FOOD AND FEEDING OF YOUNG STRIPED BASS IN ROANOKE RIVER AND WESTERN ALBEMARLE SOUND, NORTH CAROLINA, 1984-1985

Completion Report for Project AFS-24

For

North Carolina Department of Natural Resources and Community Development Division of Marine Fisheries Morehead City, NC 28557

Вy

Roger A. Rulifson, Donald W. Stanley, and John E. Cooper Institute for Coastal and Marine Resources East Carolina University Greenville, NC 27858

(ICMR TECHNICAL REPORT 86-02)

Submitted May 1986

This project was funded, in part, by the U.S. Department of the Interior, Fish and Wildlife Service, under the Anadromous Fish Conservation Act (PL89-304).

SH167 .S68R84 1986

ABSTRACT

Objectives of the 1984 and 1985 studies were to determine densities of striped bass life stages, zooplankton, and phytoplankton in the lower Roanoke River and western Albemarle Sound, North Carolina; the location at which feeding by larvae was initiated; and the prey items selected by young striped bass. Sampling was conducted from 18 May to 18 June in 1984, and from 26 April to 10 River flow varied considerably during the 1984 study and June in 1985. generally was much higher than normal; in 1985 flow was less variable and lower River flow was correlated with the distribution and abundance of than normal. phytoplankton, zooplankton, and several striped bass life stages in 1984; flow varied so little in 1985 that no correlations were observed. Chlorophyll a concentrations were mostly between 4-7 ug/l in 1984 with no clear spatial or temporal patterns in the data; 1985 levels were higher (5-15 ug/l) with lowest values upriver, highest values downriver, and intermediate values in western Albemarle Sound. The phytoplankton community resembled that of a lake more closely than that of an estuarine environment in both years. Only about 15% of the 150 cell types identified appeared in more than 10% of the samples. Phytoplankton cell densities (mostly 300-700 cells/ml) and biomass (300-800 ug wet weight/1) were lower in 1984 than in 1985 (8000-10,000 cells/ml; 500-2000 ug wet-weight/1). Spatial and temporal distributions of cell densities and biomass in 1985 were similar to those for chlorophyll a. Green algae were numerically dominant in 1984 but were secondary to diatoms in 1985. Blue-green algae were not present in significant quantities in either year. In both years most algae collected were small species that are potentially usable as food for grazing zooplankton. Concentrations of zooplankton were lower in 1984 and higher in 1985, probably due to changes in the flow regime between the two years. Maximum : concentrations (about $21,000/m^3$ in 1985) were at least one order of magnitude lower than comparable zooplankton communities in northern estuaries supporting striped bass populations. Zooplankton were primarily freshwater species dominated numerically by cladocerans in 1984 and by copepods in 1985. Comparison of zooplankton and phytoplankton biomasses suggests that zooplankton production was not limited by phytoplankton concentrations in either year. In

i

LIBRARY NOAA/CCEH 1990 HOBSON AVE. CHAS. SC 29408-2623

8785-191天

1996

APR 181

TABLE OF CONTENTS

,

-

ABSTRACT	i
LIST OF TABLES.	v
LIST OF FIGURES	x
INTRODUCTION	1
STUDY SITE DESCRIPTION	2
METHODS	5
Sample Collections	5
Sample Processing	8
Data Analyses	10
RESULTS	13
Water Quality - River, Delta, and Western Sound	13
Flow	13
Temperature	13
Dissolved Oxygen and pH	15
Nitrogen and Phosphorus Fractions	15
Heavy Metals	18
Summer Water Quality - Albemarle Sound	18 -
Ichthyoplankton	22
Species Composition	22
Distribution of Striped Bass Eggs	22
Distribution of Stage 1 Larvae	28
Distribution of Stage 2 Larvae	28
Movement, Growth, and Development	38
Larval Feeding	55
Parasitism of Larvae	64
Zooplankton	67
Cladocera	78
Copepoda	85

Page

,

... .

LIST OF TABLES

		Page
1.	Water depth (m) of sampling locations in the lower Roanoke River (Stations 1-4), delta (Stations 5-12) and western Albemarle Sound (Stations 13-18), North Carolina	
2.	Variables used in Pearson product-moment correlation analyses for abundance of striped bass eggs and larvae, zooplankton, and phytoplankton in lower Roanoke River and western Albemarle Sound, North Carolina	
3.	Water quality information for lower Roanoke River, delta, and western Albemarle Sound, North Carolina, for the period 26 April - 10 June 1985	
4.	Distribution and abundance (number/100 m^3) of striped bass eggs in Roanoke River and western Albemarle Sound, North Carolina, in 1984 .	
5.	Results of Pearson product-moment correlation analyses for the average densities of several striped bass life stages and zooplankton present in the Roanoke sampling area (Stations 1-18), and their relationships to sampling date (JULDATE) and various flow configurations (ft ² /sec) of the Roanoke River in 1984 (data from USGS).	
6.	Multiple linear regression models of Julian date (JULDATE) and river flow, lagged three days (FLOWL3), on mean densities of striped bass and zooplankton present throughout lower Roanoke River and western Albemarle Sound (Stations 1-18) in 1984	
7.	Distribution and abundance (number/100 m^3) of Stage 1 (with yolk) striped bass larvae in Roanoke River and western Albemarle Sound, North Carolina, in 1984.	29
8.	Distribution and abundance (number/100 m^3) of Stage 1 (with yolk) striped bass larvae in Roanoke River and western Albemarle Sound, North Carolina, in 1985.	30
9.	Results of Pearson product-moment correlation analysis for densities (number/100 m ²) of two striped bass life stages, their feeding habits, and their relationship to food density (number/m ²) and spatio-temporal variables in 1985	32
10.	Multiple linear regression models for densities of two striped bass life stages and their feeding habits in the Roanoke River and western Albemarle Sound, North Carolina (Stations 1-16), in 1985 determine by Stepwise (maximum R-square improvement) Procedure (SAS Institute 1982)	33

,

LIST OF TABLES (continued)

.

		Page	
	24.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 10 49	
	25.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 11 50	
	26.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 12 51	
-	27.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 13 52	
	28.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 14 53	
	29.	Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 15 54	
	30.	Stomach contents of striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984	
	31.	Stomach contents of larvae that are probably striped bass, but identifiable only as <u>Morone</u> species, collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984	
	32.	Stomach contents of Stage 1 (with yolk) striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985	
	33.	Stomach contents of Stage 2 (with oil) striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985	
	34.	Stomach contents of Stage 2 (no oil) striped bass larvae collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985	
	35.	Taxonomic relationship of zooplankton organism groupings (after Borror and DeLong 1964)	
	36.	Mean densities (number/m ³), by station, of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984	

. .

LIST OF TABLES (continued)

.

		Page	
50.	Chlorophyll a concentration (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, in 1984	88	
51.	Chlorophyll a concentration (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, in 1985	90	
52.	Phytoplankton species and frequency of occurrence (percent of samples containing species) in the lower Roanoke River and western Albemarle Sound in 1984	91	
53.	Phytoplankton species and frequency of occurrence (percent of samples containing species) in the lower Roanoke River and western Albemarle Sound in 1985	95	
54.	Most frequently occurring phytoplankton species in the Roanoke River and western Albemarle Sound during 1984 and 1985	99	
55.	Phytoplankton cell density (cells/ml) in the Roanoke River and western Albemarle Sound, North Carolina, during 1984	101	·
56.	Phytoplankton wet weight biomass (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, during 1984	⁷ 102	
57.	Phytoplankton cell density (cells/ml) in the Roanoke River and western Albemarle Sound, North Carolina, during 1985	103	րություն հերություն առ
58.	Phytoplankton wet weight biomass (ug/l) in the Roanoke River and western Albemarle Sound, North Carolina, during 1985	104	·
59.	Percentages of total phytoplankton cell types, density, and biomass by size class in the Roanoke River and western Albemarle Sound, North Carolina, in 1984 and 1985	111	
			•
		ru. Nas	

LIST OF FIGURES (continued)

.

· .

		Page
13.	Relationship of sampling date to mean density (number/ m^3) of total zooplankton, Bosmina, cladocerans (excluding Leptodora), and copepods present in the sampling area (Stations 1-16) in 1985	77
14.	Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1984, averaged for each sampling station	106
15.	Relative abundance (% of total wet weight) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1984, averaged for each sampling station	107
16.	Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station	108
17.	Relative abundance (% of total wet weight) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station	110
19.	Log phytoplankton biomass vs. log zooplankton biomass for Roanoke study area samples in 1984 and 1985	114
20.	Photograph of deformed (above) and normal striped bass larvae collected in the Roanoke River, North Carolina, in 1985	119

1. Mar

. **.**.

.. .

_ · · ·

INTRODUCTION

For several hundred years the striped bass (<u>Morone saxatilis</u>) fishery in the Roanoke River and Albemarle Sound, North Carolina, has been an important component of the lives of coastal residents as a source of income, sport, and social interaction. The major spawning area for Albemarle Sound striped bass is located in the Roanoke River, a swiftly-flowing coastal stream that empties into the extreme western end of the Sound. Spawning occurs upstream between Halifax (River Mile 120) and Weldon (RM 130), North Carolina, from late April through early June (Hassler et al. 1981). The historical spawning grounds further upstream were blocked by construction of the Roanoke Rapids Dam at RM 137 (McCoy 1959). Eggs develop to the hatching stage as they are transported downstream by currents. After hatching, the larvae are transported downstream through the Roanoke River delta and into western Albemarle Sound to the historical nursery grounds (Street 1975).

Research conducted in Chesapeake Bay suggests that striped bass must have a strong, successful year class at least every six years in order to maintain and preserve stock size; a strong year class has not occurred in Chesapeake stocks since 1970 (USDOI and USDOC 1985). The Albemarle Sound striped bass stock has been in decline for over a decade; a strong year class of Roanoke River striped bass has not been observed since 1970, and no significant year classes have been produced since 1976 (Hassler et al. 1981; USDOI and USDOC 1985).

Studies conducted since the late 1970's have examined several factors that may contribute to the decline of the Roanoke stock. Reduced egg viability was suspected as the initial cause for decline of the adult population (Guier et al. 1980, Hassler et al. 1981), although "adequate" numbers of viable striped bass eggs are spawned each year to produce sufficient recruitment to the population (Kornegay 1981, Kornegay and Mullis 1984). Another potential problem may be poor survival of juvenile striped bass on the nursery grounds in the western Sound (Hassler et al. 1981). The juvenile trawl index conducted each year in Albemarle Sound suggests that the numbers of juvenile striped bass are too low to produce sufficient recruitment to the population (Hassler et al. 1981).5 Low recruitment of larvae and early juveniles to the nursery ground was observed in

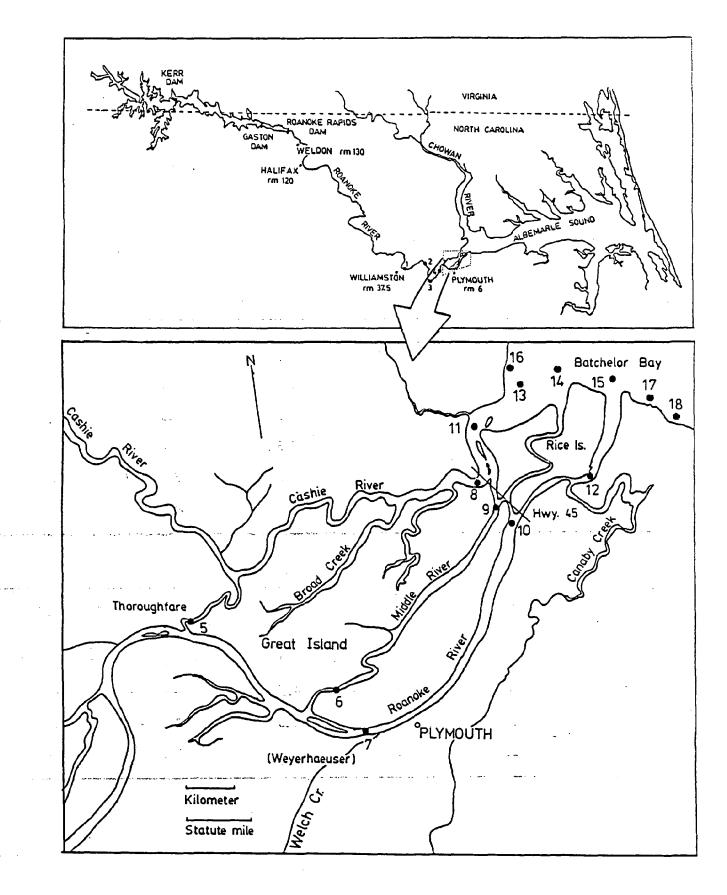


Figure 1. Map of the Roanoke River and western Albemarle Sound, North Carolina, depicting sampling locations used in 1984 and 1985. m wide from the river mouth to Plymouth, NC and 2.4 m deep by 24.4 m wide from Plymouth to Palmyra.

Outflow of the Roanoke River at the mouth is the second highest of any North Carolina estuary; the annual average is approximately 252 m^3 /second, or about 0.01 m³/sec/km² (Giese et al. 1979). However, flow rate is highly regulated by several reservoirs created primarily for hydropower generation. The farthest downstream of these reservoirs is Roanoke Rapids Lake (dam at RM 137), which is therefore most important in its effects on flow in the Roanoke River Estuary (Giese et al. 1979). The Roanoke River provides approximately 50% of the freshwater input into Albemarle Sound. The tides and water flow patterns near the river mouth are influenced to a great extent by prevailing winds and amount of water released from Roanoke Rapids Dam. The lower Roanoke River is essentially a freshwater system, even under extreme drought conditions, because of the combination of relatively high outflow, small cross-sectional area, low-flow augmentation from Roanoke Rapids Lake, and low salinity in Albemarle Sound (Giese et al. 1979).

METHODS

Sample Collections

Sampling for ichthyoplankton, zooplankton, and phytoplankton in the lower river and western Sound was conducted in the springs of 1984 and 1985. Collection efforts were initiated just prior to the estimated peak spawning activity of adult striped bass in upstream areas near Weldon and Halifax (Figure 1). In 1984 sampling efforts began on 18 May and terminated on 18 June when striped bass larvae were no longer present in the samples. In 1985, spawning activity was the earliest on record. Sampling efforts began on 26 April and continued through 10 June.

Similar sampling locations were used in 1984 and 1985. Stations 1, 2, 3, and 4 were positioned between Williamston (RM 37.5) and just upstream of the Roanoke River delta. These stations were sampled by North Carolina Wildlife Resources Commission personnel on alternate nights for a two-week period. ratio. A flowmeter with slow speed propeller was mounted in the net frame. Initially, samples of six minute duration were taken against the current, but sample duration was reduced to three minutes to minimize clogging problems caused by high concentrations of suspended solids in the water. Zooplankton samples were preserved in 5% buffered formalin containing Rose Bengal.

Phytoplankton samples (whole water) were taken at each station by submerging a one-liter plastic bottle just below the water's surface and allowing it to fill. Each sample was preserved with Lugols' acetic acid-iodine solution (Wetzel and Likens 1979). Additional water samples were collected and chilled for laboratory measurements of chlorophyll <u>a</u>. Methods of collection and preservation were the same for both years.

Whole water samples were collected from eight locations in 1985 to determine water quality of the Roanoke River just above the spawning grounds, and in the lower river, delta, and western Albemarle Sound. Water samples were collected daily from just below Roanoke Rapids at Weldon, North Carolina (Stations 20 and 21), during the period of 23 April to 6 May. Water samples from the lower river (Stations 1 and 3) were taken by North Carolina Wildlife Resources Commission personnel on alternate nights from 4 May to 16 May. Samples from Station 5 were collected on alternate nights from 4 May through 10 June. Delta (Stations 7 and 10) and western Sound (Station 15) water samples were collected on alternate nights from 4 April through 10 June.

