coupling as an important way to improve model fidelity 

significantly even in the 5-15 day time range.  A recent National Academy Press study (NRC. 2010) 

elaborated on the importance of exploiting low-order modes and sources of predictability within the climate 

system, to create intraseasonal to interannual predictions of the weather-climate system.   

For short range prediction, tropical cyclone intensity and track is dependent on upper ocean heat content, 

i.e. the temperature and the thickness of the near-surface warm layer, which either provides available heat to 

fuel convection, or curtails convection if wind-driven ocean mixing penetrates to deeper cold layers, bringing 

them to the surface.  Weather prediction in the littoral and coastal zones depend greatly on air-ocean 

temperature contrasts for land-breeze, sea-breeze, fog and stratus phenomena; additionally the strong currents 

                                                 
1
 https://www.godae-oceanview.org/files/download.php?m=documents&f=130221160735-AbstractJohnsTopic3.pdf 
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and temperature gradients associated with western boundary currents such as the Gulf Stream or Kuroshio can 

enhance surface winds and seas particularly during cold air surges. 

For medium range prediction, phenomena such as monsoon onset and intensity as well as monsoon 

breaks are dependent on the interaction of heat storage over the continent vs. the ocean.  Active tropical 

convection regimes such as the Madden-Julian Oscillation (MJO) depend on the interaction of atmospheric 

dynamics and ocean properties.  Outside of the tropics, blocking patterns in the jet stream produce surface 

heat waves, droughts, and neighboring regions of intense flooding.  Also, intense polar low pressure systems 

share some similarities with hurricanes in that they derive considerable energy from the ocean heat source. 

For long range prediction, interacting modes of the air-ocean system drive such phenomena as the MJO, 

el Nino-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation 

(NAO), and others; these phenomena drive teleconnections affecting weather and ocean properties throughout 

the globe. 

b. Multi-model Ensembles 

Multi-model ensembles provide a practical approach to estimating and understanding forecast uncertainty 

due to initial conditions and observation errors, model formulation, and numerical uncertainties.  Ensembles 

of a single model can reduce error due to initial conditions, but these single model ensembles are often over-

confident (have a low spread) and may have persistent error modes and biases.  By combining the ensemble 

results of several models, the community can reduce these errors, obtain a better assessment of uncertainty, 

and leverage the distributed computing resources of various agencies to obtain a larger total number of 

ensemble members. 

c. Predictability Demonstration Projects 

Model fidelity at these time scales is presently less than desirable for decision-making.  To foster 

improvements, ESPC has established a set of five Demonstration Projects to focus and coordinate inter-

agency research efforts and demonstrate the predictability (or causes of lack thereof) for five phenomena 

distributed across the air-ocean system.  These five projects consist of: 

1) Extreme Weather Events: Predictability of Blocking Events and Related High Impact Weather at 

Lead Times of 1-6 Weeks 

2) Seasonal Tropical Cyclone Threat: Predictability of Tropical Cyclone Likelihood, Mean Track, and 

Intensity from Weekly to Seasonal Timescales 

3) Arctic Sea Ice Extent and Seasonal Ice Free Dates: Predictability from Weekly to Seasonal 

Timescales 

4) Coastal Seas: Predictability of Circulation, Hypoxia, and Harmful Algal Blooms at Lead Times of 1-6 

Weeks 

5) Open Ocean: Predictability of the Atlantic Meridional Overturning Circulation (AMOC) for 

Improved Weather and Climate Forecasts 

The projects do not represent a complete set of phenomena necessary for prediction across time scales, 

but rather a distributed subset of separate (interacting) phenomena for which correct representation is a 

prerequisite for forecast fidelity.  A goal of these projects is to improve model representation of these 

conditions and provide those model improvements to the operational and research modeling centers. 

d. National Ocean Partnership Program (NOPP) project 

Global earth system coupled modeling at extended time scales is computationally intensive, particularly 

as model resolutions and ensemble numbers increase. Emerging heterogeneous computational architectures 

such as NVidia’s Graphics Processing Unit (GPU) and Intel’s Many Integrated Core (MIC) show promise in 

meeting the computation need, although existing codes need to be optimized to fully exploit the architecture .  

A NOPP project on Advancing Air-Ocean-Land-Ice Global Coupled Prediction on Emerging Computational 

Architectures has been initiated in FY13.  The selected projects focus on: 
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1) Accelerated Prediction of the Polar Ice and Global Ocean (APPIGO) 

2) An Integration and Evaluation Framework for ESPC Coupled Models 

3) RRTMGP: A High-Performance Broadband Radiation Code for the Next Decade 

4) NPS-NRL-Rice-UIUC Collaboration on  Nonhydrostatic Unified Model of the Atmosphere (NUMA) 

Coupled Models on Many- Core Computer Architectures 

Further information on these projects can be found at http://coaps.fsu.edu/aoli/projects . 

5. Summary: towards a National ESPC 

Federal partnering between agencies has the potential to leverage the efforts of many programs to 

improve adoption of research breakthroughs from the wider community into the national operational 

capability.  Previous interagency programs such as HFIP, NUOPC, and NMME have shown great benefit to 

operational national forecast skill over short, medium, and long range weather by both leveraging the research 

efforts of the agencies as well as exploring a paradigm of using distributed computing for operations. 

The National ESPC project’s goals are to leverage community models for transition from research to 

operations of regional and global air-sea-wave-ice coupled models; to foster adoption of ESMF standards 

through the ESPS initiative; and to extend and improve the multi-model ensemble approach flexible enough 

to meet sub-seasonal and seasonal timescales through an NMME capable of transitioning research to 

operations. 
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1. Introduction 

 The 2012 drought that engulfed 

most of North America set many 

records, surpassing by most measures 

even the severity of the 1988 drought 

(Kimery 2012). Numerous press and 

governmental resources have 

documented the extent and tremendous 

impact of the 2012 drought in the 

United States
1
.   An assessment report 

of the NOAA Drought Task Force 

(Hoerling et al. 2013) summarized that 

the drought – primarily that covering 

the central Great Plains during May-

August of 2012 (Fig. 1a) – resulted 

mostly from natural atmospheric 

variations.  They concluded: “neither 

ocean states nor human-induced 

climate change appeared to play 

significant roles” and so, the drought 

could not have been predicted. 

Here we ask: If not predictable, 

could the 2012 drought nonetheless 

have been “anticipated”?  In other 

words, we examine in a 

comprehensive manner – i.e. beyond 

just the forecast schemes – how this 

drought developed and whether or not 

there were signs that could foretell 

such drought. 

This paper summarizes relevant research efforts by members of the NASA NEWS Working Group on 

Extremes.  These efforts examine the 2012 drought from several key aspects: (a) the large-scale pattern and 

its recurrence over North America; (b) precipitation and synoptic regimes over the Great Plains; (c) the 

contributions of ocean surface temperatures, land processes, and radiative forcing in drought formation and 

                                                 
1  New York Times - http://topics.nytimes.com/top/news/science/topics/drought/ 

USDA - http://www.ers.usda.gov/topics/in-the-news/us-drought-2012-farm-and-food-impacts.aspx#.UqD-
RWRDtLs 
The Economist – http://www.economist.com/node/21559381  

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 1  May-July (MJJ) PDSI during (a) 2012 and (b) 2011, in 

comparison with (c) EOF1 and (d) EOF2 of the MJJ PDSI from 

1900 to 2012.  (e) The occurrence of which PC2 is followed by 

PC1 when both PCs exceed two (one) standard deviation plotted 

as long (short) sticks, based upon the North American Drought 

Atlas tree-ring data. 
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prolongation; (d) the role of ET fluxes, and our ability to 

simulate them accurately; and (e) potential predictability 

and model scenarios for drought recovery. These studies, 

in hindsight, suggest that factors leading to the 2012 

drought did reveal signs that could have helped anticipate 

its occurrence.   

2. Results and Discussion 

a. Drought pattern and recurrence 

 A unique aspect of the 2012 drought is that it evolved 

from the 2011 drought that devastated the southern Great 

Plains (Fig. 1a, b). This precursor drought was associated 

with La Niña (Seager et al. 2013).  The central Great 

Plains therefore experienced consecutive drought 

conditions from 2011 to 2012 (which continued at least 

through March 2013).  First, the Empirical Orthogonal 

Function (EOF) analysis of the Palmer Drought Severity 

Index (PDSI) (Dai et al., 2004) for the period of 1900-

2012 indicated that the first two leading patterns of 

drought are similar to the recent ones – i.e. EOF1 with a widespread pattern (Fig. 1c) corresponds to the 2012 

drought, while EOF2 with the dipole pattern (Fig. 1d) resembles the 2011 drought.  The apparent 

correspondence between the EOFs and the recent droughts suggests that a drought evolution similar to that 

occurring from 2011 to 2012 may not be unique.  To examine further, we plotted the occurrence of when the 

second principal component (PC2) leads the PC1 – in the sense that the 2011 drought led the 2012 one.  The 

dataset used here is the PDSI derived from tree rings (the North American Drought Atlas; Cook et al., 2004).  

The result is shown in Figure 1e with the long (short) bars indicating that both PC1 and PC2 are positive and 

both exceed two (one) standard deviation.  It appears that the evolution of droughts like the 2011-2012 

succession did occur sporadically in the past (Fig. 1e).  

b. Recent trends in precipitation and LLJ 

Over the central U.S., the warm-season precipitation migrates from the southern Great Plains in spring to the 

upper Midwest in summer, 

providing crucial growing-

season water along its path.  

Both rainfall and convective 

storm activity reach their 

maximum in May and June in 

the southern Great Plains 

forming a precipitation center 

over the Oklahoma-Texas region 

(Wang and Chen 2009).  This 

rainfall maximum is depicted in 

Figure 2 by the elevated spring 

precipitation peaking in May.  

Observations indicate, however, 

that over the past three decades 

the amount of spring 

precipitation has declined.  

Figure 2 shows time series of 

pentad precipitation averaged for 

Oklahoma-Texas over the period 

Fig. 2  5-day mean precipitation over the 

Oklahoma-Texas region for the period 

1979-1995 (red) versus 1996-2012 (blue), 

and the percent difference between the two 

periods (yellow line).  Note the large 

decline in May. 

Fig. 3  a) May climatology for precipitation (shaded) and 925mb wind 

field (vectors) and Latitude-time Hovmöller trend plots for b) 925mb 

v-wind, c) total precipitation.  Latitudes in which the regression 

coefficient is significant at 95% confidence are indicated along the 

y-axis.  (After Barandiaran et al. 2013)   

 (a) 925mb winds & precip           (b) v-wind 925m              (c) precip 
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1979-1995 versus that for 1996-2012, along with the percent 

difference between the two periods.  There is a clear reduction 

in April-June (AMJ) rainfall, particularly the entire month of 

May during which deficits of as much as 50% are observed 

(Barandiaran et al. 2013).  This rainfall reduction suggests 

decline of a vital water source during the rainy season in the 

Oklahoma-Texas region, and also makes the region more 

susceptible to drought during the summer.  

 A key atmospheric circulation systems closely connected 

to the region’s seasonal precipitation is the Great Plains Low-

Level Jet (GPLLJ), which is primarily a transient pattern of 

nocturnal strong winds just above the surface.  The GPLLJ 

transports abundant amounts of water vapor from the Gulf of 

Mexico and provides moisture convergence at its northern 

edges, facilitating the formation of convective precipitation.  

Focusing on May, Figure 3a depicts the climatological 

precipitation overlaid with 925-mb wind vectors for 

geographical reference; the white box indicates the sub-region 

over which averages are calculated in subsequent panels.  The 

trend for all latitudes is calculated using linear least-squares 

regression for 6-hourly 925mb v-wind strength of each month 

(Fig. 3b) and monthly total precipitation (Fig. 3c).  There is an 

apparent increase in the strength of the v-wind between 30°N-

35°N including the Gulf of Mexico (i.e. upstream of the 

GPLLJ).  North of 40°N the increasing trend becomes very 

small, to near zero.  These v-wind changes accompany a northward migration of the maximum gradient of v-

wind speed, and the resultant convergence at the exit region of the GPLLJ.  Correspondingly, the changes in 

total precipitation reveal a northward migration, leading to drying in the central and southern Great Plains 

(Barandiaran et al. 2013).  
c. Forcings that initiate/enhance drought 

[Radiative forcing]  Another unique feature associated with 

the 2012 drought is its rapid development in early summer, 

coined “flash drought” by the NOAA report (Hoerling et al. 

2013).  In particular, the drought over the Northern Plains 

expanded rapidly during June and quickly formed dry to 

exceptional drought conditions.  As shown in Figure 4, the 

rapid development of 2012 drought is associated with enhanced 

shortwave radiation input, as depicted by MODIS data and also 

seen in the ERA-I surface shortwave fluxes.  The timing of 

intensive shortwave radiation anomalies coincides with the 

seasonal maximum of shortwave radiation, and the area is 

closely associated with the rainfall deficits (Wang and Chen 

2009).   

[Land forcing]  Santanello et al. (2013) diagnosed the 

process and impacts of local land–atmosphere coupling during 

dry and wet extreme conditions in the U.S. southern Great 

Plains, through an evaluation of nine different land–planetary 

boundary layer (PBL) schemes coupled in a high-resolution 

regional model.  Results show that the sensitivity of land–air 

coupling is stronger toward the land during dry conditions, 

while the PBL scheme coupling becomes more important 

Fig. 5  Surface ET simulated for two days 

in August 2012 by (A) MODIS-

METRIC model that includes 

irrigation, and (B) WRF-CLM model 

without irrigation leading to drying in 

farmed areas. 

  

Fig. 4  (top) May-August shortwave 

radiation anomaly from MODIS (from 

10 year mean); (bottom) shortwave 

radiation anomaly from ERA-Interim 

reanalysis. 
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during the wet regime.  In other words, 

soil moisture impacts are felt via land-

PBL interactions, where the atmosphere 

is more sensitive to dry soil anomalies 

while deep, dry PBL growth can lead to 

a persistent positive feedback on dry 

soils.  Hubbard et al. (2013) meanwhile 

found that dry soil moisture conditions 

could strongly enhance the effects of 

remote SST forcing.  Comparing remote 

sensing and modeling data, Ozturk et al. 

(2013) found that the evapotranspiration 

(ET) effect, which is linked to irrigation 

in the Northern Plains; this also 

feedbacks on drought intensity.  Figure 5 

demonstrates that, when it is dry, more 

irrigation is needed to grow the crops; 

then if the drought persists, the crop fails 

and less irrigation takes place on the 

dying plants.  So, early in the drought 

irrigation modulates some of the land-air 

coupling impact of the drought; later on, 

the lack of irrigation does the opposite 

and land-air feedbacks can dominate.  

[Teleconnection forcing]  As was 

noted in the NOAA Drought Task Force 

report, the 2012 drought lacked 

substantial ocean forcing in the tropical 

Pacific given the ENSO neutral status.  

Using the NASA GEOS-5 model, H. 