Three water samples were collected at each site by submerging 16-oz. plastic bottles below the water's surface heel-first to a depth of approximately 0.4 m. Two water samples, one for heavy metals analyses and a second for PO_4 -P analyses, were stabilized by packing them in ice. The third sample was preserved with 2 ml of 25% H_2SO_4 for nitrogen and total phosphorus analyses. The samples were shipped by courier to the NCDNRCD Division of Environmental Management (Water Quality Section) in Raleigh, North Carolina, for analysis using U.S. Environmental Protection Agency standard procedures (USEPA 1979). Temperature (^{O}C) was measured by thermometer; dissolved oxygen (mg/l) and pH were measured by Hach kit.

On 27-29 August 1985, N.C. Wildlife Resources Commission personnel monitored temperature, oxygen, and salinity along three transects (6 stations

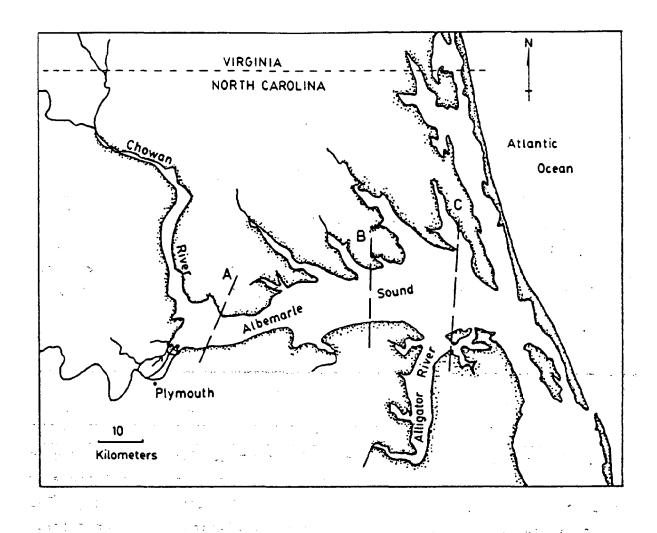
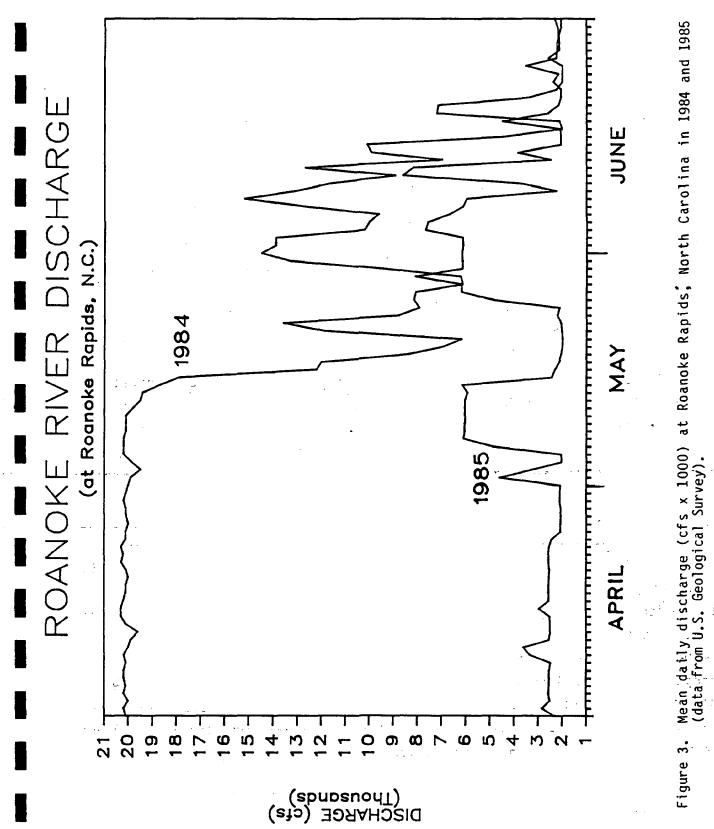
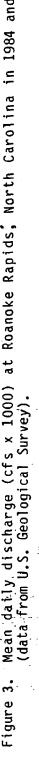


Figure 2. Map of Albemarle Sound, North Carolina, depicting western (A), central (B), and eastern (C) transects for water quality measurements in August 1985.

THIS PAGE INTENTIONALLY LEFT BLANK


. .


Table 2 (continued).

-

.

Variable name	Description
РНҮТОВ	Phytoplankton wet wet biomass (ug/l) averaged for all stations by date
PHYTOD	Phytoplankton cell density (cell/ml) averaged for all stations by date
TZO	Density (number/m ³) of all zooplankton averaged for delta and western Sound stations by date
BOSM	Density (number/m ³) of all <u>Bosmina</u> averaged for delta and western Sound stations by date
CLAD	Density (number/m ³) of all Cladocerans (excluding <u>Leptodora</u>) averaged for delta and western Sound stations by date
COPE	Density (number/m ³) of all Copepods for delta and western Sound stations by date
STAGE1	Density of striped bass larvae with yolk (Stage 1) averaged for delta and western Sound stations by date

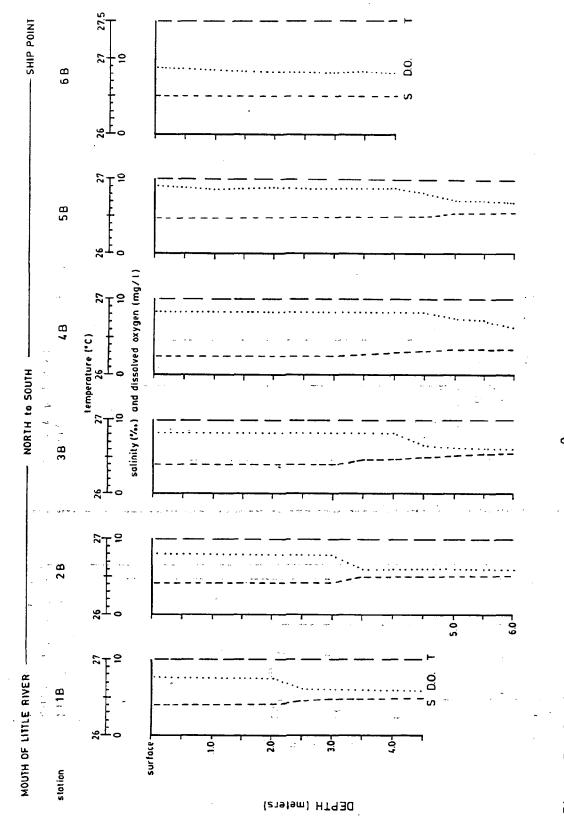

					Static	n		
Variable		20	1	3	5	7	10	15
D.O. (mg/1)	n X S.D. min max	12 8.9 0.67 8.1 9.6	7 7.6 0.53 7.0 8.0	7 6.0 1.41 4.0 8.0	15 6.5 0.55 6.0 7.5	18 6.4 0.92 4.0 8.0	18 6.9 1.24 5.0 9.0	16 6.3 0.9 4.0 8.0
Temp (oC)	<u>n</u> X S.D. min max	12 21.9 0.97 21 23.5	7 22.6 0.53 22 23	7 22.4 0.79 21 23	15 23.8 1.61 21 27	19 24.1 1.47 21 27	20 25.1 1.85 22 30	19 24. 1.9 21 28
NH3 ^{-N} (mg/1)	n X S.D. min max	13 0.07 0.05 0.03 0.21	7 0.05 0.02 0.03 0.09	7 0.06 0.02 0.04 0.07	15 0.06 0.04 0.01 0.18	20 0.10 0.19 0.02 0.72	20 0.18 0.18 0.01 0.65	19 0.1 0.1 0.0 0.5
TKN (mg/1)	n X S.D. min max	13 0.33 0.06 0.2 0.4	7 0.27 0.12 0.06 0.4	7 0.29 0.07 0.2 0.4	15 0.27 0.07 0.2 0.4	20 0.40 0.43 0.2 2.0	20 0.46 0.21 0.2 1.0	19 0.4 0.2 0.2 1.0
NO3+NO2 ^{-N} (mg/1)	n x S.D. min max	13 0.16 0.04 0.09 0.22	7 0.21 0.06 0.16 0.31	7 0.22 0.06 0.17 0.30	15 0.23 0.14 0.03 0.54	20 0.21 0.18 0.03 0.94	20 0.16 0.05 0.06 0.26	19 0.1 0.0 0.1 0.3
PO ₄₋ P (mg/1)	n X S.D. min max	13 0.04 0.01 0.02 0.07	7 0.01 0.05 0.01 0.02	7 0.01 0.05 <0.01 0.02	15 <0.01 0.05 <0.01 0.02	20 0.01 0.04 <0.01 0.07	20 0.03 0.04 <0.01 0.13	19 0.0 0.0 0.0


Table 3. Water quality information for lower Roanoke River, delta, and western Albemarle Sound, North Carolina, for the period 26 April - 10 June 1985. Stations as in Figure 1.

HEAVY METALS. Aluminum was the only element with concentrations consistently above minimum detectable level (100 ug/l) during the 1985 sampling period (Appendix A). Highest values reached 2,400 ug/l just above the spawning grounds (Station 20) near Weldon, North Carolina. Average concentrations were highest upstream (835.7 ug/l), decreasing downriver to 426-466 ug/l in the delta (Station 10) and western Sound (Station 15, Table 3). Other elements detected in small concentrations were mercury (0.2-0.8 ug/l), lead (200 ug/l), zinc (20-50 ug/l), and copper (30 ug/l) (Appendix A).

Summer Water Quality - Albemarle Sound

Measurements at stations along the transects across the Sound in late August 1985 indicated stratification of the water column in certain locations. Vertical profiles of temperature, salinity, and dissolved oxygen for stations on the westernmost transect "A" indicated there was mixed fresh water at Station 1A in the shallow waters near Horniblow Point (north) and Station 6A east of the railroad trestle (south). The water column was stratified at Stations 2A-5A in the open area of the western Sound, with warmer, fresh water from the Roanoke and Chowan Rivers overlying slightly cooler and brackish water from central Albemarle Sound (Figure 4). The water column across transect "B" was comprised of brackish water of fairly uniform consistency in salinity, temperature, and dissolved oxygen. These data indicated good vertical mixing of the water column in central Albemarle Sound (Figure 5). Vertical stratification of the water column was apparent near the bottom in the deeper areas (Stations 2C-5C) of eastern Albemarle Sound (Figure 6). Most of the water column was brackish water (5 o/oo) overlying a wedge of saltier water (8-11 o/oo). The shallow areas along the north (Station 1C) and south (Station 6C) shores of eastern Albemarle Sound were brackish (5 o/oo), well-mixed waters high in dissolved oxygen (9 mg/l).

Ichthyoplankton

SPECIES COMPOSITION. Larvae of fish species from both estuarine and freshwater habitats were collected in 1984 and 1985. Those larvae identified to species included striped bass, white perch (Morone americana), pirate perch (Aphredoderus sayanus), common carp (Cyprinus carpio), eastern mudminnow (Umbra pygmaea), yellow perch (Perca flavescens), Atlantic croaker (Micropogonias undulatus), longnose gar (Lepisosteus osseus), Atlantic needlefish (Strongylura marina), Atlantic menhaden (Brevoortia tyrannus), brown bullhead (Ictalurus nebulosus), white catfish (Ictalurus catus), and hogchoker (Trinectes maculatus). Juvenile American eel (Anguilla rostrata) were also collected. Other larval fishes were present but were not identified to species: herring (Clupeidae sp.), Notropis sp., centrarchids, and darters (Percidae). Larvae of the white sucker (Catostomus commersoni) were caught in the lower Roanoke River only in 1984.

A total of 2829 fish identified as striped bass were caught in ichthyoplankton nets in 1984, with the greatest concentration of larvae $(3/m^3)$ at Station 10 on 23 May. Striped bass larvae were more abundant in 1985. A total of 3217 striped bass larvae were collected; greatest numbers $(7.7/m^3)$ of larvae with yolk were found at Station 6 on 12 May. Striped bass in several stages of development were found throughout the study area.

DISTRIBUTION OF STRIPED BASS EGGS. In 1984 striped bass eggs comprised 2.9% of the total catch of striped bass. Eggs were present at Stations 1-6 just after sampling was initiated, and remained in samples through 31 May (Table 4). The most downstream point in the delta for occurrence of striped bass eggs was Station 12 on 22-23 May. Egg abundance (Figure 7) was negatively correlated with sampling date (r=-0.702) and river flow (Figure 8) lagged by three days (FLOWL3, r=-0.685)(Table 5). Julian date and river flow, lagged by three days, explained 60% of the variability in average egg abundance (n=11; df=9; R^2 =0.60; P=0.025) in the study area for 1984 (Table 6).

Striped bass eggs were not found at any of the sampling locations in 1985.

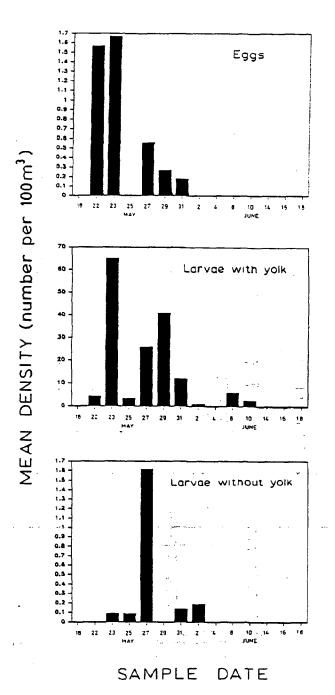


Figure 7. Relationship of sampling date to mean density (number/100 m³) of striped bass eggs, larvae with yolk (Stage 1), and larvae without yolk (Stage 2) present in the study area (Stations 1-18) in 1984.

-

.

2

. . . .

several striped bass life stages and zooplankton present in the Roanoke sampling area (Stations 1-18) and their relationships to sampling date (JULDATE) and various flow configurations (cfs) of the Roanoke River in 1984 (data from USGS). Descriptions of independent variables in Table 2. Numbers given are Pearson Results of Pearson product-moment correlation analyses for average densities of correlation coefficients (r). Table 5.

				-				
		St	Striped bass			200	Zooplankton	1
Independent variable	-	Eggs	larvae, yolk	larvae, no yolk	~	L I N	Clado- cerans	Cope- pods
JULDATE	· • • • • • •	-0.702	-0.515	-0.251	14	0.163	-0.409	0.481
FLOWO	11	-0.026	-0.374	-0.492	14	0.276	0.383	0.078
FLOWL1	11	0.161	-0.107	-0.298	14	0.100	0.381	-0.041
FLOWL2	11	-0.284	-0,184	-0.336	14	-0.016	0.110	0.182
FLOWL3 P.	11	-0,685	-0.643	-0.242	14	0.007	0.139	-0.061
FLOWL4	11	-0,498	-0.544	-0.160	14	0.204	0.134	-0.077
FLOWMA2	11	-0.045	-0.253	-0.500	14	0.270	0.425	0.094
FLOWMA2L1	11	0.016	-0.215	-0.367	14	-0.031	0.367	0.017
FLOWMA2L2	11	-0.370	-0.356	-0.274	14	-0.034	0.219	0.074
FLOWMA2L3		-0.626	-0.576	-0.236	. 14	0.048	0,009	0.017
FLOWMA3	11	-0.051	-0.195	-0.485	14	0.262	0.432	0.098

DISTRIBUTION OF STAGE 1 LARVAE. In 1984, larvae with yolk (Stage 1) comprised 96% of the striped bass caught and were present in the study area from 22 May until 10 June (Table 7). Stage 1 larvae were most abundant in the lower river (stations 1-4) and delta (stations 5-12). Mean study area density of Stage 1 larvae was negatively correlated with sampling date (r=-0.515) and FLOWL3 (r=-0.643). Prediction of larval abundance using sampling date and flow in the multiple linear regression (Table 6) was significant at P<0.10).