Wang et al. (2013) found that the winter-

spring response over the U.S. to the 

Pacific SST is remarkably similar for 

years 2011 and 2012 (Fig. 6a, d) despite substantial differences in the tropical Pacific SST.  The pronounced 

winter and early spring temperature differences between the two years (warmth confined to the south in 2011 

and covering much of the continent in 2012) primarily reflect differences in the contributions from the 

Atlantic and Indian Oceans, with both acting to cool the east and upper mid-west during 2011 (Fig. 6b, c), 

while during 2012 the Indian Ocean reinforced the Pacific-driven continental-wide warming and the Atlantic 

played a less important role (Fig. 6e, f).  During early summer the development of a stationary Rossby wave 

over the North Pacific – an atmospheric process – produced the record-breaking precipitation deficits and heat 

in the Central Plains in the middle of summer.  S.-Y. Wang et al. (2013) further indicated that, particularly in 

July, the seasonal pattern of stationary Rossby waves has changed since 1979 in a way that favors the type of 

short-wave circulation anomalies that produce heat and dry conditions over the Northern Plains.  This latter 

finding coincides with the climatological maximum of radiative forcing in July. 

d. Potential predictability 

The modeling study by H. Wang et al. (2013) suggested that the 2012 drought would not have benefited 

from long-lead prediction, as the full extent of the event was not forecasted until one month prior.  This 

implies that the stationary Rossby waves that reinforce the drought occurred at intra-seasonal timescales.  

Such forcing of Rossby waves is triggered by submonthly vorticity transients (Schubert et al. 2011) and 

varies month-by-month (S.-Y. Wang et al. 2013), hence the difficulty in predicting them at longer than these 

relatively short lead times. However, once the Rossby waves develop, the perturbation downstream would 

Fig. 6  JFM ensemble mean T2m response to SST forcing in 

individual ocean basins based on GEOS-5 ensembles 

initialized in November of the previous year, for SST in (top-

bottom) for Pacific, Atlantic, and Indian Ocean.  (From H. 

Wang et al. 2013)   
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establish and frequently last for an 

extensive period of time, about 2-6 

weeks (Schubert et al. 2011).  In other 

words, short-term climate prediction 

from 2 weeks to 2 months may be the 

only remedy for predicting “flash 

drought” such as that of 2012.  H. 

Wang et al. (2013) have demonstrated 

the potential of Rossby waves in 

providing early-warning of heat waves 

in the U.S. during the 2012 drought. 

e. Drought recovery 

An often overlooked question 

concerns the processes by which 

drought recovers.  Drought 

management would benefit greatly if 

more risk-based information is 

available on how a region in drought 

may recover, e.g., the likelihood of 

recovery under different precipitation 

scenarios and the related uncertainty.  

As discussed earlier, several factors 

such as the initial moisture condition, 

the amount and timing of precipitation, 

and the temperature control the recovery process.  In view of the aforementioned limit in forecast skills of the 

2012 drought, Pan et al. (2013) proposed a probabilistic framework to assess drought recovery that is based 

on the joint distribution between cumulative precipitation (which is the main driver for recovery) and a soil 

moisture–based drought index. 

Figure 7 shows maps of recovery probability under the median cumulative precipitation scenario staring 

in February 2013.  The smaller the value, the less likely it is to recover and the higher the probability (risk) 

that the area remains in drought.  At one-month lead, large parts of Central and Northern Plains are 

irrecoverable, and the recovery probability is very low.  Most areas start to be recoverable from the 1.5 month 

onward (Fig. 7b), but the recovery probability is low (10%–20%).  The recovery probability increases at 2.5 

and 3.5 months until it reaches the 80% level at the 4.5 month lead (very likely to recover if median 

cumulative precipitation is received for 6 months).  As shown in the lower right corner (verification), by July 

2013 most of the Northern Plains has indeed recovered from drought, although the southwestern states 

remained in drought.  The results suggest that a probabilistic analysis for drought recovery can provide 

indispensable risk information for drought managers.  

3. Concluding Remarks 

The 2012 drought was unique in terms of the rapidity, with which it developed, the lack of “classic” 

oceanic forcing patterns, and the association with record heat waves in the Central U.S.  Through our 

collective efforts it was found that the 2012 drought did, however, show signs of precursors, albeit without a 

long lead time.  First, the succession of a “dipole” drought pattern like that in 2011 followed by the 

widespread drought pattern like that in 2012 is not unprecedented; in fact it has repeatedly occurred over the 

past 300+ years.  Model experiments suggested that the tropical Atlantic and Indian Ocean status (instead of 

the Pacific) helped initiate drought conditions in spring 2012.  Second, since 1979 the GPLLJ has 

strengthened making the critical spring/rainy season over the central and southern part of the Great Plains 

drier than ever.  Third, the timing of the drought development in June and heat wave in July coincides with 

the seasonal drying in the Central Plains, enhancing shortwave radiation while reducing ET; this further 

Fig. 7  Maps of the probability of drought recovery under the 

median (p = 50%) cumulative precipitation scenario.  Red 

colored areas are those unable to recover from drought under 

any cumulative precipitation scenario, and empty colored areas 

are those not in drought (θ > θdrought) as of 1 February 2013. (a–

e) The results for lead times of 0.5–4.5 months.  (From Pan et 

al. 2013) 
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exacerbated the drought as it persists towards the middle of summer. Fourth, the state of the soil moisture can 

precondition, enhance, and prolong drought conditions. Human activities such as irrigation may partially 

offset this.  Finally, a standing pattern of stationary Rossby short waves developed in the late spring/early 

summer season, producing the anticyclone anomaly that later occupied the Central U.S. for the rest of summer. 

Although it is difficult to foresee the initiation of a specific stationary Rossby wave pattern, once it 

develops the standing pattern of short waves did persist for an extensive period of time, thus providing 

potential sources for short-term/intraseasonal climate prediction – i.e. early warning.  In summary, prediction 

of the 2012-like drought is not without hope but more emphasis will need to be on intraseasonal timescales.  

Furthermore, predicting the recovery of drought is equally important and this has been shown to be feasible. 
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The Surprisingly Quiet 2013 Atlantic Basin Hurricane Season  

Philip Klotzbach 

Department of Atmospheric Science, Colorado State University  

1. Introduction 

The Atlantic basin hurricane season was much less active than anticipated by Atlantic basin seasonal 

hurricane forecasts issued by Colorado State University (CSU), the National Oceanic and Atmospheric 

Administration (NOAA), Tropical Storm Risk, and the UK Met Office, among others.  For example, NOAA's 

outlook issued on May 23 called for 13-20 named storms, 7-11 hurricanes and 3-6 major hurricanes, while 

CSU's outlook issued on June 3 called for 18 named storms, 9 hurricanes and four major hurricanes.  While 

the 2013 Atlantic hurricane season had near-average named storm activity, with 13 named storms forming, 

only two hurricanes and no major hurricanes formed.   This is the fewest hurricanes to occur in a season since 

1982. This manuscript attempts to analyze, with the benefit of hindsight, what climate conditions caused this 

year's hurricane season to be much weaker than anticipated.  Section 2 describes the data utilized, while 

Section 3 examines the climate 

features present during the 2013 

Atlantic hurricane season.  Section 4 

concludes the manuscript.  A much 

more detailed discussion of the 2013 

Atlantic hurricane season can be 

found with the Tropical Meteorology 

Project's 2013 verification located 

online at 

http://tropical.atmos.colostate.edu.   

2. Data 

Tropical cyclone statistics were 

calculated from the operational b-

decks created by the National 

Hurricane Center.  Large-scale 

climate fields were calculated from 

the NCEP/NCAR Reanalysis (Kistler 

et al. 2001). 

3. Climate features present during 

the 2013 Atlantic hurricane season 

 El Niño has been documented in 

many previous studies to have a 

detrimental impact on Atlantic basin 

tropical cyclone activity through 

alterations in vertical wind shear, 

mid-level moisture, upper-

tropospheric temperature and static 

stability (Tang and Neelin, 2004; 

Klotzbach, 2011a).  Figure 1 displays 

sea surface temperature (SST) 

Fig. 1   August-October SST anomalies across the tropical Pacific. 

Fig. 2  Western Hemisphere SST anomalies on September 9, 2013. 
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anomalies across the central and 

eastern tropical Pacific averaged over 

August-October 2013.  Anomalies 

were generally slightly cooler than 

normal, indicating cool neutral El 

Niño-Southern Oscillation (ENSO) 

conditions.  Consequently, ENSO is 

not thought to have played a 

significant detrimental role in this 

year's hurricane season.  

Another area that shows strong 

correlations with Atlantic basin 

hurricane activity is Atlantic basin 

SSTs.  While tropical Atlantic SSTs 

were warmer than normal, cool 

anomalies were evident in the 

subtropical eastern Atlantic.  This 

area has been shown in several 

studies including Klotzbach (2011b), 

to be a critical area for Atlantic 

hurricane activity.  Cold anomalies in 

this region tend to generate stronger-

than-normal baroclinicity, thereby 

contributing to cold upper-level lows, 

which enhance African easterly wave 

recurvature in the eastern part of the 

basin.  As a general rule, the farther 

east that African easterly waves 

recurve, the less likely they are to 

intensify into hurricanes.  Figure 2 

displays SST anomalies across the 

Western Hemisphere around the peak 

of the Atlantic hurricane season. 

The primary reason why the 

Atlantic basin storm season was 

likely so much less active than 

forecast was due to a combination of 

copious amounts of dry air and mid-

level sinking that occurred.   

The mid-level sinking that occurred during July-September 2013 is quite pronounced across the tropical 

Atlantic, especially when looking at velocity potential anomalies (Figure 3).  Positive velocity potential 

anomalies at upper levels are associated with upper-level convergence and consequently sinking and drying at 

the middle levels of the atmosphere. 

The anomalous dryness that persisted across the tropical Atlantic was also quite pronounced throughout 

the peak months of MDR formation from July-September.  By October, TC formation tends to shift westward 

towards the Caribbean.  NCEP/NCAR Reanalysis moisture values seem reasonable since the late 1970s (e.g., 

no unusual trends).  Table 1 displays relative humidity and specific humidity compared with other years from 

1979-2012.  A ranking of one indicates the driest during the time period.  Note the anomalous dryness that 

occurred throughout the three-month period.  It seems like this dry air was one of the critical reasons why the 

season was very quiet.   

Fig. 4  July-September 2013 500-mb RH anomalies.  Note the 

anomalous dryness across the Atlantic MDR this year. 

Fig. 3  Upper-level velocity potential anomalies in July-September 

2013.  Note the positive velocity potential anomalies that 

occurred during the months, indicating upper-level convergence 

(as demarked by the red arrows) and sinking motion. 
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Figure 4 displays anomalous 

500-mb relative humidity during the 

three-month period from July-

September 2013.  RH was quite low 

across the MDR, with even drier 

anomalies noted to the south of MDR. 

One of the primary reasons why 

several of the seasons since 1995 

have been very active was due to a 

pronounced and northward shifted 

Intertropical Convergence Zone 

(ITCZ) in the eastern tropical 

Atlantic (Klotzbach and Gray 2006).  

A stronger than normal ITCZ is 

associated with strong cross-

equatorial flow which provides 

increased moisture flux into the 

tropical Atlantic and provides pre-

existing cyclonic vorticity that helps 

spin up easterly waves.  Anomalous 

meridional flow in July-September 

2013 in the eastern tropical Atlantic 

was strongly out of the north, 

indicating a suppressed ITCZ and 

anomalous moisture divergence out 

of the tropical Atlantic (Figure 5). 

4.  Summary 

This paper briefly discusses the 

reasons behind the much quieter than 

expected 2013 Atlantic basin storm 

season. While ENSO did not appear 

to play a significant role, it seems 

like a combination of cooler-than-

normal subtropical Atlantic SSTs 

(and concomitant formation of upper-

level lows), anomalously strong 

upper- and mid-level subsidence, and 

anomalous upper- and mid-level 

dryness were the likely culprits that 

restricted TC formation in the 

Atlantic in 2013.  A much more 

thorough explanation of the reasons for the 2013 Atlantic hurricane season forecast bust are described in the 

Tropical Meteorology Project's end-of-season forecast verification located online at 

http://tropical.atmos.colostate.edu. 
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Specific Humidity 

 300-mb 500-mb 700-mb 

July 2013 5 9 16 

August 2013 12 2 6 

September 2013 2 2 14 

Relative Humidity 

 300-mb 500-mb 700-mb 

July 2013 5 8 11 

August 2013 7 14 1 

September 2013 2 2 8 

Table 1  Specific humidity and relative humidity rankings for July 

2013, August 2013 and September 2013 at 300-mb, 500-mb and 

700-mb across the MDR (7.5-22.5°N, 20-75°W).  Note that a 

ranking of one implies the driest (or most enhanced downward 

motion) across the MDR, while a ranking of 35 would imply the 

wettest (or most enhanced vertical motion) month of the last 35 

years across the MDR. 

Fig. 5  Anomalous vector wind anomaly from July-September 2013.  

Note the anomalous northerly flow in the tropical Atlantic which 

likely was one of the reasons why there was such significant 

dryness in the tropical Atlantic this year. 
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ABSTRACT 

This paper investigates why some La Niña events are followed by another La Niña and some others are 

not. We propose two preconditions that result in continuation of a La Niña. The first one is that La Niña must 

be a strong event (a major La Niña). This ensures that the reflected Rossby wave signal at the eastern 

boundary of the Pacific has a strong westward propagating cold ocean temperature anomaly over the off-

Fig. 1  Monthly mean HC300 anomalies averaged in 1
o
S-1

o
N (top and bottom panels) and in 4-6

o
N (middle 

panel) in the Pacific during (a) 1988-90, (b) 1999-2001, (c) 2007-09, and (d) 2010-12.  An 11 month high-

pass filter is applied to suppress the interannual and longer time scale variations. 
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equatorial region (Fig. 1). The off-equator cold anomaly may not be conducive to the equatorial recharge 

process, and as a result, may favor the persistence of cold ocean subsurface temperature anomaly and prevent 

the transition from La Niña to El Niño. 

The second precondition is whether there are eastward propagating downwelling Kelvin waves during the 

decay phase of a major La Niña (Fig. 2). Eastward propagating downwelling Kelvin waves could lead to 

demise for a tendency for a follow-up La Niña. The equatorial Kelvin wave activities are associated with 

fluctuations of surface wind in the equatorial far-western Pacific. The analysis suggests that both the surface 

wind in the equatorial far-western Pacific and the recharge/discharge of the equatorial Pacific are indicators 

for occurrence or no occurrence of a follow-up La Niña event. 