In 1985, stage 1 larvae comprised only 67% of larval striped bass collected. Stage 1 larvae were present in the study area from initiation of sampling (26 April) until 6 June. No stage 1 larvae were present in samples collected on 10 June (Table 8). Peak abundance occurred on 12 May (Figure 9). Greatest densities throughout the study period occurred in the lower river (Stations 1-4) and upper delta (Stations 5-7). Correlation analysis indicated weak, but significant, correlations of Stage 1 larvae with STATION and TIME (Table 9). However, samples were collected in the same order on each sampling trip, which made it impossible to ascertain the relative importance of these two variables on striped bass density. Stepwise regression (SAS Institute 1982) selected STATION and copepod density as two factors predicting the abundance of Stage 1 larvae (P<0.001, n=170); however, the R² was guite low (0.113). suggesting that other factors not considered in the analysis were responsible for variability in the data (Table 10). The average density of Stage 1 larvae in the delta and western Sound (Stations 5-15) was not highly correlated with any of the variables considered (Table 11), and none met the 0.15 significance level for entry into a stepwise regression model (Table 12).

DISTRIBUTION OF STAGE 2 LARVAE. In 1984, Stage 2 larvae were limited in number (1.2% of total striped bass catch), and occurred at Stations 3 and 5 in the lower river early in the sampling season. Stage 2 larvae were last observed in samples from western Albemarle Sound on 2 June (Table 13). Correlations of stage 2 larval abundance with sampling date and river flow were not significant (P>0.10) due to the low numbers of larvae collected. An additional 298 striped bass larvae were found in zooplankton catches. No striped bass larvae without oil globules, and no juveniles, were collected in the study area in 1984.

28

and a second s

Distribution and abundance (number/100 m³) of Stage 1 (with yolk) striped bass larvae in Roanoke River and western Albemarle Sound, North Carolina, in 1985. Asterisk (*) indicates no sample collected. Table 8.

	tage l			·		S	1	A	T	-	0	=		-	-			otal by /	Avg. by
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MTE	-	2	-	4	5	9.	-	8	6	9	=	12	1	14	15	19		nate
21,6 $5,9$ 0.00 $2.5,6$ 0.00 $2.5,6$ 0.00 $2.5,7$ 0.00 0.0	1/26/95	•	•		•		3.74	23.95	2.21	0,0	11.22	0.0	2.20	0.0	0,0	0.0	*	43.32	E.4
5.17 3.17 3.17 5.17 3.17 0.00 2.06 5.37 0.00 2.00 0.00 2.00 0.00 2.03 10.64 <td>/28/95</td> <td></td> <td></td> <td></td> <td>*</td> <td>+</td> <td>29.60</td> <td>5.80</td> <td>0.0</td> <td>2.56</td> <td>0.0</td> <td>0.0</td> <td>0,0</td> <td>2.02</td> <td>0,0</td> <td>0,0</td> <td>*</td> <td>38,93</td> <td>3.9</td>	/28/95				*	+	29.60	5.80	0.0	2.56	0.0	0.0	0,0	2.02	0,0	0,0	*	38,93	3.9
γ_1 γ_1 γ_1 γ_1 γ_1 γ_2 <t< td=""><td>/30/85</td><td>*</td><td></td><td></td><td>#</td><td>+</td><td>5.17</td><td>3.70</td><td>0.0</td><td>22.76</td><td>14.90</td><td>3.06</td><td>53.75</td><td>0.0</td><td>0.00</td><td>2.09</td><td>*</td><td>105.43</td><td>10.5</td></t<>	/30/85	*			#	+	5.17	3.70	0.0	22.76	14.90	3.06	53.75	0.0	0.00	2.09	*	105.43	10.5
9.7.7 20.71 7.91 1.65 6.10 5.5.8 14.91 5.89 15.90 0.00 0.93 0.00 0.00 219,15 65.20 14.01 5.79 1.11 0.11 9.41 5.04 21.05 5.79 3.18 0.00 0.00 0.00 0.00 200 21.05 71.46 11.10 3.19 20.94 3.11 9.13 9.14 5.11 0.00 0.00 0.00 0.00 0.00 200 20.00 21.05 5.34 9.32 3.11 9.11 9.13 9.14 5.11 0.00 1.00 1.01 1.05 1.02 1.00 0.00 0.00 0.00 0.00 0.00 219.15 21.15 21.11 9.11 9.11 9.11 9.11 9.11 9.11 9.23 114.56 113.65 113.65 113.65 113.65 113.65 113.65 113.65 113.65 113.65 113.65 113.65 113.65 113.65 113	/2/85	•	*	-		+	6.55	16.35	0.0	96.0	6.45	1.58	0.97	0.0	8.0	0.0	*	32,66	2
76.27 4.00 5.79 18.41 5.00 5.10 5.79 18.1 0.00 6.20 0.00 0.00 0.00 5.93 13.34 75.21 0.00 0.00 0.00 0.00 0.00 5.93 13.34 75.21 0.00	/4/85	11.06	20.71	16.7	1.05	6.10	55.58	14.91	5.89	15.90	0,0	0.0	0.93	0.0	0.0	0.0	•	219.75	14.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/6/35	76.27	40.03	35.79	19.41	95,04	23.05	21.30	5.79	3,61	8.0	8.32	8.0	8.0	0.0	0.0	•	328.01	21.9
73.46 141.20 31.87 20.54 31.11 91.10 31.5 13.24 75.21 0.00 15.74 0.00 13.41 924 23.46 115.77 25.75 75.78 139.51 173.02 32.23 654.56 41.15 173.01 0.00 15.74 0.00 13.41 92.41 23.45 175.75 55.54 115.75 25.76 15.75	/8/85	08.69	115.01	66.83	4.55	5,30	250,83	307.23	0,0	0.0	0.0	0.8)	8.0	8.88	8.0	0.0	*	829.23	55.2
21.15 21.15 76.18 18.51 17.102 52.28 64.25 41.15 173.01 0.00 1.41 9.24 21.85 115.67 27.10 31.31 73.39 13.38 0.00 11.57 0.23 173.66 0.00 1.41 9.24 23.65 55.33 27.10 31.31 73.39 13.38 0.00 13.47 6.90 0.00 0.00 2.27 55.35 27.10 31.31 13.00 13.47 6.90 0.00 0.00 2.27 55.35 27.11 1.56 6.45 0.39 9.39 3.26 13.47 6.90 0.00 2.27 55.13 27.11 1.56 0.01 1.94 0.00 1.34 6.90 0.00 0.00 2.27 55.13 55.23 <	/10/35	73.46	141.30	33,97	270.94	11.16	00.16	34.15	ME.EC	76,21	0.0	12.05	8.0	3,09	1,59	5,55	*	812.95	54.2
B5.14 61.17 73.39 B3.14 61.37 73.39 B3.17 0.00 11.16 0.00 7.25 55.06 2.70 34.30 43.32 15.31 25.46 0.00 34.4 0.00 0.00 2.21 51.30 2.70 34.30 45.31 25.46 0.33 39.39 0.00 3.47 0.00 0.00 2.21 51.30 2.70 34.30 1.56 0.33 39.39 0.00 1.34 0.00 0.00 2.21 51.30 4 4 1.56 0.33 39.39 0.00 1.34 0.00 0.00 2.21 51.30 4 4 1.56 0.33 0.36 0.00 1.34 0.00 0.00 0.00 2.37 51.30 4 4 1.56 0.00 1.53 0.38 0.00 1.34 0.00 0.00 2.37 51.86 2.36 4 4 1.56 0.00	/12/35	23.75	20.75	76.78	149.51	173.02	352.28	694.26	41.15	10.671	0.0	16.74	0.0	3.43	9.24	23.85	-	11:05/1	11. J
2.70 34.30 43.32 15.31 25.02 83.00 * 4.30 0.00 22.01 3.47 0.00 0.00 2.27 * 251.30 * 5.40 11.39 13.7 15.47 0.00 22.3 0.39 13.7 0.00 13.4 0.00 0.00 0.38 * 10.01 * 1 + 5 + 5 + 10.0 22.3 0.38 7.00 13.4 5.90 0.00 0.00 2.32 * 10.01 * 1 + 5 + 5 + 10.0 22.3 0.38 7.00 13.4 5.90 0.00 0.00 2.32 * 10.02 * 1 + 5 + 5 + 10.0 22.3 0.38 7.00 10.0 13.1 * 5.9 * 1 + 5 + 15.60 0.00 1.00 1.39 1.03 0.00 0.00 13.1 * 5.12 * 1 + 5 + 10.0 22.3 0.30 0.00 1.03 0.30 0.00 0.00 0.00 2.32 * 10.02 * 1 + 5 + 10.0 10.0 1.30 0.00 0.00 13.1 * 5.9 * 1 + 5 + 10.0 0.00 0.00 0.00 13.1 * 5.13 * 1 + 5 + 10.0 0.00 0.00 0.00 0.00 0.00 0.00 0.	/14/B5	85.14	61.37	10.39	19.38	8,0	11.57	0,23	177.46	19.09	0.0	26.46	0,0	1.08	0.0	7.25		536.94	36.8
station 42.1 1.56 0.45 0.93 93,83 0.00 13,44 6.90 0.00	/16/35	2.70	34.30	43.32	15.31	25,02	83.00	*	4.30	0,0	32,01	3.47	0,0	0.0	0.0	2.37	+	251.30	17.9
station 42.1 1.56 1.35 7.60 2.32 2.39 0.00 0.00 2.32 1.02.88 i	/18/85	•	*		4		55.49	6.45	0.93	53, 65	0.0	13.34	6.9	0.0	0,0	96.0	4	178.01	B. 11
5.12 0.01 2.3.5 0.00 1.03 0.00 <t< td=""><td>/20/35</td><td></td><td>*</td><td></td><td>•</td><td>40.17</td><td>1.96</td><td>13.39</td><td>8.97</td><td>3,26</td><td>7,60</td><td>2.X</td><td>22,89</td><td>0.0</td><td>0,0</td><td>2.32</td><td>*</td><td>102.88</td><td><u> </u></td></t<>	/20/35		*		•	40.17	1.96	13.39	8.97	3,26	7,60	2.X	22,89	0.0	0,0	2.32	*	102.88	<u> </u>
station 421.89 113.67 0.00 1.03 0.00 1.25 0.00 0.00 1.21 0.00 1.01 0.00 1.02 0.00	/22/85	*	*	*	*	26.23	0.0	22.36	0.96	0.0	0.0	4.68	60.1	0.0	0,0	8.0	*	55.52	5.0
station 421.89 113.47 30.0 0.00 1.24 0.00 0.00 1.25 0.00 0.00 1.24 0.00 2.16 1.01 0.00 2.16	/24/95		*	¥	4	5.99	10.25	0.81	0.0	1.08	0.70	16'0	27.93	0.0	0.0	0.0	*	47.70	4.3
station 421.89 431.47 30.00 0.00	/26/35	•	*		*	15.60	000	1.93	1.08	0.0	0.0	3.25	0.0	0.0	0,0	8.0	*	21.86	5
* * 0.99 8.81 0.00 9.22 0.00 2.10 0.00 0.00 0.00 0.00 20.00 2.06 2.06 2.06 1.01 0.00 0.00 2.06 2.06 2.06 2.06 2.06 2.06 0.00 0.00 0.00 0.00 0.00 2.06 0.00		•	•	•	*	0.77	2.80	10.1	0.0	1.9	8.0	0.0	10.6	-	*	*	*	9.59	-
* * 1 1.09 4.49 0.00 0.00 1.06 0.00 <td>/2/95</td> <td>•</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>8.87</td> <td>0.0</td> <td>8.22</td> <td>0.0</td> <td>2.10</td> <td>0.0</td> <td>0,0</td> <td>0.0</td> <td>0.0</td> <td>0,0</td> <td>•</td> <td>20,09</td> <td>1.8</td>	/2/95	•				0.0	8.87	0.0	8.22	0.0	2.10	0.0	0,0	0.0	0.0	0,0	•	20,09	1.8
* * * * * 0.01 0.00 0.00 0.00 0.00 0.00	/6/35	*	*	+	*	1,09	4.49	0,0	8.0	1.06	8.0	0,0	8.0	10.1	0.0	0.0	4	7,65	6
1 421.89 431.47 341.39 473.15 426.34 1300.59 1175.87 230.35 463.04 74.93 97.18 119.67 19.51 10.83 41.38 60.27 60.27 61.92 41.36 61.31 28.42 50.03 61.89 14.52 23.15 3.75 4.86 5.99 1.03 0.57 2.34	/10/82	-	-	-	*	(0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0,00	0.0	0.0
1 421.09 41.10 41.10 41.11 10.11 10.11 10.10 42.01 10.1		00 101				10, 200		50 151		10 53	8		5		Co Ci	00.00	8		
	tal by station 🛬	60.27 60.27	131.92	رد. دار 20, (1	63.JI	479.74 28.42	80.03	70'C/11	CC 75	23.15	3.75	4.86	119.01 5.99	1 01	0.57	×.*	38		

of two striped bass life stages, their feeding habits, and their relationship to food density (number/ m^3) and spatio-temporal variables in 1985. Numbers given are Pearson correlation coefficients (r). Descriptions of independent variables in Table 2. 9. Results of Pearson product-moment correlation analysis for densities (number/100 m^3) Table

1

		- -	Density	"ayırı		% of la	% of larvae with food	th food
I ndependent var i able	-	larvae, yolk	-	larvae, no yolk	£	larvae, yolk	=	larvae, no yolk
JULDATE	176	-0.009	176	-0.013	66	-0.291**	84	-0.502***
STATION		-0.298***	176	0 246***	. 66	0.144	84	0.278*
TIME	176	0.177*	176	0.144	66	-0.244*	84	-0.304**
CL ADO CERA	171	-0.040	171	-0.038	95	0.249*	81	0.401***
COPEPODA	171	-0.119	171	-0.109	95 ⁻	0.380***	81	0.369***
•	1	-		. <u>.</u>				

Significance level: * P≤0.05 ** P≤0.01 *** P≤0.001

Table 11. Results of Pearson product-moment correlation analysis for densities of two striped bass life stages, zooplankton, phytoplankton and spatio-temporal variables in 1985. Numbers given are Pearson correlation coefficents (r). NA= value not applicable.