This work has been published in Climate Dynamics in 2014. 
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Fig. 2  Standardized projection of pentad mean OTAs along the equator onto 1
st
 mode of EEOF in (a) Oct 1989-

Jan 1990, (b) Oct 2000- Jan 2001, (c) Oct 2008-Jan 2009, and (d) Oct 2011-Jan 2012. X-axis represents the 

longitude location of maximum positive loading in the 14 contiguous pentad OTAs of 1
st
 EEOF. See Seo 

and Xue (2005) for the details of the EEOF calculation. 
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ABSTRACT 

Recent drought over the Great Plains has had significant impacts on agriculture and the economy, highlighting 

the need for better understanding of any ongoing changes in the regional hydroclimate.  The Southern Plains peak 

rainfall season is in the spring (Fig.1 a-b), and the period 1996-present has been much drier than 1979-1995 in the 

highlighted region (Fig. 1c).   

Trends in the Great Plains low-level jet (GPLLJ) during the 

months April-June (AMJ) and associated precipitation are 

analyzed using the North American Regional Reanalysis 

(NARR) for the period 1979-2012.  Linear trends computed for 

meridional winds and precipitation intensity, frequency and total 

across the Great Plains (Fig. 2) show that (1) the GPLLJ has 

strengthened and expanded northward and (2) precipitation has 

decreased substantially in the Southern Plains while increasing 

in the Northern Plains.  Particularly in May, the rainy season in 

the Oklahoma-Texas region, precipitation has migrated 

northward in correspondence to the shifted northern edge of the 

GPLLJ, leading to near 50% declines in precipitation since 

1979.  These observed changes are discussed in the context of 

recent droughts and projected climate for the region.  

This work has been published in Geophysical Research 

Letters in 2013.  
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Fig. 1   a) EOF 2 of precipitation climatology for Central U. S.  White box highlights center of action, and is 

used for calculations for panel c.  b) PC2 of precipitation climatology for Central U.S., showing the 

springtime peak of rainfall for the region.  c) Climatology of average pentad precipitation within averaged 

over the box shown in panel a.  Red bars are for the period 1979-1995, blue bars are for the period 1996-
2012.  Yellow line indicates percent difference between the two time periods. 

a) 

c) 

b) 
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a)  Climatology b)      V-Wind c) Precip Intensity d) Precip Frequency e) Total Precip 
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Figure :  a) Monthly climatology for precipitation (shaded) and 925mb wind field (vectors) 

and Latitude-time Hovmöller trend plots for b) 925mb v-wind, c) precipitation intensity , d) 

precipitation frequency and e) monthly total precipitation, averaged along the longitude 

range indicated by the white boxes within monthly climatology plots.  Data plotted consists 

of regressed linear trend added to climatological mean.  Thick bars along latitude axis on 

trend plots indicate latitudes for which regression coef ficients are statistically significant at 

95% confidence.#
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Fig. 2   a) Monthly climatology for precipitation (shaded) and 925 mb wind field (vectors) and Latitude-time 

Hovmöller trend plots for b) 925 mb v-wind, c) precipitation intensity, d) precipitation frequency and e) 

monthly total precipitation, zonally averaged along the longitude range indicated by the white boxes 

within monthly climatology plots.  Data plotted consists of regressed linear trend added to climatological 

mean.  Thick bars along latitude axis on trend plots indicate latitudes for which regression coefficients 

are statistically significant at 95% confidence. 
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1. Overview 

The task of climate monitoring has requirements that extend beyond the current paradigm of one-time 

research missions and operational satellite systems in existence today.  Recognizing these needs, international 

research and operational Space Agencies, the Committee on Earth Observation Satellites (CEOS) and 

Coordination Group for Meteorological Satellites (CGMS), have formed a new Working Group on Climate 

that has defined an architecture that ensures delivery of sustained observations over the time frames required 

for analysis of the Earth’s climate system.  An architecture typically describes the structure of a system, as 

reflected in its building blocks, their relationships to each other, and to the environment. The descriptive 

format of the architecture is generally tailored to the particular needs of the users/stakeholders and makes use 

of common definitions and standards in its construction.   

2. Why is an architecture needed? 

Based on discussions within the various climate monitoring working groups and related meetings, two 

main needs/usage scenarios for an architecture have emerged: 

1. To promote a common understanding, amongst the various stakeholders, of the implementation 

implications of meeting the various climate monitoring requirements. To support such a usage, the 

architecture should depict, in a structured and readily-accessible format, the functions, information flows and 

dependencies of the processes necessary to satisfy the relevant requirements and support the verification by 

the originators/owners of the requirements that they have been correctly interpreted. While this should 

encompass the end-to-end climate monitoring processes (e.g. from sensing right through to decision-making), 

the initial emphasis is expected to be placed on representing the upstream processes (i.e. sensing and climate 

data record creation). 

 2. To support an assessment of the degree to which the current and planned systems meet the 

requirements, and the generation of an action plan to address any identified shortfalls/gaps. It is anticipated 

that such an action plan would help promote the fulfilment of user needs through the coordinated 

implementation of activities across agencies.  

Based on the two identified usage scenarios, an architec¬ture with two main "views" is proposed: 

 A Logical View;  

 A Physical View.   

The logical view serves the first usage scenario (Fig. 1). It represents the functional and data-flow 

implications of the requirements baseline as a set of interlinked functions and associated data-flows. Leaving 

aside performance considerations (e.g. accuracy, uncertainty, stability, coverage etc.), the logical view could 

be considered as the "target" for a climate monitoring system and, in the sense that it is applicable to all 

Climate Data Records, this representation is generic. As this view is intimately tied to the requirements 

baseline (and not to the physical implementation of a climate monitoring system) this view is as stable as the 

requirements baseline and, once established, should only need to be updated when the functional aspects of 

the requirements change. 

In contrast, the purpose of the physical view, which supports the second usage scenario, is to describe the 

current and planned implementation arrangements for each essential climate variable, including how the 



BATES 

 

 

73 

various functions of the logical view are/will be physically implemented. As this physical view tracks the 

evolving implementation of the climate monitoring system, it will need to be regularly updated (e.g. once a 

year).  

Fig. 1  Schematic of the Logical Architecture for climate monitoring including the four pillars required for 

monitoring and decomposition steps for creation and applications. 

3.  Conclusions 

A new Space Agency Working Group on Climate has written and released a report on a ‘Strategy 

Towards and Architecture for Climate Monitoring from Space’.  The report establishes a framework for 

international collaboration to address critical issues such as: 

• In general, current observing systems have not been primarily designed with a climate perspective, 

therefore, inventories are needed to document the contributions of current and planned observing 

systems for climate purposes. 

• Requirements for mission continuity and contingency need improvement through international 

collaboration of space agencies. 

• Sustained Climate Data Record (CDR) programs will provide an avenue to replace heritage 

algorithms and data sets with improved versions once they are successfully demonstrated, validated 

and available. 

• There is an imperative to ensure traceability along harmonized practices. 

• It is hoped that the report will help establish a basis for sustained and routine climate monitoring from 

space similar to the World Weather Watch.  The full report can be found at: 

   http://www.ceos.org/images/strategy_towards_architecture_hig_rez_V10_high_rez.pdf. 
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1. Introduction 

Recent multi-model results from the second Global 

Land-Atmosphere System Study (GLACE-2; Koster et al. 

2010, 2011; Guo et al. 2011, 2012) suggest that realistic 

initialization of land surface states (namely soil moisture) 

in subseasonal-seasonal climate forecasts can improve the 

skill of temperature and precipitation predictions over 

some parts of the globe.  However, not all models show 

this improvement.  While there is theory to suggest the 

locations of the world where the effects should be largest 

correspond to "hotspots" of land atmosphere coupling (e.g., 

Koster et al. 2004, Guo et al. 2006, Dirmeyer et al. 2009), 

some models seem to lack critical aspects of the feedback 

loop.  The NCEP CFSv2 appears to be such a model 

(Dirmeyer 2013). 

In this study, operational forecasts and retrospective 

forecasts from NCEP CFSv2 as well as Global Land Data 

Assimilation System (GLDAS; Rodell et al. 2004) output 

from the land surface component (Noah v2.7.1) are 

assessed with regard to metrics of land atmosphere 

coupling to gauge model behavior, with particular 

emphasis on the simulation of the water cycle.  

2. Models and Data 

 The current CFSv2 model is described by Saha et 

al. (2013).  Saha et al. (2010) describe the CFSv2 

reforecasts in detail.  The Noah land surface model is 

described by Ek et al. (2003).  Operational data come 

from the four-times-a-day four-member operational 

ensemble forecast six-hourly output from 2013, 

aggregated to daily means.  Reforecast data are 

monthly from 1982-2008.  GLDAS-2 data from Noah 

run offline are from the same period as the CFSv2 

reforecast and used at both daily and monthly time 

scales for comparison to the coupled products, as the 

time interval affects certain calculations such as 

Fig. 1  Multi-model coupling strength from 

GLACE (top); correlation significance 

between soil moisture and evaporation from 

GSWP (middle) and mean CAPE from NARR 

(J/kg, bottom).  All data are for the JJA 

season. 
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variances and correlations, but not seasonal means.  

3. Theory 

Variations at the land surface are translated into 

atmospheric responses through numerous interconnected non-

linear pathways (e.g., van Heerwaarden et al. 2010). These 

land-atmosphere connections can be divided into two 

segments, a terrestrial and an atmospheric component 

(Dirmeyer et al. 2012). The terrestrial segment describes the 

sensitivity of surface energy fluxes to changes in the land 

surface state (Dirmeyer 2011). When surface fluxes respond 

to soil moisture, the terrestrial segment provides a necessary 

but not a sufficient condition for the land surface to exert 

control on the properties of the atmospheric boundary layer. 

These may be brought to bear through the water or energy 

cycles.  

The atmospheric segment relates the sensitivity of 

boundary layer development, cloud formation and 

precipitation to surface fluxes such as evapotranspiration or 

sensible heat flux (e.g., Betts et al. 1996, Ek and Holtslag 

2004). When both segments are operating, feedbacks occur. 

Predictability in the physical climate system on time 

scales beyond those of deterministic weather phenomena can 

be greatly aided by knowledge of the surface state, precisely 

because it is a slow manifold compared to the atmosphere 

(Shukla 1998). This is, of course, predicated on properly 

representing the mechanisms involved in land-climate 

interactions. Soil moisture, in particular, has been shown to 

have a "memory" based on lagged autocorrelations on the 

order of months (e.g., Schlosser and Milly 2002) and 

observationally-based land surface initialization extends the 

predictability of sub-seasonal to seasonal climate in global 

models (Koster et al. 2011, Guo et al. 2012). 

Much of this land surface-driven predictability is associated with "hot spots" of land-atmosphere coupling 

around the globe (Koster et al. 2004) where both terrestrial and atmospheric segments show the proper 

relationships and adequate strength to complete the feedback loop (Guo et al. 2006). The sensitivity of surface 

fluxes to soil moisture, most readily indicated by a positive correlation between anomalies of soil moisture 

and evaporation on daily to monthly time scales, is most prevalent in arid and semi-arid regions.  On the other 

hand, the sensitivity of precipitation to variations in surface fluxes skews towards more humid areas, where 

the atmosphere is typically in a state of conditional instability.  Hotspots appear around the transitions 

between arid and humid zones, where both terrestrial and atmospheric segments exhibit some strength.  

Figure 1 illustrates this relationship over North America combining three independent data sets (Guo et al. 

2006, Dirmeyer et al. 2006, Mesinger et al. 2006).  

4. Results 

The ability of CFSv2 to simulate climate sensitivity to soil moisture states over the Great Plains of North 

America has been shown to be weak (Zhang et al. 2011), and appears to be the result of several factors.  First 

of all, the model exhibits a somewhat peculiar pattern of mean soil moisture over the central and western parts 

of the continent.  Fig 2 shows the mean JJA soil moisture from the Noah land surface model driven offline by 

observationally constrained meteoro¬logical forcing, and in the coupled reforecasts at a lead forecast of 0-

months (initialization ranging from 30 days prior to 7 days into the forecast month).  In GLDAS, the driest 

Fig. 2  10-40cm soil wetness (%) for JJA from 

the indicated sources. 



DIRMEYER AND TAWFIK 

 

 

77 

soil is not over the desert Southwest but 

rather areas of the inter-mountain west 

and the Great Plains.  In CFSv2 

reforecasts, the western and southwestern 

regions are even wetter, and the driest 

zone is over the central and southern High 

Plains.  The irregularity is even stronger 

in the operational forecasts (7-10 days 

lead shown).  As a result, the Great Plains 

area is insensitive to drought because 

conditions are already so dry.  

Figure 3 shows the pattern of latent 

and sensible heat fluxes for JJA in the 

CFSv2 operational forecasts, with 

superposed circles showing observed 

values from a distribution of FLUXNET 

sites across the United States (Baldocchi 

et al. 2001).  There is a distinct negative 

bias in Bowen ratio over most areas.  

 The positive bias in latent heat flux (LHF) is over 27 Wm-2 across the flux sites for the operational 

CFSv2 model, but only +4 Wm
-2

 for Noah in GLDAS.  Meanwhile there is nearly a 10 Wm
-2

 deficit in 

sensible heat flux (SHF) in CFSv2, indicating not only a problem in partitioning net energy, but also an 

excess of net radiation at the surface in the coupled model.  This led to a positive temperature bias in CFSRR, 

which was addressed by extending the root depth in Noah to tap soil moisture in all four model layers (M. Ek, 

pers. comm.). This reduced temperature biases through increased evaporation, but exacerbated other problems.  

The bias is particularly strong over the agricultural areas, 

with the lowest Bowen ratios outlining clearly the crop 

vegetation types over the eastern and northern Great Plains 

well into southern Canada.  This profligate evaporation 

renders the remainder of the GLACE hot spot immune to 

soil moisture variations.  Thus, a combination of 

atmospheric and land surface model errors and biases 

appear to compound, weakening land-atmosphere coupling 

strength. 

The degree to which coupling intensifies these 

problems can be seen in Fig 4.  Correlation of surface 

fluxes with soil moisture in GLDAS is seen to have a 

pattern consistent with Fig 1, but somewhat too strong 

compared with in situ observations.  This excessive 

strength is characteristic of offline land model simulations 

and is not in itself an indicator of a problem with Noah.  

However, this strength is completely eradicated over the 

Great Plains in the coupled CFSv2, where positive 

correlations between latent heat fluxes and soil moisture 

are lost. 

This also severely affects the development of the 

daytime atmospheric boundary layer and the height of the 

lifting condensation level (LCL) over the central and 

northern Great Plains.  Cloud bases in this area are much 

too low, and day-to-day variability is nearly zero (not 

Fig. 4  Correlation between daily soil moisture 

and latent heat flux during JJA from the 

indicated sources. 

Fig. 3 JJA mean latent (left) and sensible (right) heat flux     

(Wm
-2

) from the indicated sources.  Dots are values from 

FLUXNET sites. 
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shown).  As a result, both the terrestrial and atmospheric 

segments of the coupled feedback loop are absent over all 

but the extreme southern Great Plains.  Figure 5 shows 

coupling indices – the terrestrial coupling index (top) is the 

standard deviation of daily LHF (Wm
-2

) times the 

correlation between LHF and soil moisture.  For the 

atmosphere, it's the standard deviation of the height of the 

LCL (m) times the correlation between SHF and LCL. 