- - -

• ••• •

		Strip	Striped bass	ty and	• •	Zooplankton		Phytoplankton	ankton
Independent variable	c	Tarvae, yolk	no	all	Bos- mina	Clad- ocera	Cope- poda-	wet wt. biomass	cell density
JULDATE	20	-0.198	-0.268	-0.715***	-0.725***	-0.684***	-0.594**	0.063	-0-660**
TEMP	20	-0.272	-0.324	-0.384+	-0.333	-0.323	-0.321	0.020	-0.578**
FLOWO	20	0.216	-0.055	-0.493	-0.485*	-0.411+	-0.537*	-0.286	-0.073
FLOWL1	20	-0.188	-0.237	-0.323	-0.345	-0.299	-0.289	-0.107	-0.436+
FLOWL2	20	-0.078	-0.087	-0.133	-0.154	-0.170	-0.069	-0.093	-0.026
FLOWL 3	20	-0.236	-0,009	-0.289	-0.183	-0.244	-0.329	0.238	-0.186
BOSM	20	-0.165	-0.191	0.893***	NA	0.870***	0.791***	-0.087	0.471*
CLAD	20	-0.116	-0.131	***096.0	0.870***	NA	0.703***	-0.058	0.606**
COPE	20	-0.333	-0.148	0.863***	0.791***	0.703***	NA	-0.347	0.209
1Z0 -	20	-0.217	-0.145	NA	0.893 ***	***096°0	0.863***	-0.170	0.522*
PHY TOB	20	-0.261	-0.262	-0.170	-0.087	-0.058	-0.347	NA	-0.166
PHY TOD	20	0.253	-0.257	0.522*	-0.471*	0.607**	0.209	-0.167	NA

+ P<0.10 * P<0.05 ** P<0.01 *** P<0.001

Table 12. continued.

Ĩ

Dependent variable	df	Variables Considered	Model Selected	B,	Regression coefficient	R ²	Prob>F	ۍ ط
Phytoplankton:								
wet weight biomass	19	JULDATE, TEMP, FLOWO, FLOWL1, FLOWL2, FLOWL3	none met th	e 0.15 :	none met the 0.15 significance level for entry into model	for entry	into model	
cell density	19	JULDATE, TEMP, FLOWO, FLOWL1, FLOWL2, FLOWL3	JUL DATE FLOWO	0 0 1 0 0 1 0 0	27732.550 -194.609*** 0.503+	0.531	0.002	2.202
Significance level: + P<0.10 * P<0.05 ** P<0.01 *** P<0.001	evel:							

Stage 2 larvae represented 33% of the striped bass collected in 1985. Stage 2 larvae occurred infrequently in samples collected at the end of April, but increased in abundance through mid-May (Table 14). Stage 2 larvae were collected through 10 June 1985, but were not abundant after 22 May. Greatest densities of Stage 2 larvae were located in the lower river and upper delta (Stations 4-9). Correlation analysis confirmed a significant correlation of Stage 2 larval density with STATION (Table 9). Average density of Stage 1 larvae in the study area was the best predictor of average Stage 2 densities (R^2 =0.40, n=20, P=0.002) as determined by Stepwise procedure (Table 12), suggesting that striped bass larvae remained in the lower Roanoke River and delta to develop and grow in 1985.

MOVEMENT, GROWTH, AND DEVELOPMENT. Striped bass larvae were subdivided into 15 size class groupings of 0.5-mm intervals to estimate movement, growth and development within the study area in 1985. The number of larvae falling into each size class for any given station and date were converted to percentages to allow comparison of relative frequency of occurrence by date. Size of larvae increased with distance from the spawning ground. Larvae collected at Station 1 (Williamston) ranged in size from 3.5-6.5 mm TL (Table 15). Most larvae were 5.0-6.0 mm TL, suggesting that river flow transported the larvae guickly through the Williamston area. Fish at Station 2 were slightly Targer than those caught upstream, ranging from 4.0 mm to 7.0 mm TL. A second cohort of smaller striped bass moved through this region on 10 May 1985 (Table 16). The second cohort was observed moving through Station 3 (Jamesville) on 12 May (Table 17), and through Station 4 approximately the same time (Table 18). Larval striped bass caught at upper delta stations (Stations 5-7) were all between 5.0 and 7.0 mm TL. Passage of smaller-sized cohorts was evident on the following dates: 26 April, 6 May, 20 May, and 2 June (Tables 19, 20, 21). Larvae in the lower delta (Stations 8-12) ranged from 5.0 mm TL to over 10.0 mm TL, suggesting that larvae remained in the lower delta area to feed and grow (Tables 22, 23, 24, 25, 26). The largest striped bass larvae were caught in Batchelor Bay (Stations 13-15), most of which had absorbed the yolk and oil. Sizes ranged from 5.0-24.0 mm TL (Tables 27, 28, 29). Few larvae were caught in

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 1. Asterisk (*) indicates no sample collected. Table 15.

5 4.0 4.0 0 0 0 0 0 0 0 0 0 11 2 * * <				- ÷					iza Cl	m) 336								
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Date	=	3.5	4.0	4.5	•	2°2	0	6.5	7.0	<u></u>	8.0	8.5	9.0	9.5	10.0	>10.0	
				1														
	4/26	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	4/28	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	4/30	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	5/02	*	*	*	*	*	*	*	*	*	*	¥	*	*	*	*	*	*
	5/04	62	2	11	16	27	16			0	0	0	0	0	0	0	0	100
	5/06	54	0	0	ò	2	15			0	0	0	0	0	0	0	0	100
	5/08	46	0	2	4	11	22		. '	0	0	0	0	0	0	0	0	100
	5/10	26	0	0	0	. 43	52			0	0	0	0	0	0	0	0	100
22 0 1 10 10	5/12	19	0	0	0	47	53			0	0	0	0	0	0	0	0	100
	5/14	52	0	0	0	15	81	4	0	0	0	0	0	0	0	0	0	100
	5/16	ŝ	0	0	0	67	33	0	0	0	0	0	0	0	0	0	0	100
	5/18	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	5/20	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*
	5/22	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*
<pre>* * * * * * * * * * * * * * * * * * *</pre>	5/24	*	*	*	*	*		*	*	*	* '	*	*	*	*	*	*	*
<pre>* * * * * * * * * * * * * * * * * * *</pre>	5/26	*	*	*	*	*		*	*	*	¥	*	*	*	*	*	*	*
* * * * * * * * * * * * * * * * * * *	5/29	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
* * * * *	6/02	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
* * * * *	6/06	*	*	*	*	*	*	*	*	÷	*	*	*	*	*	*	*	*
	6/10	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 3. Asterisk (*) indicates no sample collected. Table 17.

••••

, teres -

								Size C	Size Class (mm)	(mr							
Date	2	3.5	4.0	4.5	5.0	5,5	6.0	6,5	7.0	7.5	8,0	8.5	9.0	9.5	10.0 >10.0	0	Tot. %
/26	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/28	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/30	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/02	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/04	28	0	0	0	0	.0	36	46	18	0	0	0	0	0	0	0	100
/06	35	0	0	ŝ	0	m	69	23	m	0	0	0	0	0	0	0	100
/08	48	0	0	0	0	~	63	35	0	0	0	0	0	0	0	0	100
/10	37	0	0	0	0	14	78	8	0	0	0	0	0	0	0	0	100
/12	23	0	0	0	22	57	22	0	0	0	0	0	0	0	0	0	100
/14	40	0	0	0	0	m	93	പ	0	0	0	0	0	0	0	0	100
/16	34	0	0	0	m	0	79	18	0	0	0	0	0	0	0	0	100
/18	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/20	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/22	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/24	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/26	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/29	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/02	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/06	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
/10	*	*	*	*	*	*	*	*	*	+	*	*	*	*	*	*	*

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 5. Asterisk (*) indicates no sample collected. Table 19.

.

	Tot. %	*	*	*	*	100	100	100	100	100	*	100	*	100	100	100	100	100	100	100	*
	>10.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	10.0 >10.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	9.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	0.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	8.5	*	*	*	*	0	0	0	0	0	*	0	*	.0	0	0	0	0	0	0	*
	8.0	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
(u	7.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
ass (m	7.0	*	*	.*	*	38	5	13	ო	2	*	`~ `	*	0	o	11	0	0	0	0	* .
Size Class (mm	6.5	*	*	*	*	38	28	58	18	25	*	11	*	0	6	0	20	100	0	0	*
Š	e•0	*	*	*	*	25	9 9	28	76	69	*	88	*	61	87	68	80	0	100	0	*
• •	5.5	*	*	*	*	0	4	0	ŝ	~	*	0	*	32	4	0	0	0	0	100	*
	5.0	*	*	*	*	0	0	0	0	, 2	*	0	*	8	0	0	0	o	0	0	*
	4.5	*	*	*	*	0	0	0	0	0	*	0	*	0	0	0	0	0	0	0	*
	4.0	*	*	*	*	0	0	0	Ö	0	*	0	*	0	0	0	0	0	0	0	*
	3•5 _.	*	*	*	*	0	0	0	0	0	*	0	*	0	0	ō	ō	Ô	: 0	0	*
	c .	*	*	*	*	8	123	67	33	96	ō	65	0	38	46	ۍ ا	15		1		0
	Date	4/26	4/28	4/30	5/02	5/04	5/06	5/08	5/10	5/12	5/14	5/16	5/18	5/20	5/22	5/24	5/26	5/29	6/02	6/06	6/10

. .

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 7. Asterisk (*) indicates no sample collected. Table 21.

					-:				Size C	Size Class ((um)							
Date	C	3.5	4.0	4.5	5.0		ع	6.0	• • • • •	7.0	7.5	8.0	8.5	0.0	9.5	10.0 >10.0	10.0	Tot. %
						.			••									
4/26	16	0	0	0	Ĵ		19 19	63	13	0		0	0	0	0	0	0	100
4/28	ى	0	0	0	ں		0	20	. 60	20		0	0	0	0	0	0	100
4/30	11	0	0	0	0		0	61	6	0		0	0	0	0	0	0	100
5/02	25	0	0	0		~	8	52	36	4		0	0	0	0	0	0	100
5/04	43	0	0	0	0	~	19	65	. 16	0		0	0	0	0	0	0	100
5/06	26	0	0	0	0	~	0	50	38	12		0	0	0	0	0	0	100
5/08	152	0	0	0		_	-	63	26	ŝ		0	0	0	0	0	0	100
5/10	47	0	0	0	0	~	32	09	<u>,</u>	0		0	0	0	0	0	0	100
5/12	97	0	0	0			~	78	12	1		0	0	0	0	0	0	100
5/14	11	0	0	0	0	~	ص	88	9	0		0	0	0	0	0	0	100
5/16	*	*	*	*	7	ير	 ¥	*	*	*		*	*	*	*	*	*	*
5/18	28	0	0	0	J	~	32	68	0	0	0	0	0	0	0	0	0	100
5/20	24	0	0	0	ব		4	83	8	0	0	0	0	0	0	O	0	100
5/22	09	0	0	0	0	~	15	85	0	0	0	0	0	0	0	0	0	100
5/24		0	0	0	0	~	0	0	100	0	0	0	0	0	0	0	0	100
5/26	~	0	0	0	ں ا	~	0	·50	50	•	0	0	0	.0	0	0	0	100
5/29	m	0	0	0	<u> </u>		0	100	0	0	0	0	0	0	0	0	0	100
6/02	2	0	0	Ö	0	~	20	50	0	0	0	0	0	0	0	0	0	100
6/06	0	*	*	*	*	ا	*	*	*	*	*	*	*	*	*	*	*	*
6/10	2	0	0	0	50	50	50	0	0	0	0	0	0	0	0	0	0	100
							· .			-		••						
	-											-						

Relative frequency (%) of larval striped bass size classes (mm TL) collected from 26 April to 10 June 1985 at Station 9. Asterisk (*) indicates no sample collected. Table 23.

Date n 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 4/28 7 0 0 0 14 29 29 14 4/28 7 0 0 0 14 29 29 14 4/28 7 0 0 0 0 14 29 29 14 5/04 19 0 0 0 0 14 29 21 1 25 10 0 0 0 10 10 10 10 10 10 11 11 11 1 11 1 11 11 11 11 11 11 11		1 a :							ize Cl	Size Class (mm)	(W		• •				İ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Date	د	3.5	4.0	4.5	1 •	5.5	0	6.5	7.0	7.5	8.0	8.5	0.0	9.5	10.0 >10.0	10.0	Tot. %
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						 	 		-			-				-	,	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4/26	0	*	*	*	*	×	*	×	×	×	×	ĸ	×	ĸ	ĸ	K	ĸ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4/28	2	0	0	0	0	14	29	29	14	14	0	0	0	0	0	0	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4/30	22	0.	0	0	0	0	50	23	23	ഗ	0	0	0	0	0	0	100
$ \begin{bmatrix} 19 & 0 & 0 & 0 & 0 \\ 16 & 0 & 0 & 0 & 0 \\ 16 & 0 & 0 & 0 & 0 & 0 \\ 137 & 0 & 0 & 0 & 0 & 0 \\ 137 & 0 & 0 & 0 & 0 & 0 \\ 137 & 0 & 0 & 0 & 0 & 0 \\ 137 & 0 & 0 & 0 & 0 & 0 \\ 1 & 79 & 117 & 38 & 117 \\ 179 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 79 & 16 & 177 & 38 & 117 \\ 179 & 10 & 0 & 0 & 0 & 0 & 0 & 1 \\ 170 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 170 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 79 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 79 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 79 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 79 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 79 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 17 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 & 0 \\ 1 & 10 & 0 & 0 & 0 & 0 \\ 1 & 10 $	5/02	7	0	0	0	0	0	14	29	29	14	0	14	0	0	0	0	100
16 0 0 0 0 88 137 72 0 0 0 0 0 88 137 137 0 0 0 0 0 0 88 137 137 0 0 0 0 0 0 11 4 137 0 0 0 0 1 4 57 38 13 137 0 0 0 0 0 1 4 57 38 13 3 0 0 0 0 0 1 79 16 17 38 13 0 1 1 79 1 17 79 16 17 33 3	5/04	19	0	0	0	0	ŝ	63	21	5	0	0	Ś	0	0	0	0	100
16 0 0 6 6 88 0 137 0 0 0 137 0 0 137 137 0 0 137 0 0 137 0 0 1 4 57 38 0 117 118 117 118 117 118 117 117 117 117 117 117 117 117 117 117 117 117 118 117 118 117 118 </td <td>5/06</td> <td>8</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>88</td> <td>:13</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>100</td>	5/06	8	0	0	0	0	0	88	:13	0	0	0	0	0	0	0	0	100
72 0 0 137 137 137 137 137 100 100 137 100 100 11 137 100 100 10 100 10 100 10 10 100 10 10 10 10 10 10 10 10 11 79 11 79 11 79 11 79 11 79 11 79 11 79 11 79 11 79 11 79 10 2 10 0 0 0 1 4 57 38 33 33 33 3 3 0 0 0 1 79 10 2 0 0 1 1 79 10 10 1 10 1 10 1 10 1 10 1 10 1	5/08	16	0	0	0	9	9	88	0	0	0	0	0	0	0	0	0	100
137 0 0 0 13 100 0 0 0 1 81 17 26 0 0 0 0 1 79 16 3 0 0 0 0 0 1 79 16 2 0 0 0 0 0 25 75 0 2 0 0 0 0 0 0 1 82 2 2 2 0 0 0 0 0 0 0 1 79 16 2 0 0 0 0 0 0 1 79 16 2 0 0 0 0 0 0 1 79 16 1 1 <td>5/10</td> <td>:72</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td> <td>4</td> <td>57</td> <td>38</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>100</td>	5/10	:72	0	0	0	-	4	57	38	0	0	0	0	0	0	0	0	100
100 0 0 10 4 0 0 0 1 56 0 0 0 2 14 3 0 0 0 2 14 82 3 0 0 0 2 14 82 2 0 * * * * * * 3 2 0 * 0 0 0 0 6 7 3 3 2 0 0 0 0 0 0 5 4 0 2 0 0 0 0 0 5 4 4 4 0 * 0 0 0 5 4 4 4 1 0 * 0 0 0 4 4 4 4 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5/12	137	, 0	0	0	0		81	17	-	0	0	0	0	0	0	0	100
4 0 0 0 25 75 0 3 0 0 0 0 25 75 0 3 0 0 0 0 0 25 75 0 2 14 82 14 82 14 82 2 14 82 2 14 82 14 82 14 82 14 82 14 82 14 82 14 82 14 82 14 16 10 <td< td=""><td>5/14</td><td>100</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-1</td><td>79</td><td>16</td><td>4</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>100</td></td<>	5/14	100	0	0	0	0	-1	79	16	4	0	0	0	0	0	0	0	100
56 0 0 2 14 3 0 0 0 0 67 33 2 2 0 0 0 0 0 67 33 2 2 0 0 0 0 0 0 67 33 2 2 0 0 0 0 0 0 50 67 33 2 2 0 0 0 0 0 0 50 67 33 3 2 0 0 0 0 0 0 50 67 33 <	5/16	4	0	0	0	0	25	75	0	0	0	0	0	0	0	0	0	100
3 0 0 * 0 * 0 * 0 * 3 3 2 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5/18	56	0	0	0	2	14	82	2	0	0	0	0	0	0	0	0	100
0 * 0 * 0 *	5/20	ŝ	Ò	0	0	0	0	67	33	0	0	0	0	0	0	0	0	100
2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5/22	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
0 *	5/24	2	0	0	0	0	0	20	0	0	0	0	0	0	0	0	50	100
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5/26	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	5/29	2	0	0	0	0	100	Ő	0	0	0	0	0	0	0	0	0	100
	6/02	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	6/06	1	0	0	0	0	100	ò	0	0	0	0	0	0	0	0	0	100
	6/10	0	*	• • • • • • • •	*	* .	₽ ₩ 19	*	*	*	* -	*	*	*	*	*	*	*
-		•	•		-	•		•			,	•						

	size classes (mm TL) collected from 26) indicates no sample collected.		7.5 8.0 8.5 9.0 9.5 10.0 >10.0 Tot. %	* * * * * * *	* * * * * *	0	50 0 0 0 0 0 0				0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 4	0 0 0 0 0 0	0 0 0 0 0 13	0 0 0 0 0 0	0 0 0 0 0 0		
	1 from		>10.0	*	*	0	0	0	0	0	0	0	4	0	13	0	0	0	C
	lected ted.		10.0	*	*	0	0	0	0	0	0	0	0	0	0	0	0	0	•
) col ollec		9.5	*	*	0	0	0	0	0	0	0	0	0	0	0	0	0	(
• •	mm TL mple c		0.6	*	*	0	0	0	-	0	0	0	0	0	0	0	0	0	•
	ses no s		8.5	*	*	0	0	100	0	0	0	0	0	0	0	0	0	0	
	()		8.0	*	*	33	50	0	0	0	0	0	0	0	0	0	0	0	
	s	(u	7.5	+	*	33	0	0	0	0	0	0	0	0	0	0	0	0	
	triped bass Asterisk (*)	Size Class (mm	7.0	*	*	33	50	0	1	0	0	0	0	0	0	0	09	0	
	striped Asteri	ze Cla	6.5	*	*	0	0	0	÷	100	0	11	~	0	13	0	40	0	
	larval s tion 11.	Si	6.0	*	*	0	0	0	73	0	67	83	85	83	63	100	0	100	
	of la Statio		5.5	*	*	C	0	0	~	0	33	0	0	17	13	0	0	0	
· .	(%) 5 at		5.0	*	*	0	0	0	0	0	0	9	4	0	0	0	0	0	
	Relative frequency April to 10.June 198		4.5	*	- - +	Ċ	0	9	c	0	0	0	0	0	0	0	0	0	
	ive fre to 10.J		4.0		- - i c	C	0			0	0	0	0	0	ó	0	0	0	
	Relati April t		3.5		ເີ- 1 4	. 0	õ				ē	ġ	0	0	0	0	0	0	•
			, c .	c		5 ~	: • ~	·	15		12	18	27	. y	16	~	ۍ . م	-	
	Table 25.		Date	2014	02/5	07/4	5/02	5/04	5/06	5/08	5/10	5/12	5/14	5/16	5/18	5/20	5/22	5/24	

0 0
000 m 1 5 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 33 0
00 0 0 1 2 5 5 1 2 1 2 1 2 1 5 1 5 1 5 1 5 1 5
00000000000000000000000000000000000000
* * * 00000000000000000 * * * * * 00000000
* * * 0000000000000 * * * * 00000000000
4/26 0 4/28 0 5/02 3 5/06 15 5/08 1 5/08 1 5/08 1 5/08 1 5/12 18 5/12 18 5/12 18 5/12 18 5/12 18 6 0 6 0 6 0 6 0 6/02 0 6/02 0 6/06 0 6/06 0 6/06 0 6/06 0 6/06 0 6/06 0 6/06 0 6/06 0 6/06 0
4/26 0 4/28 0 5/02 3 5/03 3 5/04 15 5/06 15 5/12 18 5/12 18 5/12 18 5/12 18 5/12 18 5/12 18 5/12 10 6/05 0 6/06 0 6/06 0 6/06 0
4/26 4/26 5/02 5/04 5/08 5/08 5/12 5/12 5/12 5/16 5/12 11 5/12 5/12 5/12 5/12 11 12 5/26 3 6/02 0 6/02 1
4/26 4/26 4/28 5/08 5/08 5/08 5/10 5/12 5/14 5/16 5/18 5/18 5/18 5/18 5/18 5/18 5/18 5/20 5/21 5/22 5/20 5/20 6/05 0 6/06
5/12 5/12 5/16 5/12 5/16 5/12 5/16 5/12 5/16 5/22 5/16 5/22 5/16 5/22 5/16 5/22 5/26 5/26 5/26 5/26 5/26 5/26 5/2

frequency (%) of larval striped bass size classes (mm TL) collected from 26	isk (*) indicates no sample collected.
striped	. Asteri
Jarval	ation 13
of	St
ઝ	i at
frequency	10 June 198:
Relative	April to 10
Table 27.	

						• •		Size Class (mm	lass ((ww		-					
Date	c	3.5	4.0	4.5	5.0	5,5	6.0	6.5	7.0	7.5	8.0	8.5	0.6	9.5	10.0 >10.0	10.0	Tot. %
4126		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
4/28	14	C	0	0	0	0	7	21	64	7	0	0	0	0	0	0	100
4/30		0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	100
5/02	: ເຕ	0	0	0	0	0	0	33	33	0	33	0	0	0	0	0	100
5/04	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
2/00		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/08	. 0	0	0	0	0	0	44	56	0	0	0	0	0	0	0	0	100
5/10	4	00		0	25	0	25	52	25	0	0	0	0	0	0	0	100
5/12	- L O	0	0	0	0		60	40	0	0	0	0	0	0	0	0	100
5/14	13	0	0	0	15	Ö	85	0	0	0	0	0	0	0	0	0	100
5/16		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/18	 	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
5/20	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100
5/22	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/24		0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	100
5/26	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
5/29	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
6/02	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
90/9		0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	100
6/10	C	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
•	,					-											

	equency (%) of larval striped bass size classes (mm TL) collected from 26	June 1985 at Station 15. Asterisk (*) indicates no sample collected.	
••	e 29. Relative frequency (%) of larval s	April to 10 June 1985 at Station 15.	
	Table		

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									Size Cl	Size Class (mm	(W)							
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	4 4	Date	C ·		4.0	4.5	5.0	5.5	6 •0	6.5	7.0	7.5	8.0	8.5	0.6	9.5	10.0 >10.0	10.0	Tot. %
	**************************************	4/26	. c	*	*	*	*	•	*	*	*	*	*	*	*	*	*	*	*
	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	4/28		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
00 0		4/30	, 1	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	100
4 4	<pre>************************************</pre>	5/02	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
* * * * * * * * * * * * * * * * * * *		5/04	~	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	100
<pre>************************************</pre>	<pre>************************************</pre>	5/06	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	5/08	0	*	*	*	*	*	*	*.	*	*	*	*	*	*	*	*	*
$\begin{array}{c} 41\\ 41\\ 41\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42\\ 42$	$\begin{array}{c} 41\\ +1\\ +1\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2\\ +2$	5/10	~	0	0	0	0	29	71	0	0	0	0	0	0	0	0	0	100
30 4 5	************************************	5/12	41	0		0	0	S	83	- 12	0	0	0	0	0	0	0	0	100
<pre>************************************</pre>	* * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0 0	5/14	2	0	0	0	0	29	71	0	0	0	0	0	0	0	0	0	100
<pre>************************************</pre>	* * * * * * * * 0 0 0 * * * * * * * * 0 0 0 * * * *	5/16	9	0	0	0	17	0	67	0	0	0	0	0	0	0	0	17	100
14 * * * * * * 0 * * * * * * 0 * * * * * * 0 * * * * * * 0 * * * * * * 0 0 0 * 0 * * * * * * 0 0 0 * 0 0 0 * 0 * * * * * * 0 0 0 * 0 * * * * * * 0 0 0 * 0 0 0 * 0 * * * * * * 0 0 0 * 0 * * * * * * 0 * * * * * * 0 * * * * * * 0 0 0 * 0 * * * * * * 0 * * * * * * * 0 * * * * * * 0 * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * * 0 * * * * * * * * 0 * * * * * * * * 0 * * * * * * * * * * * * * 0 * * * * * * * * * * * * * * * * * * *	<pre>* * * * * * * 0 0 * * * * * * * 0 0 14 * * * * * * * * * 0 0 150 14 * * * * * * * * 0 0 14 * * * * * * * 0 0 14 * * * * * * * 0 0 15 * * * * * * * 0 0 14 * * * * * * * 0 0 15 * * * * * * * 0 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * 0 15 * * * * * * * * * 0 15 * * * * * * * * * 0 15 * * * * * * * * * * 0 15 * * * * * * * * * * 0 15 * * * * * * * * * * * * * * 0 15 * * * * * * * * * * * * * * * * * * 0 15 * * * * * * * * * * * * * * * * * * *</pre>	5/18		0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	100
* * * * * * 0 * * * * * * 0 * * * * * * * 0 * * * * * * * 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0	* * * * * * * * 0 * * * * * * * * * 0 * * * * * * * * * 0 * 0 * 0 0 * 0 * 0 * 0 × 0 0 × 0 * 0 * 0 × 0 0 × 0	5/20	2	0	0	0	0	. 0	14	0	0	0	0	0	0	0	0	86	100
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	5/22	2	0	0 -	0		. 0	50	0	0	0	0	0	0	0	0	50	100
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	5/24	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	5/26	0	> ' * 22	*	*	*	*	*	*	*	×	*	*	*	*	*	*	*
* * * * * * * * 0	* * * * * * * * * * * * * * * * * * * *	5/29	*	*	*	*	*	*	*	*	*	*	*	*	*	*	¥	*	*
* * * * * 0	0 * * * * * * * * * * * * * * * * * * *	6/02	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	6/10 * * * * * * * * * * * * * * * *	6/06	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
1/10 × × × × × × × × × × × × × × × × × × ×		6/10	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

		scomacn conc Albemarle So applicable.	stomach contents of striped Albemarle Sound, North Carol applicable.	carolina,	in 1984.	Larval	count = n	= number in	arvae currected from the tower knampke kryer, usita, n 1984. Larval count = number in feeding condition;		u western = value not
Date (m/d/y)	Sta- tion	Larva] count	Spiec i es	Number examined	Stage	Fish 1 Mean	length (TL Min.	., mm) Max.	% empty gut	% with food	Food item
5/23/84	e.	-	MOSA	1	011	5 • 0 ⁻⁵	*	÷.	100	0	
5/25/84 5/25/84 5/25/84	7 13 14		MOSA MOSA MOSA		011 011 001	0°9	* * *	* * *	100 100	000	
5/27/84	13	· · · · · · · · · · · · · · · · · · ·	MOSA	1	OIL	6.0	*	*	100	0	
5/29/84 5/29/84 5/29/84 5/29/84	14 15 15	~~~~	MOSA MOSA MOSA MOSA		01 01 01 01 01		5.*** 0	6.0 6.0	100 100 0 67	0 100 33	1 beetle larva 2 Daphnia
5/31/84 5/31/84	11		MOSA MOSA	8	011 011	.0 9.0	* 5.5	* 6.5	100	00	
6/02/84 6/02/84 6/02/84	13 14		MOSA MOSA MOSA		011 011 010	6.0 5.5	* * *	* * *	100 100 100	000	
6/08/84 6/08/84	14 15	1	MOSA MOSA	~ ~	Y OLK Y OLK	ະ ບູ ເ	۰ 5 • 5	* 5 . 0	0 100	100 0	l Daphnia
6/10/84	14	-	MOSA	· · · · · · · · · · · · · · · · · · ·	011	¢•5	*	*	100	0	
	; -	-			· · · · ·						

.

,

.