5. Conclusions and discussion 

A variety of metrics based on state variables and fluxes 

indicated the behavior of the coupled land-atmosphere 

system in CFSv2 is considerably different than for the land 

surface model (Noah) alone driven by observed 

meteorology, or metrics based on FLUXNET stations.  All 

biases trend toward excessive weakness in land surface 

feedbacks on the atmosphere, weakening the potential 

predictability and prediction skill to be gained by the 

operational NCEP forecast model from realistic land surface 

initialization (namely for soil moisture).  Experiments with 

other models from GLACE-2 indicate that some models can 

benefit from realistic land initial states – and these models 

possess stronger coupling.  Thus, this should be a 

correctable problem if addressed as a coupled land-

atmosphere model development effort, resulting in potential 

increases in forecast skill over the Great Plains, and possibly 

neighboring areas, during the warm season.  Such gains may 

be extendable to other "hot spot" regions as well, such as the 

Sahel region of Africa, Eastern Europe to central Asia, 

western India and Pakistan, much of South America and Australia.   
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ABSTRACT 

In this study, the climate mean, 

variability, and dominant patterns of the 

Northern Hemisphere (NH) wintertime mean 

200 hPa geopotential height (Z200) in a 

CMIP and a set of AMIP simulations from 

the NCEP CFSv2 are analyzed and compared 

with the NCEP/NCAR reanalysis.  For the 

climate mean, it is found that a component of 

the bias in stationary waves characterized 

with wave trains emanating from the tropics 

into both the hemispheres can be attributed to 

the precipitation deficit over the Maritime 

continent.  The lack of latent heating 

associated with the precipitation deficit may 

have served as the forcing of the wave trains 

(Fig. 1).  

For the variability of the seasonal mean 

(Fig. 2), both the CMIP and AMIP 

successfully simulated the geographical 

locations of the major centers of action, but 

the simulated intensity is generally weaker 

than that in the reanalysis, particularly for the 

center over the Davis Strait-southern 

Greenland area.  It is also noted that the 

simulated action center over Aleutian Islands 

was southeastward shifted to some extent.  

The shift was likely caused by the eastward 

extension of the Pacific jet.  Differences also 

existed between the CMIP and the AMIP 

simulations, with the center of actions over 

the Aleutian Islands stronger in the AMIP 

and the center over the Davis Strait-southern 

Greenland area stronger in the CMIP 

simulation.  

Fig. 1   Climate mean of the zonally asymmetric DJF 

precipitation rate (mm/day) (left column) and eddy 200 

hPa height (m) (right column):  The upper row is for the 

climate of observation over 1979-2010, the middle row is 

for the bias of AMIP runs from the observation over the 

same period, and the bottom row is for the bias of CMIP 

run over 2002-2010.  The contours with the height fields 

are the climate mean of 200 hPa zonal wind (U200) in 

observation (panel d) and model bias for AMIP and 

CMIP runs (panel e and f).  With m/s unit, the contour 

levels for U200 climate are 30, 40, 50 and 60, for U200 

bias are 5, 10, and 15.   
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In the mode analysis, the El Nino-Southern Oscillation (ENSO) teleconnection pattern (Fig. 3) in each 

dataset was first removed from the data, and a rotated EOF (REOF) analysis was then applied to the residual.  

The purpose of this separation was to avoid possible mixing between the ENSO mode and those generated by 

the atmospheric internal dynamics.  It was found that the simulated ENSO teleconnection patterns from both 

model runs well resembled that from the reanalysis, except for a small eastward shift.  Based on the REOF 

modes of the residual data, six dominant modes (Figs. 4-6) of the reanalysis data had counterparts in each 

model simulation, though with different rankings in explained variance and some distortions in spatial 

structure.  By evaluating the temporal coherency of the REOF modes between the reanalysis and the AMIP, it 

was found that the time series associated with the equatorially displaced North Atlantic Oscillation (ED_NAO) 

in the two datasets were significantly correlated, suggesting a potential predictability for this mode.  

This paper has been submitted to the Climate Dynamics and in revision. 

 

Fig. 2   Standard deviation of DJF mean Z200 (m):  (a) total quantity of the observation; (b) AMIP run minus 

observation; (c) CMIP simulation minus observation.  The contours, with the same levels and unit as that in 

Fig. 1, are for the corresponding climate mean U200.  The results are based on the data from the whole 

period of each dataset.  

Fig. 3   Regression patterns of DJF mean precipitation rate (mm/day) (upper row) and 200 hPa height (m) 

(lower row) to the Nino3.4 SST index for observation (left column), AMIP data (middle column), and 

CMIP data (right column).  For the height patterns, the contours are for regression and shading for 

correlation, with contour interval of 10m, and shaded areas passing the 95% significant level.  The data 

periods are the same as that in Fig. 2. 

OBS AMIP CMIP 
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Fig. 4  NAO (upper row) and PNA (lower row) patterns of DJF Z200 for the observation (left column), AMIP 

runs (middle column) and CMIP run (right column).   The patterns are obtained by regressing/correlating 

Z200 total fields to the rotated principal components (RPCs) of the Z200 residuals (with ENSO related 

variability removed) over the NH domain (20ºN-90ºN).  The contours with interval of 10 m are for 

regression, and shading (%) for correlation.  On the top of each penal, the numbers give the ranking, 

explained variance (%), and the spatial correlation between the pattern from model and that from 

observation, respectively.  

Fig.5  As in Fig.8, but for WPO and NA patterns. 
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Fig.6  As in Fig.8, but for ED_NAO and TNH patterns. 
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1. Introduction 

 The North American Multi-Model Ensemble (NMME) is a forecasting system consisting of 

coupled global circulation models from U.S. and Canadian modeling centers (Kirtman et al., 2013). 

August, 2013, marked two years of real-time NMME forecasting, with forecast data delivered on-

time by all modeling centers and posted by the 9th of each month. Real-time and archived forecast 

graphics from Aug. 2011 – present are available at www.cpc.ncep.noaa.gov/products/NMME. 

Hindcast and forecast data is archived at the International Research Institute for Climate and Society 

(IRI), accessible at iridl.ldeo.columbia.edu/SOURCES/Models/NMME/. 

NMME forecasts during the first two years focused on monthly-mean 2m surface temperature (T2m), 

precipitation rate (prate), and sea-surface temperature. Additional environmental variables were added in Year 

2, and further additions, as well as intra-seasonal forecasts, are in development. NMME forecast fields are 

global, and produced at a 1°-longitude by 1°-latitude resolution. Forecast leads and number of ensemble 

members vary by model; during Year 2 of NMME real-time forecasting, the multi-model ensemble included 

79 members. Table 1 contains the models involved in NMME Phase I, and more details on the models and 

forecasting structure can be found in Kirtman et al. 2013. Monthly mean and 3-month average seasonal 

forecast graphics are published by the CPC in deterministic and probabilistic formats: anomalies for each 

model’s forecast are departures from that model’s climatology, and the multi-model ensemble was created 

with equal weighting for all models. 

TABLE 1  Models included in the NMME. The first part of each model’s name is the center where it was 

produced. 

Hindcast ensembles were run for all NMME models from all initial months for approximately 30 years. 

The hindcast database allows for both calibration of the forecasts and an assessment of average skill. For 

example, Fig. 1 shows the anomaly correlation (AC) of the prate multi-model ensemble for the July-August-

Model Hindcast Ensemble Size Lead Times Forecast 

NCEP-CFSv1 1981-2009 15 0-8 Months   Aug 2011 – Oct 2012 

NCEP-CFSv2 1982-2010 24 (28) 0-9 Months Aug 2011 – present 

GFDL-CM2.2 1982-2010 10  0-11 Months Aug 2011 – present 

IRI-ECHAM4-a 1982-2010 12 0-7 Months   Aug 2011 – Jul 2012 

IRI-ECHAM4-f 1982-2010 12 0-7 Months   Aug 2011 – Jul 2012 

CMC1-CanCM3 1981-2010 10  0-11 Months Aug 2012 – present 

CMC2-CanCM4 1981-2010 10  0-11 Months Aug 2012 – present 

NCAR-CCSM3.0 1982-2010 6  0-11 Months Aug 2011 – present 

NASA-GEOS5 1981-2010 10 0-9 Months Aug 2011 – present 
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September (JAS) period, from June initial conditions. 

Over the hindcast period, some skill is found over the 

western half of the United States, including portions of 

the region affected by the North American Monsoon. 

As prate is a notoriously difficult field to forecast, even 

limited skill is welcome.   

2. Assessment 

 With two years of operation under our belts, we 

can look back to see how well the NMME forecasts 

have performed. Figure 2 depicts the anomaly 

correlations for bias-corrected seasonal T2m and prate 

forecasts, area-averaged over North America, all land 

north of 15°N (Greenland is not included), averaged for 

each of the first two years of the project. T2m forecasts 

were verified against the station observation-based 

GHCN+CAMS (Fan and van den Dool, 2008), and 

prate forecasts against the CPC global daily Unified 

Rainguage Database (URD, Xie et al., 2010). ACs are 

the average of the “leads 1 – 3” seasons from all the 

initial conditions in the year. For example, the leads 1 – 3 seasons from January initial conditions are FMA, 

MAM, and AMJ. The averages over the 5 available seasonal leads (not shown) are similar to the ACs in 

Figure 2. This is a sample of the real-time verification analysis, which covers both monthly and seasonal 

forecasts from August, 2011, available at www.cpc.ncep.noaa.gov/products/NMME/verif/. 

Year 1, August 2011 – July 2012 

(top row), includes seven models and 

the multi-model ensemble mean 

(mme). The ACs shown are for the 

ensemble mean of each model and 

the mme. The models show a wide 

range of success in forecasting during 

Year 1, especially in the T2m field. 

While the mme score is not always 

the highest among the models, it is 

consistently among the highest; this 

held true when other regions were 

examined (not shown.)  

The Year 1 period featured some 

remarkable climate extremes, 

including the record heat and “flash 

drought” of July, 2012, in the central 

North American continent. The 

NMME monthly-mean ensemble 

forecast for July indicated a 

likelihood of hot and dry conditions 

as far out as five months in advance, 

contributing to the relatively high 

pattern correlations found in Year 1. 

The record high temperatures over 

much of the United States and 

southern Canada in March, 2012, 

Fig. 1  Anomaly correlation for the NMME multi-

model ensemble prediction of precipitation rate 

for the July-August-September period, from 

June initial conditions, based on hindcast data. 

ACs are multiplied by 100.  

Fig. 2  Area-average North American prate (left) and T2m (right) 

anomaly correlations for NMME operational Year 1 (top row) 

and Year 2 (bottom row). Label key: C1=CFSv1, C2=CFSv2, 

EA=ECHAMa, EF=ECHAMf, G=GFDL, NA=NASA, 

NC=NCAR, CM1=CMC1, CM2=CMC2. The green bar, “mme”, 
indicates AC for the 7-model (Year 1) or 6-model (Year 2) 

ensemble mean. 
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were suggested by the NMME some months in advance, 

as well, although the spatial extent of this event was 

underestimated.  

Year 2, August 2012 – July 2013, was a more 

challenging year for the NMME forecasting system in 

North America. ACs for Year 2 forecasts, SON 2012 – 

JJA 2013, are shown in Fig. 2, lower row. CFSv1 is not 

included in these results, although it did contribute to 

the mme until October, 2012.  In June, 2013, the 

NMME indicated an increased probability of above-

average precipitation during July-August-September in 

the southwestern United States (Fig. 3). While the 

verification period for this forecast was not complete at 

the time of writing, through late September much of 

this region was showing 90-day average precipitation 

rates of 150-200% of normal.  

Obviously, two years of forecasts and a handful of 

specific events cannot be generalized to an overall 

statement of skill, and this assessment lacks an 

attribution component that could help diagnose why the 

models captured some events and not others. However, 

it is still worthwhile to take stock of our results, to 

understand how the NMME is contributing to long-lead 

climate forecasting.  With some encouraging results 

thus far, we can look forward to further refinements to 

the system as it develops over the next few years. 

This work has been published in CLIVAR 

Exchanges / VAMOS! Newsletter in 2013. 
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Fig. 3  NMME tercile-based prate probability 

forecast for July-August-September 2013, 

made in June 2013, using 79 ensemble 

members from six models. Above and Below 

contours show when one class has >38% of 

ensemble members, and the opposite class is 

below 33%.  In the case that Above is >38% 

and Near-neutral is >33%, Above will be 

shown.  This is the same for Below. Gray 

contours show when >38% of ensemble 

members fall in the “Neutral” tercile, and both 

A and B are below 33%. White areas show 

where no one class is dominant: either all 

terciles are under 38%, or both Above and 

Below are over 38%. 
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1. Background 

Efforts to mitigate anthropogenic emissions of greenhouse gases have failed to prevent acceleration in 

emissions, rising concentrations in the atmosphere, and increasing acidification of the oceans. Because of the 

impasse in negotiations, emphasis on adaptation has grown in recent years. Mandates for adaptation planning 

exist at international, national, and local levels. Organizations such as the World Bank, and related 

international financing organizations, now fund significant efforts at adaptation planning and adaptation 

actions through vehicles such as the Green Climate Fund and the Adaptation Fund.  The Green Climate Fund 

may expend $100B per year by 2020. The US government, through Executive Order, requires federal 

agencies to develop and implement adaptation plans.  Certain public stock exchanges require listed companies 

to report their climate risks and the Securities and Exchange Commission has issued guidance on such 

reporting.  Many in the private sector develop climate change adaptation plans and an industry is growing 

around demands for climate change adaptation services.  

2. Climate science 

To plan correctly for adaptation, an organization must first identify the risks it faces.  For this purpose, 

those involved frequently refer to the results of General Circulation Models (GCMs) that use boundary 

conditions including possible future atmospheric concentration of greenhouse gases (representative 

concentration pathways, or RCPs).  The newest model results were produced in the Coupled Model Inter-

comparison Project phase five (CMIP5), which implemented experiments to support the Intergovernmental 

Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These model results represent the world’s 

best estimate of what might happen under various possible scenarios of mitigation success (or failure). CMIP5 

GCM results for IPCC AR5 vary widely in the magnitude of climate change projected using the various RCPs. 

The climate modeling community does not attempt to, nor does it advocate, assignment of likelihoods to any 

of these outcomes. 

3. The problem 

Climate modelers do not advocate use of CMIP results for adaptation planning.  Indeed, they caution 

against such applications since they have no basis for determining which projection is most likely. CMIP5 

and AR5 groups carefully label GCM results ‘projections’ of what might happen to distinguish them from 

‘predictions’ of what will happen. CMIP5 results are not predictions (most likely outcomes) and are not 

designed for adaptation planning. Despite this limitation, and in the absence of alternatives, the adaptation 

community frequently (almost invariably) draws upon CMIP projections to characterize future climate to 

which adaptation planning then responds. 

This unintended application of CMIP results is further compromised by another simplification, which 

results from the nearly incomprehensible plethora of CMIP results.  Adaptation planners select particular 

scenarios; they nearly invariably do not consider the full suite. Examples abound in the literature of adaptation 

planning based on AR4 and CMIP3 results, which used a different set of boundary conditions (SRES 

scenarios).  Most adaptation exercises draw upon one or two, and at most three SRES scenarios. Insidiously, 
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these analyses come to be taken for what adaptation is needed, rather than adaptation that might be needed if 

that scenario holds. 

Conditional projections cannot serve as ‘best science’ for climate adaptation planning, which depends 

upon risk analysis informed by at least ordinal-scale impact likelihoods. Adaptation efforts should be directed 

to an expected future, not a future whose likelihood is unknown. Such an expected future is, by definition, a 

prediction; adaptation needs prediction. 

4. NOAA’s role and responsibility 

NOAA's CPC climate predictions do not extend to time periods relevant to climate adaptation. 

Experimental decadal forecasts do not demonstrate skill and remain research topics with distant prospects of 

utility. NOAA's GFDL provides GCM projections for IPCC that are conditioned on RCPs and designed to 

support climate mitigation policy. Recently developed online analytical tools (LCAT) from the Climate 

Services Division support modeling of NCDC observational data but eschew predictive applications. Thus, 

adaptation decisions lack NOAA predictions, although NOAA's climate goal specifically includes support for 

climate adaptation decisions. 

5. A fundamental barrier 

Meteorological tradition requires demonstrated skill to accept a prediction method.  Climatology has 

inherited a meteorological tradition for determination of predictability that is inappropriate to, and inadequate 

for, the societal challenge of adapting to climate change.  The requirement for demonstrable skill in a 

conditional analysis of a transient non-linear system where long lead predictions are needed fails the test of 

utility. The existing system of conditional projections was created for, and is well suited to, informing policy 

decisions about mitigation. It fails to address the challenge of adaptation and the very failure of mitigation 

actions necessitates reexamination of the projection/skill paradigm. If climate science cannot inform our 

expectations, what can? 

6. An option 

Meteorology is not the only science that makes predictions in the context of saving life and property. For 

example, seismologists forecast earthquake risk from recorded seismicity, mapped records of fault behavior, 

and strain dynamics. Prediction is inherent in the scientific enterprise, though traditions of valid prediction 

differ between disciplines (e.g. medicine, engineering, seismology, cosmology). Although the traditions differ 

fundamentally and are not interchanged, each demonstrates service to society.  The projection/skill paradigm 

is unsuited for the task of adaptation, yet the demands for adaptation press upon science. A scientific response 

would consider the possibility of a different, more useful, paradigm. Creating a new paradigm may be 

informed by metasystematic examination of existing prediction traditions in the full spectrum of scientific and 

technical fields (such as the seismology example) to ensure the dialogue is disencumbered of dominant forces 

inadvertently limiting discourse and options. Such dialogue is needed now and, consistent with its climate 

goal, NOAA should lead.  
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1. Introduction 

The overarching objective  of this work  was to 

develop practical indicators, methods, and procedures 

for monitoring and analyzing agrometeorological 

extremes that significantly influence crop and/or 

livestock production in agricultural regions of Canada. 

Because of Canada’s extreme northern location, 

agriculture lies at the fringe of ideal conditions. As a 

result, extreme weather conditions can quickly assume 

disaster proportions. The economic loss due to extreme 

weather events is always substantial. In 2001 and 2002 

for example, Canada’s GDP fell some $5.8B due to 

extreme drought (Wheaton et al. 2005) and in 2010, 

excessive flooding led to unseeded acres, resulting in 

insurance claims of about $956 Million (Public Safety 

Canada 2011). We therefore sought to develop some 

key indicators that can inform the industry about the 

weather related risks over time frames associated with 

managing an agricultural activity. We considered water, 

heat and wind related extreme events and developed 

agrometeorological indices that can be linked directly 

to agriculture operations. This work was partly 

influenced by the world-wide interest in reporting 

climate extremes (Peterson and Manton 2008). In total, 

twelve indices were developed as discussed below. 

Predictions were made at daily to monthly time frames 

which closely coincide with the planning window of 

most agricultural activities during the growing season.   

2. Methodology and data  

A phased approach was taken to develop, test and forecast agrometeorological indices across Canada's 

agricultural landscapes. In phase 1, the occurrence of extreme agrometeorological indices, their trends and 

variability were analyzed (Qian et al. 2010).  In phase 2, improvements were made to the extreme indicators 

by defining the indices in terms of the critical thresholds by major crops. Phase 3 consisted of calculating and 

validating the indices in hindcast mode using forecast data sets from the Canadian Meteorological Centre’s 

medium range and seasonal forecasts. This step was critical because it involved assessing the forecast skill. 

The last step involved communicating the forecast of indices to the agriculture sector on an experimental 

basis as part of building an integrated agroclimate monitoring system that includes near real time reporting 

and forecasting of agrometeorological indices. 

Fig. 1 Skill in predicting the effective growing 

degree days for A) warm and B) cool season 

crops across Canada. 

B 

A 
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In all, twelve agrometeorological extreme 

indicators from heat, water and wind sub-climatic 

themes were investigated as follows:  

Heat based indices 

i) Effective Growing Degree Days (EGDD) - 

Growing Degree Days were calculated using 5
o
C and 

10
o
C as the baseline for cool and warm season crops 

respectively. The growing season was defined using 

the Biometeorological time scale (Baier and Robertson, 

1968).  Daily EGDD = (Tmax+Tmin)/2. 

ii) Crop Heat Units (CHU) - Although similar to 

EGDDs, the maximum and minimum temperature are 

defined differently. The maximum temperature uses 

10ºC as the base and 30ºC as the ceiling. The minimum 

temperature uses 4.4ºC as the base. Thus, Ymax = 

(3.33 (Tmax-10)) - (0.084 (Tmax-10.0)
 2

) and Ymin = 

(1.8 x (Tmin - 4.4)). Daily CHU = (Ymax + Ymin)/2. 

iii) Number of Frost-Free Days (NFFD) - 

Frequency of days above the frost temperature (-2ºC 

for cool and 0ºC for warm season crops respectively). 

iv) Number of Ice Free Days (NIFD) - Frequency 

count of days with a minimum temperature below the 

frost temperature (-2ºC for cool and 0ºC for warm 

season crops respectively). The T thresholds for 

herbaceous and woody crops are much lower. 

v) Days of Cool Wave (DCW) - A frequency count 

of days with a minimum temperature below the cardinal minimum temperature (5ºC and 10ºC for cool and 

warm season crops respectively). 

vi) Days of Heat Wave (DHW) - Frequency count of days with maximum temperature above the 

maximum cardinal temperature (30ºC and 35ºC for cool and warm season crops respectively). 

Water based indices 

i) Greatest Daily Precipitation (P1D) - the greatest daily precipitation over the period of analysis. 

ii) Greatest 10-Day Precipitation (P10D) - the greatest 10 day precipitation total in a 2-week period. 

iii) Seasonal Water Deficit (SWD=P-PE) - the difference between total precipitation (P) and 

evapotranspiration (PE). 

Wind based indices 

i) Maximum Daily Wind speed (MDWS) - the maximum wind speed reached per day. 

ii) Number of Strong Wind Days (NSWD) - Frequency of days with an average wind speed > 30km h
-1

. 

iii) Number of Drying Days - Frequency of days with an average wind speed > 30km h
-1

 and maximum 

temperature > 30ºC. 

Homogenized climate data from Environment Canada (Vincent et al. 2009) were used to calculate trends, 

variability and change in agrometeorological indices over a period of 60 to 100 years across Canada 

(depending on station history length). To calculate the forecast skill, hindcast data were obtained from the 

Global Ensemble Prediction System (GEPS) covering 2009 to 2011. The GEPS has been in operation since 

1996 (with many upgrades) and consists of the Global Environmental Multiscale  (GEM) model, a global 

Fig.2  Skill in predicting the greatest 7 –day (A) 

and 16- day (B) precipitation  across Canada. 

B 

A 
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Gaussian grid of 600×300 km, 40 levels and top at 

2hPa, 30 minute time step, 16 day integration, disturbed 

physical parameterizations and Kalman Filter 

initialization (Houtekamer et al. 2009).  

3. Results 

Skill of Agrometeorological Indices - We examined 

the predictability of the indices by calculating the 

Heidke Skill Score (HSS) which compares the 

proportion of correct forecasts to a no skill random 

forecast Hyvärinen (2014).  

Energy based indices - The energy and temperature 

- based indices were realistically forecast over Canada. 

At most locations, the skill score was in excess of 70% 

correct (Fig. 1). 

Water (precipitation) based indices - The 

precipitation based indices exhibit a relatively high 

forecast skill in western Canada at both 7 and 16- day 

time frames (Fig. 2). In central and eastern Canada, the 

skill score drops at the 16-day timeframe and degrades 

even further at the monthly time frame (data not 

shown).The temporal drop in skill is caused by the 

growth of initial errors in the model. Spatially, the 

difference in skill can be partially explained by the 

consistency of the forcing factors during the period under study (April to September). It has been shown that 

western Canada is influenced by the Madden-Julian Oscillation and ENSO-like forcing factors more than 

eastern Canada during spring through summer (e.g., Lin et al. 2010). 

Wind based indices -The skill of predicting the wind-based indices has significant spatial differences: the 

maximum daily wind speed is best forecast in western and eastern Canada, with a relatively low skill in 

central Canada; the number of strong wind days is more reliable in eastern and central Canada, with a low 

skill in western Canada (Fig.3).  Like the water based indices, the skill in the wind based indices drops at 

longer time frames in the future. 

Real time reporting of the extreme agrometeorological indices - The 12 grometeorological indices are 

updated daily and e-posted on a public website: http://collaboration.cmc.ec.gc.ca/science/rpn/sages/. 

The weekly and bi-weekly forecasts have a spatial resolution of 60 km while the monthly forecasts have a 

resolution of about 200 km. The intent for posting these products is to encourage the evaluation of the 

evolving weather related risks so that corrective actions can be taken. In some instances, the products may 

show opportunities which those involved in activities that are sensitive to the mapped extreme indices may 

react to. In the examples (Fig. 4) drawn from the 2013 growing season, the greatest 10-day precipitation total 

between October 14 and 27 (A) and the Number of Frost Free Days (B) between October 14 and 20, were 

showing ideal harvesting conditions and this information is timely to make plans to take machinery in the 

field. 

Similar maps exist for other indices at the time frames discussed above. 
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1. Introduction 

Climate change is likely to lead to a significant rise in Global Sea Level (GSL) with potentially 

devastating impacts on coastal cities and settlements (e.g., Rowley et al. 2007, Edwards 2008, Hallegatte 

2012, Hallegatte et al. 2013, Horton et al. 2014). The societal and economic impacts would be felt globally. 

Recent successive events show that the costs of single sea-level related disasters are increasing and exceeding 

$100 Billion. In many urban coasts, an accelerated Local Sea Level (LSL) rise is presently causing mounting 

adaptation costs (e.g., Atkinson et al. 2013). The recent extreme events (e.g., tropical cyclones Katrina, Sandy, 

and Haiyan) are demonstrating the high risks for urban coasts associated with storm surges and hurricanes. 

Spatial variability in LSL (e.g., Plag 2006, Ezer 2013) will amplify any increase in GSL on regional scales. 

Acceleration in LSL rise is also spatially variable, and some regions already exhibit significant non-linear 

changes (e.g., at the U.S. East Coast, Sallenger et al. 2012, Ezer et al. 2013, Kopp 2013). In a recent report of 

the National Research Council's Committee on Abrupt Climate Change, the risk for rapid climate change 

impacts is emphasized (NRC 2013).  In particular, the uncertain response of the large ice sheet to climate 

change (e.g., Little et al. 2013; see also the discussion in Plag and Jules-Plag 2013, and the reference therein) 

introduces the possibility of a rapid GSL rise. The rate of change in global temperature observed in the last, 

and projected for the current century is much greater than those documented for many past millennia (Marcott 

et al. 2013), and the projected changes classify as “abrupt changes.” Under these conditions, rapid sea level 

changes cannot be excluded.  

Projections of GSL and LSL on century 

time scales are highly uncertain, and recent risk 

assessments demonstrate that presently future 

LSL variations are not predictable on century 

time scales (Plag and Jules-Plag 2013, and the 

reference therein). The large uncertainty in the 

plausible range of LSL trajectories and their 

Probability Density Functions (PDFs) reduces 

the value of these long-term assessments for 

risk management. Even the upper end of the 

range of plausible future LSL trajectories is 

highly uncertain (Horten et al. 2014) . 

Importantly, the trajectories do not account for 

the risk of abrupt climate change. The range of 

plausible GSL trajectories resulting from the 

still unpredictable response of the large ice 

sheets to climate change is often displayed for 

GSL trajectories at the end of the 21st Century 

(Figure 1), giving the false impression that the 

large range of plausible trajectories can only 

develop on century time scales. However, there 

is no scientific basis to exclude rapid 

contributions from the ice sheets on decadal to 

multi-decadal time scales, opening the 

Fig. 1  Plausible 21
st
 Century trajectories of GSL cover a 

wide range at the end of the present century, with 

possibly much higher trajectories indicated for the later 

part of the 21
st
 Century (red arrow). However, rapid 

increases caused by rapid melting of parts of the large 

ice sheets are possible over the next decades, and 

trajectories like the red and blue one cannot be 
excluded. Modified from Church et al. (2010). 



PLAG 

 

 

95 

possibility for low-probability, high 

impact rapid increases in GSL already in 

the near future. Such a rapid rise would 

have devastating consequences for the 

growing urban coasts, including coastal 

mega cities. In fact, observations of the 

ice sheets during the last 10 years have 

repeatedly surprised glaciologists and 

earth scientists with large and accelerating 

melting rates (Velicogna and Wahr 2005, 

2006) that exceeded what was considered 

likely, or even possible, a few years 

earlier.  

Considering the high costs of 

adaptation and potential disasters caused 

by coastal hazards, both over and under-

protection/adaptation can be very costly 

and challenging for national economies. 

Adaptation taking into account a potential 

rapid LSL rise is economically expensive, 

culturally difficult to communicate, and 

legally and politically difficult to implement. Our civilization has a normalcy bias caused by more than 6,000 

years of experience with a relatively stable GSL, which created the general concept that sea level does not 

change significantly through the life time of a human being or even on time scales of several centuries (Figure 

2). During the existence of human civilization, typical GSL changes were on the order of 0.1 m per century. It 

is difficult to communicate that climate change might cause GSL to change much faster than any of the 

changes human civilizations have experienced. Even on local scale, LSL has been very stable except for a few 

areas where coastal subsidence or rapid land uplift caused changes discernible withing a typical human 

lifespan. However, paleo data for the last 800,000 years (Hansen et al. 2008) shows that changes on the order 

of 5 m per century are possible, and changes on the order of 1 to 2 m per century are normal (Plag and Jules-

Plag 2013).  Due to large spatial variability of LSL, this translated into a PDF for LSL with changes on the 

order of 3 m per century still having high probabilities, while much larger changes cannot be excluded. 