Statulity Fish length X with Hax Copeeda Bos 7 15 5.5	Date 4/26/85							Food	d type	De				
State Light Height X with Constraint Min Hart Valia Chy- Other 1 5.5 5.5 0 0.0 0.0 11.4 Alon- 0.0 <th>Date 4/26/85</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Coper</th> <th>oda</th> <th></th> <th>Cladoce</th> <th>ė Juo</th> <th></th> <th></th> <th></th>	Date 4/26/85						Coper	oda		Cladoce	ė Juo			
7 55 7.0 90 91 0.0 91 <t< th=""><th>4/26/85</th><th></th><th>n Mean</th><th>Min</th><th>a x</th><th>x with food</th><th>Cope- podite</th><th></th><th>Bos- mina</th><th>Alon- ella</th><th>Daph- nia</th><th>Chy- dorus</th><th>Other</th><th></th></t<>	4/26/85		n Mean	Min	a x	x with food	Cope- podite		Bos- mina	Alon- ella	Daph- nia	Chy- dorus	Other	
7 15 5.9 5.0 6.5 100 0.0 1.4 7 5 5.5 7.0 100 0.0 0.0 1.4 7 5 5.5 7.0 100 0.0 0.0 1.0 7 5 5.5 7.0 100 0.0 0.0 1.0 7 5 5.5 7.0 100 0.0 0.0 1.0 7 5 5.5 7.0 100 0.0 1.0 1.0 7 5 5.0 7.0 100 0.0 1.0 1.0 9 5.6 5.0 7.0 100 0.0 1.0 1.0 9 5.6 5.0 7.0 100 0.1 0.0 1.0 9 5.6 5.0 7.0 100 0.1 0.0 1.0 9 5.6 7.0 100 0.0 1.0 1.0 1.0 9 5.6 7.0 100 1.0 1.0 1.0 1.0 11 5.6 7.0 100 1.0 1.0 1.0 1.0 12 5.0 7.0 100 1.0 1.0 1.0	-	9	2 5.5		5.5	•								
1 5 5 7 10 10 10 1 7.0 5 5.0 7 10 10 10 1 7.0 5 5.0 7 10 10 10 1 7.0 5 5.0 7 10 10 10 1 7.0 5 5.0 7 10 10 10 1 7.0 5 5.0 10 10 10 10 1 7.0 5 6.0 7 10 10 10 1 5 5.0 7 10 10 10 10 1 5 5 7 10 10 10 10 1 5 5 7 10 10 10 10 1 5 5 7 10 10 10 10 1 5 5 7 10 10 10 10 1 5 5 7 10 10 10 10 1 5 5 7 10 10 10 10 1 5 5 7 10 10		-	5.5		6.5	09	0.0	0.0	1.1					
10 5 5 5 7 0 0.0		co ;	9		-	100	0.0	0.0	1.0					
2 5 5 7 9 0	-	22	9		0.7	001		0.0						
7 5 5 60 70 50 70 50 70	1 / 2 G / G C	24			 	33								
12 5 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7		3 - 2 -			-									
17 7 6.5 5.0 7.0 100 1.0 0.0 1.0 18 7.5 7.0 100 1.0 0.0 1.0 0.0 1.0 18 7.5 7.0 100 1.0 0.0 1.0 0.0 1.0 18 7.5 7.0 100 0.1 0.0 1.0 0.0 1.0 11 3 7.5 7.0 86 0.1 0.0 1.0 1.0 11 3 7.5 7.0 7.0 7.0 1.0 1.0 1.0 11 3 7.5 7.0 80 0.0 1.0 5.1 0.0 1.0 11 3 7.5 7.0 80 1.0	-	. 0			0	39		0.0						
11 1 6 5 7 10 13 0.0 10 10 10 10 10 10		12	2		7.0	001	1.0	0.0	5.0					
7 7 6.0 5.0 7.0 100 0.0 0.0 0.0 9 7 6.0 5.5 100 0.0 0.0 0.0 0.0 9 6.6 6.0 7.5 100 0.0 0.0 0.0 0.0 11 3 7.5 7.0 7.0 100 0.1 0.1 0.1 12 7.0 7.0 7.0 7.0 100 0.1 0.1 0.1 11 1 7.5 7.0 94 0.2 0.0 1.3 0.1 0.1 12 7.5 7.0 94 0.2 0.0 1.3 0.0 1.3 11 2 7.5 7.0 94 0.2 0.0 1.4 0.0 1.4 0.0 1.4 0.0 1.4 0.0 1.4 0.0 1.4 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.6 0.0 1.6 0.0 <td></td> <td>11</td> <td>3.6.6</td> <td></td> <td>2.0</td> <td>001</td> <td></td> <td>0.0</td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>		11	3.6.6		2.0	001		0.0	1.0					
7 4 6.1 6.0 6.5 100 0.2 0.0 1.0 11 3 7.5 7.0 8.0 7.3 86 0.1 0.0 5.4 15 6.5 7.0 8.0 7.0 8.0 0.0 3.0 0.1 0.0 5.4 16 6.5 6.3 6.0 7.5 100 2.3 0.0 3.0 0.1	1/30/85	و	2 6.(7.0	100	0.0	0.0	2.5					
9 21 65 6.0 7.5 86 0.3 0.0 6.4 11 3 7 17 6.5 5.0 7.5 100 0.3 0.0 3.0 12 6.5 6.0 7.0 8.0 0.0 3.0 0.0 3.0 3.0 5.1 0.0 5.0 7.1 17 6.5 5.0 7.0 8.0 0.0 3.0		م	4 6.1		6.5	100	0.2	0.0	1.0					
$ \begin{bmatrix} 10 & 9 & 5.6 & 5.0 & 7.5 & 100 & 0.4 & 0.0 & 5.7 \\ 5 & 7.0 & 7.0 & 7.0 & 100 & 2.3 & 0.0 & 3.0 & 0.0 & 3.0 \\ 6 & 6 & 5.3 & 5.0 & 7.0 & 100 & 2.3 & 0.0 & 3.0 & 0.0 & 3.0 \\ 7 & 17 & 6.3 & 5.0 & 7.0 & 100 & 1.5 & 0.0 & 3.0 & 0.0 & 1.8 \\ 7 & 17 & 6.3 & 5.0 & 7.0 & 0.0 & 1.8 & 0.0 & 1.8 & 0.0 & 1.8 \\ 7 & 7 & 5.5 & 5.0 & 7.0 & 0.0 & 1.8 & 0.0 & 1.8 & 0.0 & 1.8 \\ 7 & 7 & 5.5 & 5.0 & 7.0 & 0.0 & 1.8 & 0.0 & 1.8 & 0.0 & 1.8 & 0.0 & 0.0 \\ 7 & 7 & 5.5 & 5.0 & 7.0 & 67 & 0.0 & 1.8 & 0.0 & 1.8 & 0.0 &$. J	51 6.4		7.5	86	0.3	0.0	6.4					
11 3 7.0<		01	5			001	7	0.0	2.5					
1 5 7		=:			0 . 2 .	01	- -	1.3	0 0 7		-	¢		
7 17 6.3 5.0 7.0 80 0.2 0.0 4.6 9 1 6.0 5.5 7.0 80 0.2 0.0 4.6 12 1.5 7.0 80 0.2 0.0 1.6 4.6 12 1.5 7.0 80 0.0 1.5 0.0 1.6 12 1.5 5.0 7.0 81 0.1 0.0 1.6 5 6 6.5 6.0 7.0 5.7 0.0 0.0 1.6 6 6.6 6.0 7.0 83 1.4 0.0 1.6 1.6 7 19 6.0 5.6 7.0 9.1 0.0 0.0 1.6 7 19 6.0 5.6 6.7 0.0 0.0 1.6 8 5 6.0 7.0 1.4 0.0 0.0 1.6 9 1.6 6.0 7.0 1.4 0.0 1.6 0.0 1.4 8 5 6.0 6		- - -			5 0 				20	1.0	1.0	0,2		
7 7	102/85	<u>,</u> 4	- u - u			32								
11 2 7.5 7.0 8.0 100 1.5 0.0 3.5 12 1 5 6.0 7.0 57 0.0 3.6 12 1 5 6.0 7.0 57 0.0 3.6 5 6 5.5 6.0 7.0 57 0.0 3.8 5 8 6.0 5.0 7.0 67 0.0 3.8 7 19 6.6 6.6 6.0 8.3 1.4 0.0 3.8 7 19 6.0 8.3 1.4 0.0 0.3 3.6 8 6 6.8 6.0 8.3 1.4 0.0 0.3 9 15 6.3 5.6 7.0 1.4 0.0 0.3 12 1 6.0 8.3 1.4 0.0 0.3 0.3 7 14 6.4 6.0 7.0 1.4 0.0 0.3 7 14 6.4 6.0 7.0 1.4 0.0 0.3			2		0.7	33		0.0	8					
$ \begin{bmatrix} 1 & 2 & 5 & 7 & 0 & 0 & 0 & 0 & 1.5 & 0.0 & 3.5 \\ 1 & 6 & * & * & 0 & 0 & 0 & 0 & 0.6 \\ 5 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 &$			1 6.(•	0	~		-					
12 1 6 * 0 5 6.0 7.0 57 0.0 0.0 3.8 6 6.5 6.0 7.0 57 0.0 0.0 3.6 7 19 6.0 5.5 6.3 0.0 0.0 3.0 8 6 6.8 6.0 9.5 6.3 0.0 0.0 3.0 9 15 6.1 0.0 0.0 0.0 2.9 0.0 3.0 9 15 6.1 6.0 0.0 0.0 0.0 2.9 5.1 0.0 3.0 12 1 6.0 5.5 6.3 0.0 0.0 2.9 5.9 5.0		11	2 7.5		8.0.	001	· 1.5	0.0	3.5					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	-		•	•								
5 6.5 6.0 7.0 67 0.0 1.6 7 19 6.0 5.6 7.0 67 0.0 1.6 7 19 6.0 5.6 7.0 67 0.0 0.0 1.6 7 19 6.0 5.6 6.7 0.0 0.0 2.0 0.0 12 1 6.1 6.0 8.3 1.4 0.0 0.0 2.0 12 1 6.1 6.0 8.3 1.4 0.0 0.0 2.0 12 1 6.1 6.0 7.0 100 0.0 0.0 2.0 2 6.1 6.0 5.0 7.0 10 0.0 2.3 0.1 0.0 2 2 6.0 6.0 6.0 2.0 0.0 2.3 0.1 0.0 1.4 5 7.3 7.0 8.0 0.0 0.0 2.3 0.0 1.4 0.1 0.1 6 6.0 6.0 7.0 1.0 0.0 <	/04/85	-			, 0°.	57	0.0	0.0	3.8					
7 19 6.0 5.0<					0°.	6	0.0	0.0	9.6					
12 1 6.0 8.0 8.0 9.0 0.0 12 1 6.0 8.3 0.0 0.0 0.8 12 1 6.0 8.3 0.0 0.0 0.8 13 15 6.3 5.5 6.7 0.5 0.0 0.8 5 32 6.6 7.0 14 0.0 0.0 0.0 6.0 7 24 6.0 7.0 71 0.0 0.0 2.8 0.1 7 24 6.0 5.0 0.0 0.0 2.8 0.1 0.01 9 4 6.0 6.0 2.8 0.0 0.0 2.8 0.1 7 24 6.0 5.0 7.0 0.0 2.8 0.1 40.1 9 4 6.0 6.0 2.8 0.0 0.0 0.0 11 11 6.6 6.0 2.9 0.0 0.0 0.1 9 4 6.0 5.0 0.0 0.0 0.0						65								
9 15 6.3 5.5 8.5 67 0.5 0.0 1.4 12 1 6.0 * * 100 0.0 6.0 1.4 5 32 6.6 5.0 1.4 0.0 2.0 1.4 6 29 6.0 5.0 7.0 1.4 0.0 2.0 7 24 6.0 7.0 71 0.0 2.8 0.1 0.0 7 24 6.0 7.0 71 0.0 2.8 0.1 0.01 9 4 6.0 6.0 25 0.0 2.8 0.1 0.01 11 11 6.4 6.0 2.9 0.0 0.0 0.0 9 4 6.0 6.0 2.9 0.0 0.0 0.0 11 11 6.4 6.0 0.0 0.0 0.0 0.0 11 11 6.4 6.0 0.0 0.0 0.0 0.0 11 11 6.6 6.0 2.0						2 2	~		 					
12 1 6.0 * * 100 0.0 6.0 4 14 6.0 2.0 14 0.0 2.0 2.0 5 32 6.0 5.0 6.0 2.0 1.4 0.0 1.4 7 24 6.0 7.0 71 0.0 2.8 0.1 0.0 2.8 8 5 7.3 7.0 80 0.0 2.8 0.1 0.0 1.4 9 4 6.0 5.0 7.0 71 0.0 2.8 0.1 0.0 1.0 40.1 60.1 0.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.0 0.1 0.0 1.0 0.1 0.1 0.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 1.0 1.0 1.0 0.1 0.1 0.1 0.1					5.8	56	5.0	0.0	1.4					
4 14 6.4 6.0 7.0 14 0.0 2.0 2.0 5 32 6.2 6.0 6.5 53 0.1 0.0 1.4 0.1 7 24 6.0 7.0 71 0.0 2.3 0.1 0.1 40.1 8 5 7.3 7.0 71 0.0 2.8 0.1 0.0 10.4 9 4 6.0 6.0 25 0.0 0.0 2.8 0.1 40.1 40.1 11 11 6.4 6.0 25 0.0 0.0 1.9 40.1 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td>100</td><td>0.0</td><td>0.0</td><td>6.0</td><td></td><td></td><td></td><td></td><td></td></td<>					-	100	0.0	0.0	6.0					
5 32 6.2 6.0 6.5 5.3 0.1 0.0 1.4 0.1 (0.1) astracod 7 29 6.3 6.0 72 0.0 2.3 0.1 (0.1) astracod 8 5 7.3 7.0 72 0.0 2.8 0.1 (0.1) unident. 9 4 6.0 6.0 2.8 0.0 0.0 2.8 0.1 11 11 6.4 6.0 2.9 0.0 0.0 1.9 11 11 6.4 6.0 6.0 2.9 0.0 0.0 1.9 5 14 6.5 6.0 7.0 0.0 1.9 0.1 1.9	/06/85				2.0	14	0.0	0.0	2.0					
7 24 6.0 7.0 7.2 0.1 0.11					5 °	3	0.1	0.0	1 .		0.1			
8 5 7.0 7.0 7.0 7.0 7.0 7.1 0.1 </td <td></td> <td>0 r</td> <td></td> <td></td> <td></td> <td>22</td> <td>, o , o</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td><pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre></td> <td>aran. dataitus</td>		0 r				22	, o , o			-			<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	aran. dataitus
9 4 6.0 6.0 25 0.0 0.0 0.0 1.9 11 16.4 6.0 9.0 91 0.7 0.0 1.9 5 14 6.5 6.0 7.0 0.0 0.0 1.0					8.0	1001	0.2	0.0	2.8	0.1			VU.1 UNIVERT. CIGUNE	5011 (1AO (100 /2
11 11 6.4 6.0 9.0 91 0.7 0.0 1.9 5 1.4 4 6.0 6.0 25 0.0 0.0 1.0 5 1.4 6.5 6.0 7.0 0.0 1.0					6.0.	ž		0.0	0		i		unidentified	
4 4 6.0 6.0 6.0 2.0 0.0 0.0 5 14 6.5 6.0 7.0 0					0.6	35	0.1	0.0	1.9					
	5/08/85	4	4 6.(55 55	0.0	0.0	1.0					
	1,51				5	- 2	c c			• :	-			

Stomach contents of Stage 1 (with yolk) striped bass larvae collected from the lower Roanoke River. delta. and western Albemarle Sound. North Carolina. in 1985. n = number

.

.

Table 32. St

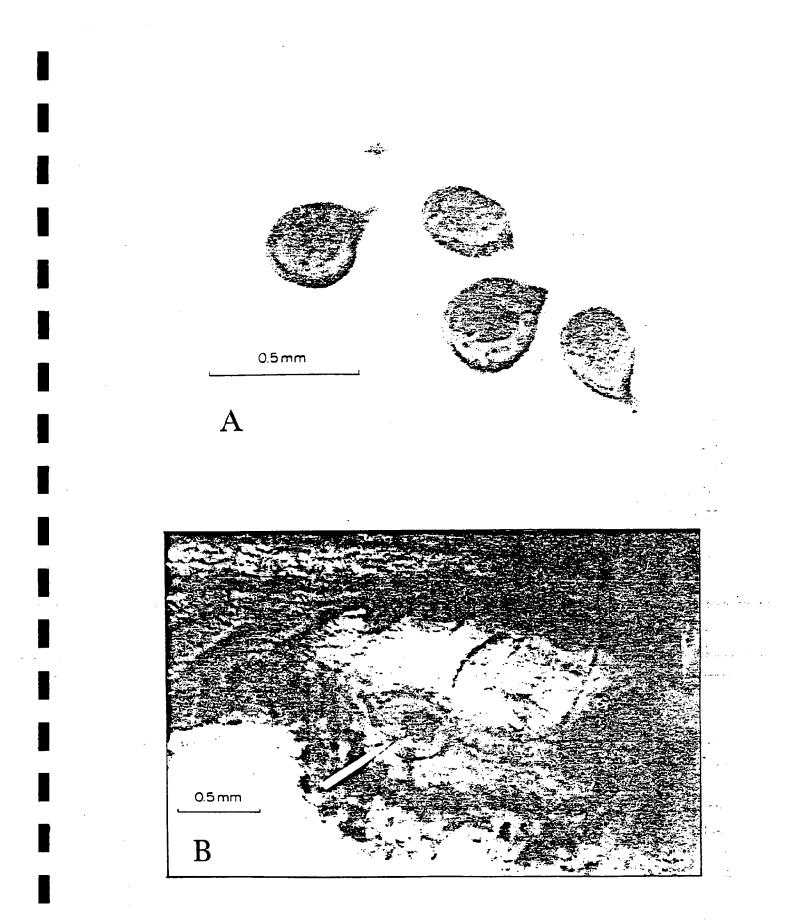
32. (cont'd)				-								
						Copepoda	f ood		type Cladocera	era		
Date ti	Sta- tíon	n We	Fish length Hean Hin I	length Hin Max	% with food	Cope- podite	Adult	Bos- mina	Alon- ella	Daph- nia	Chy- dorus	Other
					20	0.0	0.0	1.3				0,3 rotifer
	= 22	2 ~ €	6.0 6.1 6.1	6.0 6.0 6.0 6.5	50 85	000	0.0	2.5	-			
					100	0.0	0.0	1.0				
68/77/G				5.5 6.0	32		0.0					
-				• •	100	0.0	0.0	1.0		-		
				6.5 7.0	001	00	0.0	8.0 9.0				
5/24/85				6.0 7.0	8	0.0	0.0	2.8				
					00	0.0	0.0	9.6				
-			• • • •		8	0.0	00	1.0				1.0 ostracod
					38	0 a 0 0	0.0	1.2		0.1		0.9 copepod eggs
5/26/85				6.0 6.5	29	2.0 0	0.0	6.0				0.7 copepod eggs
					8 <u>8</u>	0.0	0.0	1.0				
				6.0 6.5	100	0.0	0.0	3.0				
C8/67/G					9,0							
				*	00							
				5.5 5.5	0							
				. '	•							
48/20/9				* * * * * *								
				•	, 14	0.0	0-0	0.7				0.3 insect
			•	0	9							
6/06/85					0							
	9	4		9 5	0	4	((•				
	ح			*				-				