GSL displays interannual to decadal 

variability on the order of centimeters 

(Figure 3)
1

. This variability has been 

related to atmosphere-ocean modes and to 

changes in land water storage (Fasullo et 

al. 2013). The interannual to decadal 

variability shows large spatial variability, 

which can amount to up to 0.20 m over 

two decades, not accounting for 

additional contributions from local 

vertical land motion. Partly, the 

variability is caused by internal ocean 

processes and partly by interaction with 

the water cycle and the atmosphere 

(Meyssignac and Cazenave 2012). At 

time scales of 50 years, spatial variability 

                                                 
1
 From http://www.space.dtu.dk/english/Research/Scientific_data_and_models/Sea-Level-Change; accessed on 2013/10/ 

02. 

Fig. 2  GSL for the last 24,000 years. During the last 6,000 

years, GSL has been exceptionally stable with changes on 

the order of 0.1 m per century. Human civilizations have not 

experienced larger rates, which has created a normalcy bias 

toward the belief that GSL is inherently stable. 

Fig. 3  GSL variations determined from satellite altimetry for the 

period 1993 to 2013.   Note that Fasullo et al. (2013) 

attribute the dip in the GSL curve around 2010.5 to the 

flooding in Australia after a prolonged drought. 
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can be as large as 0.15 m (Plag, 2006; Meyssignac et al., 2012). 

2. Need for interannual to decadal LSL projections 

In many coastal locations, small changes in mean LSL can significantly change inundation risk and the 

frequency and magnitude of flooding (Atkinson et al. 2013).  A rapid LSL rise would amplify risks and the 

ensuing disasters could challenge our civilization. During the last deglaciation, rapid LSL altered coast lines 

within decades. However, during that time, large-scale built environment was absent, and with much lower 

populations, humans could easily adopt to shifting coast lines. Today, with substantial built environment and 

crucial infrastructure in coastal zones, rapid changes in coast lines and increased inundation risks during 

storm surges would be economically and environmentally devastating. Recently, several city managers have 

indicated that “early warnings” for a rapid LSL rise with lead times of five to fifteen years would provide 

actionable information for decision makers (e.g., Timothy Reeder 2009, personal communication), and they 

have asked for the establishment of a decadal LSL forecasting service. Considering the normalcy bias 

resulting from a very unusual period of stable GSL and the extremely high risk associated with a rapid LSL 

rise, predictions on decadal time scales are needed to inform timely adaptation and to provide early warning 

in case there is on onset of rapid changes (Plag et al. 2010; Showstack 2013). 

Having the ability to reliably predict seasonal to decadal LSL variations would allow for timely detection 

of the onset of a low-probability, high-impact rapid GSL rise and enable an “early warning system” required 

to facilitate mitigation and adaptation where and when necessary. Earth observations will be able to identify 

major ice masses that enter a state of instability, and for these masses, predictive capabilities for their 

disintegration trajectories need to be developed. Based on such disintegration predictions, LSL could then be 

forecast with the same time horizon as ice sheets, if a validated ice-ocean-solid-Earth model is available. 

Likewise, ocean observations will be able to detect the onset of major changes in ocean circulation and heat 

content affecting GSL and LSL, and validated atmosphere-ocean models will be able to forecast the further 

development on seasonal to decadal time scales. 

Predictive capabilities need to be assessed quantitatively before actionable interannual to decadal 

predictions can be made available as decision support. No single Earth system model is currently available 

that can accurately predict past, present, or future LSL changes, and it is unlikely that such a model will 

become available in the near future. Moreover, some underlying processes (including future greenhouse gas 

emissions; effects of human “re-engineering” of the planet on climate; response of ice sheets and glaciers to 

global warming) likely will remain unpredictable on century time scales for a long time to come. 

 In order to assess our predictive capabilities, it is important to answer three specific science questions: (1) 

At what time scales does predictability break down for the individual processes contributing to LSL changes? 

(2) Which of these processes have the potential to cause rapid LSL rise? (3) With what lead time could the 

onset of a rapid LSL rise be detected, given the limited predictability of several contributing processes? 

3. Local sea level equation 

The definition of LSL and a cumulative equation for LSL are given in Box 1. LSL as defined there is the 

quantity directly related to potential impacts of climate change and LSL rise in a given coastal area. GSL is 

the average of LSL taken over the surface of the oceans. With this definition, changes in GSL equal changes 

in the Global Ocean Volume (GOV). 

Coastal LSL is the result of global, regional and local-scale Earth system processes, which alter sea 

surface height, land surface height, or both (e.g. Plag 2006). These processes include mass relocation in ice 

sheets, glaciers, land water storage, and oceans; deformation of the solid Earth and gravity field changes 

caused by the mass relocation; changes in ocean heat storage and ocean currents; changes in atmospheric 

circulation; tectonic processes; and local coastal subsidence caused by natural and anthropogenic processes. 

In many locations, detrended LSL exhibits interannual to interdecadal variability exceeding 20 cm, and 

intraseasonal variability and changes in the seasonal cycle add to LSL variability. 
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Earth system models available today are not capable of modeling all LSL forcing processes and 

predicting LSL changes. However, the scientific understanding of the link between individual global, regional 

and local processes and LSL changes is well developed. Therefore, a local approach can be used to model 

LSL changes. To accomplish this, we separate LSL into a high-frequency and a low-frequency part and 

provide cumulative equations for each part, expressing LSL variations as a sum of contributions from the 

various processes (eqs. (3) and (4) in Box 1). 

Equation 4 illustrates the complex nature of low-frequency LSL variations as the result of processes in the 

global water and energy cycles merged with geodynamic processes and, recently, anthropogenic activities. 

The processes separate into two large groups, namely those that are mainly volume changes of the ocean 

water (and thus affect GOV but not Global Ocean Mass (GOM) and those that are associated with significant 

mass redistribution in the global water cycle (and thus may also affect GOM). 

The link between mass redistributions, including mass exchanges between the oceans and other reservoirs 

in the global water cycle, is given by the mass-LSL equation detailed in Box 2. Eq. (5) has been applied 

extensively to studies of LSL changes caused by the ice ages and the subsequent Post-Glacial Rebound (PGR, 

see Mitrovica et al. 2010, and the references therein). Main focus has been on the viscous part and the 

determination of the radial viscosity profile of the Earth mantle. There are still considerable inter-model 

differences in predictions of present-day PGR signals in LSL, surface displacements, geoid, and rotation (e.g., 
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Chambers et al. 2009), which originate mainly in differences in ice history and the treatment of rotational 

effects. Using eq. (5) to describe the relation between present-day mass changes and LSL so far has been 

restricted to a few examples (e.g., Plag and Juettner 2001; Mitrovica et al. 2001; Plag 2006; Mitrovica et al. 

2009; Bamber et al. 2009). 

Major mass redistribution in the global water cycle can result from significant mass loss from ice sheets, 

ice caps, and glaciers. Net ice-mass depletion of land-based ice will add to net water mass in the ocean unless 

it is intercepted by surface water or terrestrial storage reservoirs. The mass loss is accomplished by direct 

climate forcing (through changes in precipitation, melt rate, etc.) and by dynamic changes (e.g., subglacial 

sliding, iceberg calving) that can be indirectly and non-linearly influenced by climate. Dynamic changes can 

act to accelerate mass loss from glaciers and ice sheets, but generally not to retard it. If these mass changes 

are known sufficiently, for example, from model predictions, then the resulting LSL variations can be 

calculated using eq. (5). 

Predictions of GSL from land ice sources depend critically upon numerical simulations and require 

knowledge of atmospheric and oceanic forcing as well as geometric landscape boundary conditions. While 

significant progress has been made in ice sheet numerical modeling capacity, robust operational models do 

not yet exist for prediction (Libscomb et al. 2009). Chief among obstacles to be overcome are a lack of 

knowledge of the processes of subglacial sliding (boundary slip) and iceberg calving. Solutions to these 

problems and limitations are being sought, and in the meantime, predictions based on climate proxies and 

approximations of dynamics (e.g., Pfeffer et al. 2008) provide temporary “placeholder” solutions. 

4.  A modular, coupled Earth system model for LSL 

Equation 4 can be implemented in a modular, coupled model representing the relevant Earth system 

processes and ensuring consistency between these processes.  Fig. 4 displays the main modules of a modeling 

framework for LSL changes. Ideally, all individual modules would be at the same level of internal complexity 

and fully coupled, representing all interactions between the four main modules. Most Atmosphere-Ocean 

General Circulation Models (AOGCMs) include a reasonably well developed coupled atmosphere and ocean 
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system, but the physical processes for ice sheets, glaciers, sea ice, biosphere, land use changes, and land water 

storage are not sufficiently represented. Advanced land water storage models such as the Global Land Data 

Assimilation System (GLDAS) account for hydrological feedbacks in detail and provide high-resolution 

water storage predictions. Empirical models for ice sheets and glaciers based on recent observations are likely 

to provide better results than physical models, which have not reached a high degree of predictive capabilities. 

Similarly, separate sea ice models forced by climate model output might get the best modeling of the sea ice 

extent. Considering these diverse state-of-the-art-models, it is of advantage to develop the modular model 

depicted in Fig. 4 as an extendable and scalable framework, in which the individual modules successively can 

be improved and couplings can be added as they are better understood. By allowing for maximum usage of all 

available information, with some processes better constrained by observations and models and other processes 

less constrained, the modular approach provides the basis for assessing in detail the uncertainties, including 

their spatial variability. 

Fig. 4  Structure of the modular LSL modeling framework. The upper three boxes are modules representing the 

fluid envelope of the solid Earth. Mass exchanges of the ocean with land ice and land water storage represent 

the main mass fluxes. Heat exchange with the atmosphere contributes to steric changes of the ocean and 

impacts currents. Mass redistribution in the fluid envelope loads the solid Earth and leads to mass 

redistribution in the ocean. The arrows represent couplings between the modules including mass fluxes, heat 

exchange, surface forces, and gravitational forces. 

5. Discussion 

A scalable modular Earth system modeling framework for LSL changes can be used to study the 

predictability of LSL on intraseasonal to interdecadal time scales. Continuous observations of key 

components of the Earth system (e.g., the ice sheets, ice caps and major glaciers, ocean currents, ocean 

temperature, land water storage, sea surface height changes, vertical land motion) and a combination of global 

and regional system models that assimilate these observations provide a basis for forecasts of short-term 

(years) and intermediate (decades) LSL changes. This system modeling framework is currently under 

implementation. Modules of the system modeling framework will include (1) global models (atmosphere and 

oceans, ice sheets, glaciers, continental hydrosphere), (2) regional models for steric effects, (3) local models 

for vertical land motion, and (4) physical models to convert global processes into local effects. The modular 

system model will provide a framework for data assimilation and model integration. In order to improve 
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predictive capabilities, assimilation of observations on global to regional scales (e.g., gravity field, Earth 

rotation, sea surface heights) will constrain models, while regional and local observations (e.g., InSAR, GNSS, 

ground observations) will inform specific processes. The system model ensures global consistency for key 

Earth system variables, including mass and momentum conservation. The modular nature of the system 

enables rapid integration of progress made in any of the modules by the project team or by other groups 

working on relevant models. 

The seasonal to decadal LSL variability (see Section1) observed by satellite altimetry for more than two 

decades and by tide gauges for more than 50 years can be used to assess the predictive capabilities of models 

for the processes that force these LSL variations. There is considerable uncertainty in the relative contribution 

of the various processes that cause the spatial variability at interannual to decadal time scales and the extent to 

which models have predictive capabilities for this variability.  

The modules of the system modeling framework will be validated by comparing hindcast predictions of 

LSL changes with observations from 1950 to present. Special attention will be given to the increasing level of 

significance of processes, such as ice dynamics, that have become important now but were less active in the 

past. The validation will be set up such that it supports a full assessment of the predictive capabilities of 

individual modules as well as the integrated system, and provides quantified uncertainties. This will provide 

feedback on the predictive capabilities of individual modules, including global to regional climate models. 
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1. Introduction 

Satellite-based analyses are critical for 

climate analyses because of their ability to 

sample globally with much higher frequency 

than is possible using in situ observations.  The 

satellite measurements most important for long 

records of global precipitation include those 

from infrared and microwave instruments.  The 

Global Precipitation Climatology Project 

(GPCP, Adler et al. 2003) combines bias-

adjusted satellite-precipitation estimates with 

the available in situ measurements to produce a 

monthly global analysis beginning 1979.  

Before 1979 satellite data are not adequate for 

quantitative global analysis and here we refer to 

1979 as the beginning of the satellite era.  

Before the satellite era there were many 

island and land in situ precipitation 

measurements, allowing for a fairly 

comprehensive land analysis back to 1900 or 

earlier.  However, there are almost no oceanic 

precipitation measurements for that period.  

Oceanic precipitation is a critical component of 

the Earth’s hydrologic cycle because the oceans 

cover roughly 70% of the surface and because 

oceanic variations influence those over land.  A 

better understanding of oceanic precipitation 

for a period longer than the satellite era would 

improve understanding of global climate 

variations, including the influence of global 

temperature changes on precipitation.  

Reconstructions of global precipitation 

have been developed.  Reconstructions are 

extended analyses of relatively sparse data 

using statistics produced using data from a shorter but densely-sampled period.  The GPCP data provide 

roughly 30 years of data that have been used to analyze global precipitation beginning 1900.  A series of 

reconstructions were produced by the authors, with knowledge gained from each used to improve subsequent 

reconstructions (Smith et al. 2008, 2009, 2010, 2012).  Here we give a summary of some aspects of the 

ocean-area precipitation analysis and how reliable it is in the pre-satellite period.  

Fig. 1  First CCA spatial predictor and GPCP predictand 

spatial pattern (upper 3 panels) and the CCA and 

reconstruction time series for ocean areas for the 1st 

and all 8 CCA modes used (lower panel). 
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2. Results  

The most recent reconstruction method begins 

with a canonical correlation analysis (CCA) to 

estimate annual precipitation anomalies from 

annual SST and SLP predictors.  That step was 

found to better represent annual large-scale 

oceanic variations.  The first CCA mode shows 

that much of the variance from this analysis is 

ENSO like, but including additional modes 

enhances multi-decadal variations in the ocean-

area CCA (Fig. 1).  Ocean area CCA output is 

combined with annual gauge anomalies and used 

to estimate annual global anomalies by fitting 

those data to a set of spatial modes. 

The spatial modes used to combine annual 

CCA and gauge data are annual Empirical 

Orthogonal Function (EOF) covariance modes.  

Modes not adequately sampled would be removed, 

although including CCA data means that under-

sampling of modes never occurs.  As an example, 

the first (main ENSO) annual mode is shown 

along with the time series from GPCP, from 

GHCN gauges alone, and from combined gauge 

and CCA inputs (Fig. 2).  Note that most of this 

mode’s variations can be reconstructed for the 

historical period using either gauges alone or 

gauges combined with CCA output, although the 

multi-decadal signal is a little stronger when CCA 

output are included.  

The annual estimate is adjusted by analyzing 

monthly anomaly increments from the annual 

average.  For this step we use gauge monthly 

anomaly increments and a set of monthly 

increment spatial modes.  The sum of annual and 

monthly increments defines the monthly reconstruction.  In some versions the monthly gauge anomalies are 

statistically re-injected to reduce differences from gauges in regions where gauges are available. 

Cross-validation analyses are used to help show the reliability of the analysis in historical periods.  For 

these test analyses the GPCP data are analyzed using the reconstruction method.  Data for the analysis year 

are removed for computing statistics and data are subsampled using historical sampling masks.  Comparisons 

to the full GPCP give an indication of reliability.  An additional test of the reconstruction reliability is the 

reconstruction of model output from a reanalysis model that incorporates observed SST and SLP.  Results 

from both of these tests show that the reconstruction is capable of resolving large scale oceanic variations on 

interannual and longer time scales, but it is less reliable for small regions and shorter time scales. 

Global-average results were compared to CMIP5 coupled model output by Ren et al. (2013).  Although 

there is a lot of spread among the various models, the global model mean is similar to the reconstruction (Fig. 

3).  The reconstruction is more variable than the model mean since interannual variations are filtered out of 

the mean.  Over the oceans both the model mean and reconstruction indicate a gradual increase until about 

1960, followed by a flat or slight decrease period until about 1980, followed by an increasing global averages. 

Fig. 2  First covariance EOF of GPCP annual anomalies 

and the time series from GPCP along with 

reconstructed time series for gauges alone (GHCN) 

and gauges + CCA over ocean areas.  Correlations for 

the time series are also given. 
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Disclaimer.  The contents of this 

presentation are solely the opinions of the 

authors and do not constitute a statement of 

policy, decision, or position on behalf of 

NOAA or the U.S. Government.   
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Fig. 3  Global averages over land, oceans and all areas from 

CMIP5 coupled-model precipitation (grey lines), the 

model mean (thick black line) and reconstruction (thick 

red line). 
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1.  Introduction 

In Utah, the declining trend of groundwater levels, combined with the rapid growth of urban population 

and water withdrawal, are already a cause for concern for water planners throughout the state. Previous 

research has identified a significant link between the region's hydroclimate to Pacific Ocean sea surface 

temperature anomalies (SSTA). Using this link, from which the SSTA impact extends to groundwater, we use 

the Community Earth System Model (CESM) to diagnose and predict groundwater levels for potential future 

climate scenarios. The CESM performs well in replicating both the seasonal cycle and the quasi-decadal 

oscillation (QDO) teleconnection (Wang et al. 2011) for Utah’s groundwater level variations. In addition, the 

CESM was chosen for a focused analysis, as groundwater is not a standard output from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5). Building upon such model capability, this study analyzes the 

effects of greenhouse gas (GHG) on groundwater level change.  The results indicate a troubling future for 

groundwater over the Great Basin and Utah in particular.  

2.  Data/methodology 

Groundwater levels over northern Utah were recorded using 400 active wells that were obtained from the 

Fig. 1  Observed precipitation, plotted on top, oscillates in tandem with GSL level (tendency) and northern 

Utah groundwater (tendency). Dashed lines were provided to highlight the consistency in oscillations. 

A map of Utah is provided to the top with arrows designating the location of the GSL and the region of 

northern Utah. 
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United States Geological Survey (USGS) Active Groundwater Level Network
1, 2

, with data since 1960. These 

wells are measured at least once within the past 13 months, primarily during the spring.  Springtime 

groundwater levels were standardized prior to averaging among the 400 wells.  Other datasets include: 

station-derived, monthly Global Precipitation Climatology Centre (GPCC) dataset at a 1° horizontal 

resolution (Schneider et al. 2013); the Great Salt Lake (GSL) surface elevation
3
. Outputs from the CESM 

version 1 were generated by the Pacific Northwest National Laboratory (PNNL) at a resolution of 2.5° long. × 

1.875° lat. The CESM was chosen for its noted ability to simulate the ENSO evolution and precursors.  We 

used the Historical Experiments of the CESM that were initialized at 1850 under preindustrial conditions and 

added with external forcings of aerosol, GHG, and natural – volcanic eruptions and solar cycle.  

3.  Results 

The average groundwater level over northern Utah exhibits variability that fluctuates at a quasi-decadal 

frequency. In order to understand the hydrological forcing that leads to the observed periodicity of 

groundwater levels, we plotted observed precipitation alongside the tendency of the GSL level (i.e. current 

year minus the previous year) and the tendency of groundwater level over northern Utah, shown in Figure 1. 

It is noted that fluctuations in the precipitation are in good agreement with the tendency of GSL level and 

groundwater. Figure 1 also shows a pronounced quasi-decadal frequency within all observed data sets (10-15 

year time period). This variability in precipitation, reflected by the alternating dry and wet spells, is 

particularly pronounced after the 1960s. The pervading quasi-decadal variability shown in all observational 

data suggests a potential for decadal climate prediction. 

 The unique timescale of 10-15 years, observed in the datasets discussed above, echoes an emerging 

Pacific climate mode – the Quasi-Decadal Oscillation (QDO) – described in a growing number of articles 

focusing on low-frequency variability in the Pacific SST (e.g. Allan 2000; Tourre et al. 2001; White and 

Tourre 2003; White and Liu 2008; Wang et al. 2011).  The Pacific QDO alternates between warm/cool status 

in the central equatorial Pacific near the NINO4 region (160°E-150°W, 5°S-5°N), and features distinctive 

phases in atmospheric circulation perturbations. 

The CESM output of groundwater levels and precipitation are analyzed next; the CESM appears to 

replicate the QDO, as is shown in the wavelet spectral analysis in Figure 2.  Results show a strong coherence 

between CESM output and observational data, which alludes to the model’s ability to pick up the 

predominant climate oscillations in the region. CESM model years cannot be directly compared to 

observational years, and thus wavelet spectral analysis provides an insightful way to diagnose the model. 

                                                 
1
 Utah Water Science Center of the USGS, Active Groundwater Level 

Network, 1930-present.  http://ut.water.usgs.gov/ (July 28, 2012). 
2
 http://groundwaterwatch.usgs.gov/default.asp 

3
 http://waterdata.usgs.gov/nwis 

Fig. 2  Wavelet spectral analysis was performed on (a) modeled groundwater, (b) modeled precipitation, (c) 

observed GSL, and (d) observed groundwater.  A prominent spike can be seen at the 10-15 year frequency 

throughout all datasets. This strong coherence throughout all datasets exemplifies the CESM’s ability to 

replicate the predominant climate oscillations in the region. 

(a) (b) (c) (d) 
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Building upon the CESM’s noted ability to 

replicate the QDO and teleconnection patterns, 

we then analyzed modeled groundwater, from 

1850 to 2005, with the ensemble historical 

runs shown in Figure 3. CESM runs for 

greenhouse gas forcing (GHG), aerosol 

(AERO), natural (NAT) and all forcing (ALL) 

were compared to identify each forcing’s 

effects on groundwater. Each CESM ensemble 

is comprised of two members with the 

exception of the ALL ensemble, which 

consists of four members. Results show the 

effect of NAT, AERO and ALL forcing is 

oscillatory with the last half a century showing 

a steady increase in groundwater. In contrast, 

the effect of GHG on groundwater shows a 

persistent drying tendency throughout the last 

80 years. This suggests that the system may 

initially be able to cope with an influx of GHG 

up to a point, but resilience is limited and 

groundwater will eventually be depleted by 

continued increases in GHG.  

Figure 3 shows CESM historical 

groundwater in two separate time periods: (a) 

1960-2005 and (b) 1850-2005. The overall 

drying effect of GHG can be seen by the 

steady decrease in groundwater in both plots. 

It can be seen in Figure 3b that around 1928, 

GHG has destabilized the hydro-climatic 

system and groundwater decreases steadily 

thereafter. For future scenarios, we then 

utilized CESM’s representative concentration 

pathways (RCP) simulations to depict the 

outcome of groundwater behavior. The RCP 

simulations begin in year 2006 and projections 

are carried out to year 2100. RCP simulations 

are initialized with new levels of CO2 and 

therefore do not directly carry over from any 

particular historical run. RCP4.5 represents a 

specific concentration of CO2 in the 

atmosphere defined as stabilization without 

overshoot pathway to 4.5 W/m2 (~650 ppm 

CO2), reaching stabilization after year 2100. 

RCP8.5 represents a higher concentration of 

CO2, defined as rising radiative forcing 

pathway leading to 8.5 W/m2 (~130 ppm 

CO2) by year 2100. Figure 4 shows the 

ensemble run of RCP4.5 and RCP8.5, each 

consisting of two members, for groundwater. 

Results show that the higher levels of CO2 in 

RCP8.5 cause a greater decrease in 

groundwater level over time, resulting in an 

Fig.3  a) CESM historical groundwater is plotted above 

from 1960-2005. The plot shows the ensemble runs for 

GHG, NAT, ALL, and AERO forcing. Each ensemble 

run is the average of two members, with the exception 

of ALL forcing, which has four members.  b) CESM 

groundwater is plotted above from 1850-2005. This 

plot isolates the ensemble run for GHG for the longer 

time period so as to highlight the decreasing trend in 

groundwater that begins in the late 1920’s. 

Fig.4  CESM – RCP ensemble 4.5 (blue) and RCP 

ensemble 8.5 (red) of groundwater are depicted above. 

Each ensemble is the average of two members. 

a) 

b) 
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approximate five-foot drop in groundwater level by year 2100. RCP4.5 also shows a decreasing trend in 

groundwater level, with an approximate one-foot difference between the two simulations by year 2100. 

4. Concluding remarks 

In Utah, groundwater is the source of 58 percent of public supply use and is a vital contributor for 

irrigation when surface water resources are depleted late in the growing season. According to the USGS 

Annual Groundwater Conditions Report for 2013 (Burden et al. 2013), the total estimated withdrawal of 

water from wells in Utah during 2012 has increased about 215,000 acre-feet from 2011 usage and 145,000 

acre-feet more than the 2002-2011 average annual withdrawal. This increase in withdrawal resulted mostly 

from increased irrigation and public-supply use. As discussed in this paper, groundwater resources in Utah 

and the Great Basin are already susceptible to depletion by the effects of GHG. This issue is then exacerbated 

by the increasing trend in water withdrawal for irrigational and public-supply purposes. Therefore, research 

on the predictive nature of groundwater resources is vitally important and the increase of GHG in the 

atmosphere can have a direct influence on this drought-prone region. This research hopes to pave the way for 

the utilization of long-term prediction of groundwater and strives to inspire the need for better water 

management in light of the changing climate.  
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1. Why decision support services? 

The National Oceanic and Atmospheric Administration (NOAA) Next Generation Strategic Plan (2010)
1
 

identified four societal challenges that have been translated into NOAA long-term goals: 

• Climate Adaptation and Mitigation – An informed society anticipates and responds to climate and its 

impacts. 

• Weather-Ready Nation – Society is prepared for and responds to weather-related events. 

• Healthy Oceans  – Marine fisheries, habitats, and biodiversity are sustained within healthy and 

productive ecosystems. 

• Resilient Coastal Communities and Economies – Coastal and Great Lakes communities are 

environmentally and economically sustainable. 

Although climate is a cross-cutting theme in all four societal challenges, the first two most directly address 

developing NOAA climate information and products that are usable for decision support. For example, 

NOAA’s National Weather Service (NWS) Strategic Plan (2011)
2
 states a goal on enhancing climate service 

as a part of the Weather-Ready Nation goal.  Becoming a Weather-Ready and Climate-Smart Nation implies 

building community resilience to extreme weather and long-term changes. The critical issue in achieving this 

goal is a need to move from serving products to serving decision support, i.e. to provide what people really 

need.  

2. Climate-weather linkages 

The centerpiece of decision support services includes advancing preparedness and planning for extreme 

weather and water events that can be achieved through understanding and effective use of information on 

weather-climate linkages.  Climate variability and change often “drive” weather and water events.  For 

example, El Niño/Southern Oscillation impacts temperature and precipitation in many parts of United States. 

Global climate change impacts the local climate with a recognizable seasonal and spatial variability (Livezey 

et al., 2007).  Understanding local climate drivers of weather and water events as well as ability to incorporate 

this information in weather forecasting process at local level are critical for developing decision support 

services. 

3. Partnership 

Developing background scientific methods for decision support service relies on NWS partnership with 

NOAA climate research offices, academia, and other partners in climate services such as state climatologists, 

who may represent either state university or state government institutions.  NWS draws on the available 

scientific expertise and data for understanding climate variability and change impacts on local and regional 

weather and water elements.  Delivery of decision support service depends on extensive network of partners 

                                                 
1
 NOAA Next Generation Strategic Plan 2010.  http://www.ppi.noaa.gov/ngsp/ 

2
 NOAA’s NWS Strategic Plan 2011.  http://www.nws.noaa.gov/sp/ 
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representing local government, emergency managers, natural resources oversight organizations and local 

communities.  

4. Local Climate Analysis Tool (LCAT) 

The new Local Climate Analysis Tool (LCAT, Figure 1), introduced in NWS operations in July 2013, 

highlights the effort to increase effectiveness of climate-related decision support service development and 

delivery.  LCAT provides the most scientifically sound method and data for application in local climate 

studies.   LCAT allows a user to answer questions like: Is the local temperature changing in my town, and 

how fast does the change occur? What is the relationship between El Niño/Southern Oscillation and 

precipitation in my town?  Does the behavior of drought spell change over time? LCAT is linked from the 

NOAA climate portal (http://www.climate.gov) or directly at http://nws.weather.gov/lcat/.  LCAT can be used 

for environmental applications, community planning, event preparedness, and natural resource management 

decisions.  

Fig. 1  Functions and features of Local Climate Analysis Tool. 

5. Second generation of NWS version of Automated Climate Information System (xmACIS) 

The second generation of NWS version of Automated Climate Information System (xmACIS2) has been 

released in May 2013.  The xmACIS2 interface provides near real-time mining of climate data records from 

the NWS weather observation system, as archived by NOAA National Climate Data Center, and is enhanced 

with data mining capabilities by the Northeast Regional Climate Center.  Compared to the previous version, 

xmACIS2 includes additional features for multiple station data mining, a larger suite of climate statistics, and 

new data selection and reporting options. NOAA internal users can access xmACIS2 at http://xmacis.rcc-

acis.org/.  The public can access xmACIS data information either by using NOAA Online Weather Data 

(NOWData, Figure 2) at http://www.nws.noaa.gov or by contacting a climate focal point in their local NWS 

Weather Forecast Office.  