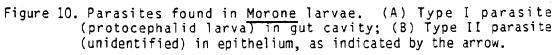
Table 32

Table 33. (cont'd)

1

		Other					1.0 ostracod	detritus																																detritus
		Chy- dorus																																						
	cera	Daph- nía																с с	7. 0																					
type	Cladocera	Alon- ella																																						
Food		Bos- mina	2.5	4.0	1.0	0.0	0.0	2.4	0.0			1.3	1.2	1.0	0.0				0.0		•	0	0.1	0.0	0.0									5.4		6.0	1.0	i.0		
	<u>bda</u>	Adult												•:																	*	•								
	Copepoda	Cope- podite Adult	0.0	0.0	0.0	1.0	0.0	0.8	12.0			0.0	0.0	0.0	0.0	4		2	0.1			0.0	0.0	2.0	2.0			6							0.0	0.3	0.0	0.0		
		food	60	20	100	100	25	100	001	0	0	12	30	E	2	1001	11		20	•	• :	2:	12	2	æ	0	•	• :	<u></u>	2		; -	• c	, e a	52	3	100	100	0	0
		Hay .	6.5	6.5	#		6.5	6.0		#	6.5	0.7	.7.0	5.9	6.5					• •	•	0.0		0.	e.0	0 /	9				a u a u			0.2	5.5	.0.9	.0.9		6.5	9"9
[Hin Hin	6.0	6.0	*		0'9	5.5	-	4.	6.0	6,0	6.0	6.0	5												0. 5					o ose			9.0	5.0	6.0		6.0	6.0
		<u>Fish length</u> Mean Min Ma	6.2	6.2	·7.0	11.0	6.1	4.9	7.5	7.0	6.2	6.4	6.4	6.1	5.7	-		.			0.0		5.8	9'9 9	5.7	6.2	6. 5	2°.2			0 0 0 4	5 a			6.0	5.8	6.0	6.0	6.1	6.0
		e	2	2	-	-	4	S	-		m	96	20	9	2	5	4 4		o -		-	50 50	8	~	n j	12	22	Ð	S.		2	22	3	.	202	12	2	-	80	20
		Sta- tion		ص	~	- 80	6	Π	14	~	ŝ	-	s	9	~	. œ		h ;	¥ (- -	đ	م	~	80 j	=	م	ص ہ	_ (ۍ د	22			~	.α	ە م	Ē	1	15	4	ŝ
		Date							1971	5/08/85									2010102	cg/nt/c				•		5/12/85						6/11/86	CO/HT/C		•	 1		 •	5/16/85	
I		м. - -	1				•					-																								1 (• • •	-			


were the primary food items. Larvae ranging in size from 15.0-23.5 mm TL consumed larger organisms than striped bass larvae still possessing oil or yolk. Food items included both copepodid and adult copepods, <u>Daphnia</u>, chironomids, amphipods, clams, and fish including several identified as <u>Morone</u> (Table 34). No smaller cladocerans such as <u>Bosmina</u>, <u>Alonella</u>, or <u>Chydorus</u> were found in stomachs of the larger larvae.


PARASITISM OF LARVAE. Internal parasites were found in 64 (2%) of 3217 <u>Morone</u> larvae examined. These parasites apparently were of two types (Figure 10): (I) a tear-drop shaped organism of 0.2-0.3 mm diameter (across the short axis), which was connected to the gut by a filament; and (II) a spherical type organism of 0.5-0.8 mm diameter.

The Type I parasite, tentatively identified as a protocephalid larva (Cestoda:Proteocephalidae), was only found attached to the intestine and stomach within the gut cavity and was less abundant than the Type II parasite. The Type II parasite (unidentified) was found in three locations: 1) epithelium of the gut cavity, 2) near the anus, and 3) anterior to the heart. The primary location was within the gut cavity.

There was no evidence of a particular size of <u>Morone</u> larvae being more susceptible than others to parasitism. Lengths of parasitized fish ranged from 5.0 to 24.0 mm TL (x=10.7). This was not tested statistically since not all fish larvae were examined closely for parasites; only those larvae examined for gut contents were checked for parasites. In addition, the population of larvae subject to collection were the smaller larvae, which have less ability to avoid capture.

Samples from all stations, except 1-4, contained parasitized larvae. Stations 8, 11, and 13 had seven or more parasitized larvae; no other station had more than four. It may be coincidence that the three stations with the highest occurrence of parasitized fish larvae were in close proximity to each other; however, these stations also exhibited the highest densities of other fish species, thereby perhaps enhancing parasite abundance.

Phylim Amel Ida Suboréer Calandia (adult clanoid copendo) (lass topporation) Suboréer Calandia (adult largeticied cupued) (lass topporation) Suboréer Calandia (adult largeticied cupued) (lass topporation) Suboréer Calandia (adult largeticied cupued) Suboréer Calandia (adult largeticied cupued) Suboréer Calandia (adult largeticied cupued) Suboréer Merpacticied (adult cupued) Suboréer Calandia (adult largeticied cupued) Suboréer Calandia (adult largeticupued) Suboréer Calandia (adult la	Phylum Rematoda (Aenatode worms)	Order Eucopepoda
era (polychaete worms) veta lesiopora plesiothecata Subclass <u>Siylaria Jácustris</u> <u>Order</u> <u>Pero</u> »). (1ass Insecta <u>Subclass</u> <u>Subclass</u> order <u>Aeolosoma Jeidyi</u> da (spiders) <u>Rea</u> <u>Subclass</u> Subclass <u>Subclass</u> <u>Subclass</u> <u>Subclass</u> <u>Subclass</u> <u>Subclass</u> <u>Subclass</u> <u>Subclass</u> <u>Subclass</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subclass</u> <u>Fantly Polacuuridae</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Class Bytorica</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Subrated</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Class Bytorica</u> <u>Class Bytorica</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Class Bytorica</u> <u>Subrated</u> <u>Class Bytorica</u> <u>Class </u>	hylum Annelida	Suborder Calanoida (adult calanoid copepods)
vata liy Maididae Custris Subclass Siylaria lacustris Order <u>Pero</u> sp. (1) Aculosomatidae Order <u>Pero</u> sp. (1) Aculosomatidae Order <u>Pero</u> sp. (1) Aculosomatidae Order <u>Aculosomatidae Ammaridae Subclass</u> Subclass Subclass Order Subclass Subclass Order <u>Calmarus</u> sp. (gamaride Order <u>Calmarus</u> sp. (gamaride Order <u>Calmarus</u> sp. (gamaride Order <u>Calmarus</u> sp. (gamarid, ampilpod) Order <u>Calmarus</u> sp. (gamarid, ampilpod) Order <u>Calmarus</u> sp. (gamaride Order <u>Family Paguridae</u> (prass shrimps) Order <u>Family Paguridae</u> (grass shrimps) Order <u>Family Paguridae</u> (protora <u>Bosmina</u> sp. <u>Older Cladocerans</u> <u>Older Cladocerans</u> <u>Class Hydroso</u> <u>Bosmina</u> sp. <u>Older Cladocerans</u> <u>Class Bosmina</u> sp. <u>Class Bo</u>		Suborder Cyclopoidă (adult cyclopoid copepods)
liy haididae Class Endopter g Stylaria lacustris Endopter g Stylaria lacustris Endopter g Stylaria lacustris Endopter g Endopter Stylaria lacustris Endopter g Proder Colosona leidyi Subras endopter a subrasse frantly tel Rantly Hel Order Amphipoda Subras Apter yagata Subras	Class Oligochaeta	Suborder Harpacticoida (adult harpacticoid cupepods)
[]y Maididae Subclass Endoptergo [Stylaria lacustris Order Coleopter Pero sy. Emaily Gyr Pero sy. Order Coleopter Pablocytaes Family Vel Render Eamily Hel Order Coleopter Order Amphipoda Order Coleopter Suborder Eamilarida Subclass Apterygota Order Lopoba Urder Eamily Hel Order Lopoba Order Peropoter Order Lopota Order Peropoter Order Lopota Order Percopter Order Lopota Order Percopter Order Odonata (Order Percopter Family Pajuridae (jeuss shrimps) Order Henropter Family Pajuridae (jeuss shrimps) Order Henropter Family Pajuridae Order Henropter I catolocera Order Henropter Family Paj	Order Plesiopora plesiothecata	Class Insecta
Stylaria Jacustris Order Coleopter Pero Sv. Pero Sv. Family Gyr Pero Sv. Order Diplera Subfa Aeolosoma leidyi Family Hel Subfa Aeolosoma leidyi Subfa Subfa Subrotarea Family Hel Subfa Subrotarea Family Hel Subfa Subrotarea Subrotarea Family Hel Subrotarea Soutarea Family Hel Subrotarea Soutarea Subfa Subrotarea Soutarea Subrotarea Subrotarea Subrotarea Subrotarea Subrotarea	Faugily Maididae	Subclass Endoptergota
DECD 511. Family Gyr Family Gyr Coder Diplera Aeolosoma leidyi Subda Aeolosoma leidyi Subda Subda Subda	retreated Stylaria lacustris	Order Coleoptera
1) Areolosomatidae Order Diptera Aeolosoma leidyi Subia Ida (spiders) Subia Ida (spiders) Subia Subrata Family Hel Branity Hel Subrata Family Hel Subrata Family Hel Subrata Family Hel Subrata Family Hel Order Collembol Order Amphipoda Order Collembol Order Amphipoda Order Planarod Order Lazrida Subrata Subrata Coder Planarod Order Lazrida Order Planarod Order Lazrida Order Planarod Order Lazrida Order Planarod Family Puguridae (hermit crahs) Order Placopter Family Puguridae (hermit crahs) Order Hemptera Stranchooda Order Cladocera Subrata Subras Pterygota Stranchooda Order Hemptera Stranchooda Order Hemptera Stranchooda Order Cladocera Stranchooda Order Cladocera Stranchooda Order Cladocera Subrataca Eanily Horder He	- 4	Family Gyrinidae (whirligig bentles)
Acclossoma leidyi Family cut Ida (spiders) Subfa Ida (spiders) Subfa Subract Subfass Apterygota Curder Pericarida Subrass Apterygota Order Amphipoda Order Collembol Order Amphipoda Order Collembol Order Amphipoda Order Collembol Order Amphipoda Order Pericarida Order Amphipoda Order Percepter Order Lospoda Order Percepter Order Lospoda Order Percepter Family Puguridae (hermit crahs) Order Memptera Order Classona Order Hemptera Stantity Puguridae (prass shrimps) Order Hemptera Stantity Puguridae Subritae Stantity Puguridae Subritae Stantity Puguridae Colenterata Inter Cladocera Order Hendrerata Conder Cladocera Order Hendrerata	The statily Acolosomatidae	Order Diplera
Ida (spiders) Subfa cea subcastraca Family Hel erorder Pericarida Subclass Apterygota Order Amphipoda Order Ephomerop Gammarus sp. (gammarid, amphipod) Order Ephomerop Gammarus sp. (gammarid, amphipod) Order Pecopter Ephem Order Tectoopter Eamily Pagacumidae (grass shrimps) Order Neuropter Family Pagacumidae (grass shrimps) Order Neuropter Family Leptodora (isopoda Subcrata Collass Pterygota Order Cladocera Subcrata Class Hydrosoa Ephem Diplostraca Subcrata Subcrata Class Hydrosoa Family Ucptuduridae (grass shrimps) Order Hymemopter Family Dominidae (grass shrimps) Order Hydrosoa Bosanina sp. Cladocera Subcrata Class Hydrosoa Eamily Dominidae (grass shrimps) Class Hydrosoa Class Hydrosoa Subcrata Cladocera Subcrata Subcrata Cladocera Subcrata Cladocera Subcrata Subcrata Subcrata Cladocera Subcrata Subcrata Cladocera Subcrata Cladocera Subcrata Subc	Autoria Acolosoma leidyi	' Family Cultcidae
lad (spiders) Subfa cea shalacostraca Family Hel erorder Pericarida Family Hel Order Amphipoda Subclass Apterygota Order Gammarude and Collembol Suborder Gammarude Subclass Apterygota Cuder Isopoda (Isopods) Order Rephanerop Order Decopter Family Palacumidae (grass shrinps) Order Namenopter Family Lauridae (hermit crahs) Order Hambptera Family Luptuduridae (grass shrinps) Order Hambptera Suborder Cladocera Suborder Cladocera i Subclass Pterygota Family Duphilae (grass shrinps) Order Hambptera Family Duphilae (grass shrinps) Order Hambote Family Justuduridae (grass shrinps) Order Hambote Family Luptuduridae (grass shrinps) Order Hambote Family Laptuduridae (grass shrinps) Order Hambote (grass Bisal Valaa Other cladocerans (historea shrinps) Order Shrinps) Order Hambote (grass Bisal Valaa Other cladocerans (grassed instead instead or seed shrinps) Order Shrinps (for sect shrinps) Order Hambote (for sect shrinps) Order (for sect shrinps) Order (for sect shrinps) Order (for sect shrinps) Order Order (for sect shrinps) Order (for sect		Subfamily Culicinae (mosquitos)
Crustacea Subclass Malacustraca Superorder Fericarida Suberder Gammarus sp. (gammaride Suberder Lammarus sp. (gammaride, ampulpod) Order Alsopoda Order Isopoda Superorder Eucarida Order Isopoda Superorder Eucarida Order Decapoda Order Decapoda Order Decapoda Order Decapoda Order Decapoda Order Decapota Suborder Claducera Suborder Claducera Manily Pupmildae (grass Shrimps) Order Hymenopter Suborder Claducera Suborder Claducera Manily Unyminidae Family Hel Order Hymenopter Suborder Claducera Manily Unyminidae Order Hymenopter Suborder Claducera Manily Baylytida Suborder Claducerans Order Hymenopter Suborder Claducera Suborder Claducerats Order Hymenopter Suborder Claducerats Order Hymenopter Suborder Claducerats Order Hymenopter Suborder Claducerats Order Hymenopter Suborder Claducerats Suborder Claducerats Suborder Claducerats Suborder Claducerats Order Hymenopter Suborder Claducerats Suborder Claducerats Suborder Claducerats Suborder Claducerats Subclass Gstracoda (massel ur seet shrimps) Subclass Gstracoda (massel ur seet shrimps) Subclass Copepoda	(Class Arachnida (spiders)	Subfamily Chironominae
Subclass Malacostracia Superorder Pericarida Order Amphipoda Suborder Gammaridea Suborder Lannaridea Order Isopoda (Isopods) Order Isopoda (Isopods) Superorder Eucarida Order Decapoda Superorder Eucarida Order Decapoda Subclass Branchiopoda Subclass Branchiopoda Order Oiplostracd Subclass Branchidae Family Leptodora Subclass Stracoda (muscel or seed shrimps) Family Leptodora Subclass Stracoda (muscel or seed shrimps) Order Hyd Subclass Copepoda Other Cladocerans Other Cladocerans Order Hyd Bosmina sp. Family Duphnidae Other Cladocerans Other Class Subclass Copepoda	Class Crustacea	Chaoborus sp. (phantom midge)
Superorder Pericarida Subclass Order Amphipoda Suborder Gammarues sp. (gammarid; amphipod) Order Suborder Learida Gammarues sp. (gammarid; amphipod) Order Örder Isopoda Order Uccopoda Order Superorder Eucarida Order (grass shrimps) Order Suborder Of Jobora Order (grass shrimps) Order Suborder Cladocera Suborder Cladocera Subclass Suborder Cladocera Eamily Leptodoria Order Suborder Cladocera Subclass Hylum Coelenterdia Order Hyd Suborder Cladocera Eamily Luptodoria Order Hyd Suborder Cladocera Subclass Subclas Subclass Subclass Subclass Subclas Subcla	Subclass Malacostraca	Other chironomids
Order Amphipoda Suborder Gammaridea Order Suborder Gammarues sp. (gammarid; amphipod) Order Order Gammarus sp. (gammarid; amphipod) Order Order Order Isopoda Gammarus sp. (gammarid; amphipod) Order Superorder Eucarida Order Order Superorder Eucarida Order Order Superorder Eucarida Order Order Suborder Claduceu Grant crahs) Order Subclass Branchiopoda Order Order Suborder Claduceu Suborder Claduceu Order Suborder Claduceu Eamily Luptuduridue Order Family Luptuduridue Phylum Coelenterata Order Family Buuminidue Class Hydrozoa Order Hyd Subclass Gstreecoda Eamily Duphnidae Order Subclass Gstreecoda (mussel or seed shrinps) Class Bivalvia Subclass Copepoda Inter claducerans Eamily Hylum Mollusta Order Subclass Copepoda Inter claducerans Eamily Hylum Subclass	1.2.4.4.4.5.20perorder Pericarida	Family Heleidae (biting midyes)
Suborder Gammaridea Order Gammarus sp. (gammarid; amphipod) Order Order Isopoda Gammarus of Gammarid; Superorder Eucarida Order Superorder Eucarida Order Order Decapoda Order Superorder Eucarida Order Order Decapoda Order Family Pajarudue (grass shrimps) Functiopoda Order Subclass Brauchiopoda Order Subclass Brauchiopoda Order Subclass Brauchiopoda Order Subclass Brauchiopoda Order Order Diplostracd Subclass Subclass Brauchiopoda Order Subclass Brauchiopoda Order Bosmina Sub Eamily Luptodore Bosmina Sub Family Buyuminidae Inter Cladocerans Phylum Molluska Order Subclass Gstracoda (missel or seed shrimps) Class Bivalvia Subclass Copepoda Family Nu Subclass Copepoda Family Nu Subclass Copepoda Family Nu Subclass Copepoda Family Nu Subclass Subclass Subclass Family Nu	1 121 121 0rder Auphipoda	Subclass Apterygota
Gammarus sp. (gammarid: ampnipod) Order Order Isopoda (isopods) Order Superorder Eucarida Order Order Superorder Eucarida Order Order Superorder Eucarida Order Order Superorder Eucarida Order Order Order Decapoda Order Order Subclass Branchiopoda Order Order Subclass Branchiopoda Order Order Subclass Branchiopoda Order Order Subuclass Branchiopoda Order Uspostraca Order Subuclass Branchiopoda Order Uspostraca Subclass Subuclass Branchiopoda Order Hyd Subclass Subuclass Branning sp. Phylum Coelenterata Family Bu-minidae Class Hydrozoa Bosmina sp. Phylum Molluska Other cladocerans Order Hydrozoa Subclass Getracoda (mussel or seed shrinps) Class Bivalvia Subclass Gotepoda Family Nu Subclass Copepoda Family Nu	Suburder Gammaridea	Order Collenbola (springtails)
Order Isopoda (Isopoda) Order Superorder Eucarida Order Order Decapoda Order Family Puguridae (hermit crahs) Order Family Puguridae (hermit crahs) Order Functiopoda Order Subclass Branchiopoda Order Subclass Branchiopoda Order Subclass Branchiopoda Order Subclass Branchiopoda Order Order Diplostraca Order Subclass Branchiopoda Order Order Uppostraca Order Bubudar Cladocera Subclass Family Luptodora Eleptodora Bosmina sp. Phylum Coelenterata Daphnidae Class Hydrozoa Bubitia sp. Phylum Molluska Other cladocerans Order Hydra Subclass Getracoda (musse) Class Bivalvia Subclass Copepoda Inseed shrinps) Subclass Copepoda Family Nu	Gannaerus sp. (gaunarid; anphipod)	Order Ephemeroptera
Superorder Eucarida Order Order Decapoda Order Family Pujuridae (hermit crahs) Order Family Pujuridae (grass shrimps) Order Subclass Branchiopoda Order Suborder Cladocera Order Suborder Cladocera Subclass Suborder Cladocera Subclass Suborder Cladocera Order Suborder Cladocera Subclass Suborder Cladocera Subclass Suborder Cladocera Subclass Suborder Cladocera Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Subclass Copepoda Subclass Subclass Subclass	Order Isopudu (Isupods)	Ephemerella sp. (mayfly)
Order Decapoda Order Family Puguridae (hermit crahs) Order Funily Puguridae (hermit crahs) Order Subclass Branchiopoda Order Suborder Cladocera Order Suborder Cladocera Order Suborder Cladocera Order Suborder Cladocera Order Family Leptudoridae Phylum Coelenterata Family Burminidae Class Hydrozoa Bosmina sp. Family Burminidae Family Duphnidae Phylum Molluska Other cladocerans Class Bivalvia Subclass Gstracoda (mussel or seed shrimps) Class Bivalvia	Superorder Eucarida	Order Odonsta (drayonflies)
Family Puguridae (hermit crahs) Order Funily Pulaemunidae (grass shrimps) Order Suborder Diplostraca Order Suborder Cladocera Suborder Suborder Cladocera Suborder Family Leptudoridae Baylum Coelenterata Tamily Burminidae Order Family Burminidae Class Hyrmozoa Bosmina sp. Family Burminidae Family Duphnidae Family Burminidae Subclass Gstracoda (massel or seed shrimps) Class Bivalvia Subclass Copepoda Subclass Copepoda	Order Decapoda	Order Plecoptera (stoneflies)
Funily Palacuunidae (grass shrimps) Order Subuctass Branchiopoda Order Suburder Diplostraca Order Suburder Claducera Suburdee Family Leptudora kindti Order Tamily Burminidae Phylum Coelenterata Family Burminidae Order Hyd Family Burminidae Class Hydrozoa Bosmina sp. Family Burdinidae Order Laducerans Order Hyd Subuctass Gstracoda (mussel or seed shrimps) Class Bivalvia Subclass Copepoda Family Mu		Order Trichoptera (caddiśflies)
Order Jocara Subclass Locara Subclass Auduridae Order Hyd Johnidae Famil Johnidae Hydrozoa Minia sp. Famil Juphnidae Hydra Jadocerans Class Bivalvia I ssei ur seed shrimps) fin Hydra I ssei ur seed shrimps) fin Hydra		Order Neuroptera
locera Subc .uptudoridae Subc .uptudoridae Phylum Coelent Juouninidae Class Hyd Juphuldae Orde Juphuldae Phylum Mollusk Jadocerans Phylum Mollusk Issel or seed shrings) Fami	Subclass Branchiopoda	Family Sisridae (Spongilla files)
Cladocera Subc Ily Leptodoridae Phylum Coelent Leptodora Kindli Class Hyd Ily Busuninidae Class Hyd Bosmina sp. Class Byd Dophnidae Dophnidae Class Biy er cladocerans Phylum Hollusk er cladocerans Class Biy	the order Diplostrace	Order Hemiptera (true bugs)
ily Leptuduridae Leptuduridae Ny Burainidae Bosmina sp. Daphnidae Daphnidae Phylum Mollusk er claducerans Class Biv fami	Suborder Cladocera	Subclass Pterygota
Leptodora Lindii 11 burminidae Bosmina sp. 01 Daphnidae Daphnidas er cladocerans (1355 Biv (1355 Biv fam)	Family Leptodoridae	Order Hymenoptera (wasps)
lly burminidae Bosmina sp. Class Hyd My Duphnidae Daphnia sp. Phylum Mollusk er claducerans Class Biy a (mussel or seed shrimps) Fam)	Leptodora kindli	Phylum Coelenterata
<u>Bosmina</u> sp. Orde mly Duphmidae Daphinia sp. Phylum Mollusk er cladocerans (lass Biy faml	structure Family Borminidae	Class Hydrozoa
nly Duphnidae Daphnia sp. Phylum Mollusk er cladocerans (nassei ur seed shrimps) a (mussei ur seed shrimps) 	Bosmina sp.	Druter Hydroida
Daphinta sp. : er cladocerans Phylum Mollusk a (mussel ur seed shrimps) * Class Biv ***	Fainly Duphnidae	Family Hydridae
er cladocerans Phylum Mollusk a (mussel or seed shrimps) * Class Biv ****	· Daphnia sp.	<u>Hydra</u> sp. (hydrus)
a (musse) or seed shrimps) · · · Class Biy Fam)	Other cladocerans	Phylum Molluska
	Subclass Ustracoda (musse) or seed shrimps)	Class Bivalvia
Rangia cuneata (freshwater clan)	' Subclass Copepoda	Family Mactridae
		Rangia cuneata (freshwater clau)