6. User support 

To enhance climate information application, the NWS tools are enhanced with training modules, 

consisting of help documentation and dynamic interpretation statements.  For example, the LCAT Learn 

section consists of eleven online audio-visual tutorials covering an introduction to LCAT, background of 

LCAT data, scientific methodologies recommended for local climate studies, and LCAT applications in NWS 

climate services operations including decision support service.  By developing support features for 

operational NWS uses, with explanations of the scientific background and best practices for methodology in 

local climate studies, LCAT enhances our ability to create linkages to climate information in decision support 

services. 
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Fig. 2  NOWData features 
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1. Introduction 

In geographical terms, Colombia is within the Torrid Zone
1
, this means that the temperature decreases 

with altitude and by the presence of the training Andes mountains, Colombia has a variety of climates. 

According to Snow J. W. (1976), Colombia "is an island in the middle of three oceans", the author refers to 

that besides the influence of the Pacific and Caribbean oceans, Colombia receives moisture from the Amazon 

basin. In the Colombian territory the trade winds converge from north-east and south-east and from the 

convergence of the trade winds is made a belt of low pressure known as the Intertropical Confluence Zone 

(ITCZ), which causes large upswings that favor the formation of clouds, causing abundant rainfall. The 

meridional oscillation of the ITCZ which results in the annual cycle of surface temperatures as a result of 

insolation effect is the most important physical mechanism to explain the annual cycle of rainfall in Colombia.  

 However, multiple studies have shown the influence of several phenomena of climate variability in the 

climate of Colombia (Montealegre 2009) and taking into account that in recent years, multiple studies has 

reported an increase in the frequency and intensity of these phenomena with the extreme categories, are 

increasingly the sectors, communities and regions vulnerable to these changes. Consequently it’s required to 

have better and adapted tools, for forecasting changes in the climate of our country and thus help in making 

decisions for the prevention. 

Therefore, currently the seasonal rainfall forecast turns out to be an important item in the planning of the 

different social and economic sectors of Colombia. As part of the products of working group "Weather and 

Climate" of the Meteorology branch of the IDEAM (Institute of Hydrology, Meteorology and Environmental 

Studies - Colombia), is used the composite analysis methodology proposed by National Oceanic and 

Atmospheric Administration (NOAA)
2
, facilitated by Jaziku software. 

2. Jaziku  

There are multiple methods that can be used for seasonal forecast (such as results of dynamic models, 

statistical models, etc.) and among these, there is a statistic methodology proposed in the article "Creating a 

Local Climate Product Using Composite Analysis" (by NOAA
2
), this is based in composite analysis. In the 

original proposal of this methodology are used spread sheets that make this process to be tedious, with 

possible human errors and impractical for robust studies with many time series, which also produced human 

errors in the process. Jaziku born as a tool to systematize this process and as the need for own tool and 

adapted software for own needs but with the advantage of being a free and open source software and therefore 

can be improved and adapted for different purposes, for example, could be corrected, improved, adapted and 

implemented by anyone, institutions or weather service.  

The Jaziku software was designed to find relationships through composite analysis methodology between 

the time series of the dependent variables (observed meteorological variable) with the index that represents 

the phenomenon of climate variability (independent variables)
3
. 

                                                 
1
 Geographic Universal Atlas and Colombia, Oceano Editorial, 1994.  ISBN 847764782 8.  Barcelona España. 100 pp. 

2
 NOAA and UCAR. Creating a local climate product using composite analysis - Print version of webcast - (on line). 

1997-2010:COMET Website at http://meted.ucar.edu/, 1997. 
3
 Jaziku is statistical inference software for the teleconnections analysis, (version 0.6.1). (2013) IDEAM, Colombia. 

Jaziku is a free and open source software GPLv3.  http://hg.ideam.gov.co:8000/meteorologia/jaziku/summary. 
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2.1 Modules 

• Data analysis – homogeneity: Evaluates the trend of the series, outliers, multiyear climatology, and 

several statistics for the time series and presents the results of parametric tests of homogeneity analysis. Such 

results are for example: Test Mann-Whitney-Wilconxon, F-test or T-test. Respect to the descriptive statistics, 

are: sample size, minimum, mean, median, standard deviation, kurtosis, coefficient of variation and variance 

of the series
3
. 

• Climate: In "Jaziku - climate", the software produces the climatology of the behavior of the dependent 

variable under the phases associated with the phenomena represented by the independent variable. Generates 

a series of average values according to the chosen time resolution (Quarter, two months, month, 15days, 

10days or 5 days ) and generate contingency tables (NOAA and UCAR 1997), which become more probable 

scenarios of response the dependent variable under the categories (phases) of the phenomenon . Subsequent to 

the calculation of the most likely scenarios of variation of dependent variable in the module "Jaziku-Climate", 

the software uses the probability values of the phenomenon represented by the independent variable 

• Forecast: In the forecast module is used the total probability theorem to calculate the probability that the 

dependent variable to be in any category. For these step are required the probabilistic predicted values for 

each of the categories of the independent variable (which in the case of ENSO are facilitated by physical and 

statistical models of IRI "International Research Institute for Climate and Society"
4
) and then is used the 

conditional probability taken of 

contingency tables (Wilks 1995). 

2.2 Software development and 

program structure 

Jaziku run and work only 

with one file in format csv called 

"runfile", this file is where are 

the settings of all options to run 

Jaziku (see Figure 1). The time 

series are of dependent an 

independent variable, are in plain 

text with the data organized 

chronologically. Jaziku runs in 

command line interface (CLI), is 

developed in Python language
5
 

with some libraries and software 

as support to make some 

statistical formulas (Scipy
6
 and 

Numpy
7
), graphics (Matplotlib

8
), 

interpolation (HPGL
9

), maps 

(NCL
10

) and manipulate images 

(PIL
11

).  

                                                 
4
 International Research Institute for Climate and Society.  

  url: http://iri.columbia.edu/climate/ENSO/currentinfo/QuickLook.html. 
5
 Python Programming Language, Python Software Foundation, version 2.7. Available at http://www.python.org. 

6
 Scipy, Open source scientific tools for Python, License: BSD-new, url: http://www.scipy.org 

7
 Numpy, Fundamental package for scientific computing with Python, License: BSD-new, url: http://www.numpy.org. 

8
 Matplotlib is a plotting library for Python.  License: matplotlib-licence, url: http://matplotlib.org. 

9
 HPGL stands for High Performance Geostatistics Library. License: BSD, url: http://hpgl.aoizora.org. 

10
 NCL, NCAR Command Language, Copyright (C) 2013 University Corporation for Atmospheric Research. The use of 

this software is governed by a License Agreement. See http://www.ncl.ucar.edu/ for more details. 
11

 PIL, Python Imaging Library, Alex Clark and Contributors, License: PIP-license,  

    url: http://pillow.readthedocs.org/en/latest/. 

Fig. 1  General scheme of Jaziku run process. 
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Fig. 2 These are some examples outputs of Jaziku, the first two graphs show the most likely scenarios of 

rainfall variation under El Niño (A) and La Niña (B) for Colombia. The following two graphs show the 

special forecast of precipitation for Colombia in the DJF trimester, probabilistic (C) and seven categories 

(D). 

Jaziku is a free and open source software (GPLv3 license), and therefore can be improved and adapted for 

different purposes, for example, could be corrected, improved, adapted and implemented by anyone, 

institutions or weather service, but always preserving and respecting the copyright and software licensing 

agreements. 

Jaziku started its development from 2011 and continues being developed. The actual version control 

system of code of Jaziku is:  http:// hg.ideam.gov.co:8000/meteorologia/jaziku/summary.  The actual mailing 

list is:  https://groups.google.com/forum/#!forum/jaziku 

3. Specific uses and applications 

• Currently Jaziku is used for exploratory data analysis, to detect changes in the homogeneity of the 

time series and analysis of outliers 

• Each month the maps of composite analysis results of climate module are used operationally to verify 

the response of precipitation under the observed conditions the El Niño phenomenon and these are used as the 

most likely scenarios for risk prediction (Fig. 2, A and B). 

• Taking also the results of the composite analysis methodology of climate module, is possible to 

explore the influence of different climate variability phenomena for specific areas of interest, for example for 

the agricultural sector or areas of biodiversity protection 

• Based on predicted probabilities of IRI models for the El Niño phenomenon and using the forecast 

module, each month is made a seasonal forecast of rainfall in Colombia (Fig. 2 C and D). These results add to 

other methodologies (dynamic models and analysis canonical correlation, for example). 

• Currently is being explored the skill of the methodology for seasonal forecast of precipitation in 

Colombia. 

4. Conclusions 

• Jaziku has helped and facilitated the elaboration of exploratory data analysis, detection of 

teleconnections and seasonal forecast, so it becomes a tool for multiple applications 

• Jaziku even being a young software and still developing, shows great methodological robustness, given 

the fact that it is based primarily on an existing methodology which has proved very useful in the climatology 

field. 

• Is important for develop of the Jaziku software, to have feedback of its use in other institutions and users. 
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1. Introduction 

The report summarizes some key aspects of climate research designed and undertaken to support 

decision-making in the water planning sector in Texas. The research was carried out during a UCAR PACE 

(University Corporation for Atmospheric Research - Postdocs Applying Climate Expertise) postdoctoral 

fellowship where the PACE Fellow worked with the Texas Water Development Board (TWDB) and the 

University of Texas at Austin to improve current understanding of the predictability of flash droughts over the 

southern Great Plains and how climate projections could be incorporated in water availability modeling. 

2. Water planning and drought management in Texas 

Climate information is needed at two timescales for planning purposes. The first is the short-term 

timescale where drought information can be provided to the state Drought Preparedness Council
 1
. The second 

is the long-term timescale feeding into the State Water Plan
 2
 that addresses water needs over the next 50 

years within the state. This plan is updated every five years.  

Given the magnitude and extent of the 2011 drought event over Texas and its rapid intensification over 

the late-spring of 2011, much emphasis was given to 

understanding factors that led to the drought taking on the 

characteristics of a “flash drought” and to developing a 

summer drought early warning indicator to support drought 

management through the Texas Drought Preparedness Council. 

The possibility for using climate information for long-term 

water planning was investigated at a purely exploratory basis 

because climate change projections are not, as yet, factored 

into water resources planning in Texas. 

3. Summer drought early warning indicator 

“Flash” droughts refer to those droughts that intensify 

rapidly in spring and summer, coupled with strong increase of 

summer extreme temperatures, such as those that occurred over 

Texas in 2011 and the Great Plains in 2012.  Climate models 

failed to predict these “flash” droughts in 2011 and 2012 and 

are ambiguous in projecting their future changes, largely 

because of models’ weakness in predicting summer rainfall and 

soil moisture feedbacks.  By contrast, climate models are more 

reliable in simulating changes of large-scale circulation and 

                                                 
1
 www.txdps.state.tx.us/dem/CouncilsCommittees/droughtCouncil/stateDroughtPrepCouncil.htm 

2
 http://www.twdb.texas.gov/waterplanning/swp/index.asp 

Fig. 1 Physical mechanisms known to 

drive summer drought over the US 

Great Plains. 
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warming of temperatures during winter and spring seasons.  Prior drought research based on observational 

data indicates that severe-to-extreme summer drought events over Texas are preceded by dry springs 

(Fernando et al., 2013). Thus, we propose to develop and test a physical climate indicator of the risk of 

“flash” droughts in summer by using the large-scale circulation and land surface conditions in winter and 

spring based on observed relationships between these conditions and their underlying physical mechanisms 

established by previous observations and numerical model simulations (Figure 1).  

Figure 2 shows a prototype drought indicator averaged over the US southern Great Plains (90-110˚W, 24-

40˚W), indicating “flash” drought risk during June-August (JJA) based on climate information in April of 

each year for the period of 1951-2011.  The prototype indicator was developed by regressing JJA percent 

normal rainfall with April geopotential height anomalies, the difference between April temperature at 700 hPa 

and April surface dewpoint, and the cumulative difference between precipitation and evaporation from 

November to April. The indicator (blue bars) generally match observed drought events in JJA, especially the 

multi-year strongest drought events, such as those in 1950s, mid-1960s and after 2006, especially 2011.  The 

prototype indicator missed three summer drought events in 1978, 80 and 84.   We find that the prototype 

process-based statistical model demonstrates considerable potential for an early warning indicator of summer 

flash droughts. This indicator is based on anomalous climate conditions and land surface characteristics in the 

spring.  

4. Climate information for long-term water planning 

Surface water supply in Texas is heavily reliant on reservoir water storage. There are 176 reservoirs in the 

state representing approximately 70% of the water supply in the state. Water planning in the state of Texas 

comes under the aegis of the Texas Water Development Board. Water Availability Models (known as WAM) 

that use naturalized stream flow, pan evaporation and water rights as input to form the basis of water planning 

in the state. The WAM models are used to assess firm yield at all reservoirs in the state. Firm yield of a 

reservoir is the amount of water that can be supplied without system failure under a repeat of the worst 

drought conditions experienced by the state during the 1950s drought-of-record. 

We approach the issue of how climate change might affect the availability of surface water by asking the 

question: “How might climate change affect the sensitivity of reservoir firm yield?” There is a mismatch 

between the information needs of WAM model users and the format in which climate change information is 

presently available. We propose a framework by which climate change projections could be incorporated into 

WAM models if, in the near future, the Texas Water Development Board is mandated by the Texas 

Legislature to incorporate climate change in water resource planning. 

Fig. 2  Prototype drought hindcast (1951-2011) over the Southern Great Plains. 
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As the first step, we will explore the empirical relationship between naturalized flow in 14 rivers and 

rainfall over these river basins over the historical period. Second, we will explore the empirical relationship 

between pan evaporation and potential evaporation. Third, we will obtain ranges of possible naturalized flows 

and pan evaporation in the mid- and late-21st centuries using rainfall and evapotranspiration from the CMIP5 

RCP4.5 and RCP8.5 projections and the empirical relationships obtained in steps 1 and 2. We will then use 

these ranges to estimate the sensitivity of reservoir firm yield in all 14 river basins. As a preliminary step, we 

applied the framework to the Brazos river basin using quadrangle precipitation and pan evaporation from the 

TWDB
 3
, potential evaporation from NCEP CDAS1 and naturalized flow at the outflow station of the Brazos. 

Naturalized flow refers to streamflow where anthropogenic influences on the river basin have been factored 

out. The outflow station is one of the control points at which naturalized flow is entered into the WAM model. 

We first aggregated all data to the annual time step and checked the annual naturalized flow and pan 

evaporation for normality. If they were non-normally distributed, we used a box-cox transformation to 

normalize the data. Next, assuming a linear relationship between precipitation and (normalized) naturalized 

flow and evaporation, we used linear regression analysis to derive the beta values for each parameter. We next 

obtained projected mean values of naturalized flow and pan evaporation over the Brazos basin for 2021-2050 

using RCP4.5 and RCP8.5 projected rainfall and potential evaporation from the CCSM4 model.   

References 
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