,

....

Densities (number/m³) of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984. Station numbers as in Figure 1. Table 37.

. .

	-						. .												
					<u>о</u>		•			0	H								Pate
ш	1	2		4	5	¢	~	80	6	91	п	21	EI	Ħ	5	1 6	'n	81	Average
8/B4		-	.	.	813.7	691.7	1.462	1165.8	6.049	1190.6	557.1	8.03	412.7	365.1	1277.0	*	#	-	774
19/0	4.M 5	400.6	447.5	352.0	304.5	245.5	1.02	1.979	280.1	16.9	336.7	850.9	538.4	312.7	401.5	*	×	×	476
10/5		I MI	0.01	305.3	216.1	549.4	452.3	6.005	1246.9	463.4	294.2	408.2	359.7	242.4	354.8	*	*	*	4
2/87	310.1	245.1	420.8	372.4	517.8	246.1	693.6	2.617	517.8	913.3.	785.9	451.8	627.2	319.0	221.6	*	•	*	437.0
18/1	177.9	9.274	6.635	6.625	605.1	942.3	541.8	534.8	128.4	413.9	549.4	358.9	201.02	*	201.4	*	*		3
	910.6	6 0VY	9 LG3	1 612	1 770	9. 19	426.6	110.6	615.9	243.5	641.2	169.4	992 B	275.2	2,82	*	*	#	623
19/10	149.7	144 4			456.3	497.2	536.6	784.9	4119.3	736.8	1.1102	505.8	390.2	487.1	316.9	*	*	*	3
194	150 3	116.7	2.61	112 6			6 96	1151.3	101	521.8	2234.8	92.0	1256.7	940.1	405.5	•	*	×	5 83
have a			*	*	8.428	4.414	244.4	9 11 4	0 500	244.7	E. 19E	255.9	105.7	623.8	425.3	*	*	*	\$
19/		+	-	*	No. H	5	169	1997	1377.8	435.3	561.8	189.2	800.1	485.1	296.7	*	*	*	651.
	ŧ		×	*		9929	211.0	202	4 L 00	165.0	445.3	199.4	8,165	0.919	582.2	•	*	•	S
		*		-		*	? } •	E MA	5	147. I	757.0	462.7	499.4	407.4	397.1	774.2	140.4	331.9	473.
19/91						*	*	611.1	6.7011	209.4	541.6	270.2	522.3	416,9	1.114	1124.2	563.3	363.7	1 8
6/18/84		•	*	4	·	•		547.4	9,0211	195.9	1631.2	385.4	655.4	425.3	4 .63E	821.9	8,684	364.6	505
									-				-						

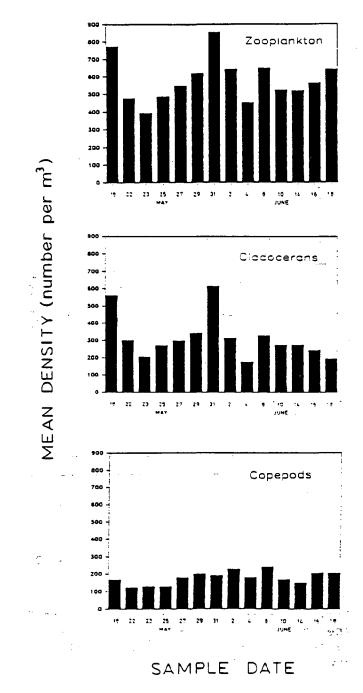


Figure 11. Relationship of sampling date to mean density (number/m³) of total zooplankton, cladocerans (excluding Leptodora), and copepods present in the sampling area (Stations 1-18) in 1984.

Mean densities (number/m³), by station, of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985. Station numbers as in Figure 1. Table 39.

z

0

					•	-	•	•	,	:						
Organism grouping	-	8	m	4	S	9	~	8	6	9	11	12	8	14	15	16
Nama toole s	0.0	0.0	0.0	0.0	0.2	0.2	6.0	0.2	6.0	0.0	0.3	0.0	0,0	0.0	0.0	0.0
Stularia	0.0	0.0	0.0	0.0	0.0	0.1	0.7	1.5	2.1	0.7	~~~	0.1	1.0	0.3	0.1	0.0
Acolosoma	6.0	2.6	6	0.8	1	20	5	80	20	90	10	04	0.2	0.0	0.6	0 0
Arachnids	0.9	0.0	0.0	6.0	11	50	1	3.6	10	1.0	2.1		0.1	1.0	0.5	0.0
Gamerids	0.0	1.8	0.8	0.0	1	0.8	0.6	1.0	0.1	0.2	1.1	0.3	16.2	17.5	27.6	13.5
Leotadora	0.0	6.0	0.0	0.0	0.5	0.2	0.2	4.4	0.0	0.6	6.4	1.2	6.14	95.3	6.04	
Bosmina	13.5	10.8	29.8	72.9	118.9	0.682	252.6	244.2	202.3	22.1	219.9	213.4	395.5	253.0	250.4	6.1
Daphnia	1.2	3.5	3.7	66.4	74.9	179.2	176.0	164.7	97.5	115.0	1.041	172.4	1.971	86.7	954.5	3.4
Other cladocerans	6. 61	4.4	20.6	47.2	84.7	152.5	9.66	203.0	145.6	135.4	145.2	104.5	113.6	59.9	5.5	16,8
Ostracods	15.2	17.8	6.6	12.0	9.61	46,9	8.8	21.2	95.6	21.4	131.4	24.6	36.5	16.6	2°.2	6.1
Calanoid copepod	4.6	1.9	7.8	8.9	67.8	N.1	38.9	261.7	53,6	9'.16	147.7	<u>50.6</u>	178.4	99.2	9,8,8	16.8
Cyclaplaid copepad	7.2	2	5.01	39.3	172.0	281.9	249.6	1921.0	1.866	1.9.1	1046.1	0.42	0,167	477.7	404.4	87.6
Harpacticoid copepod	1.8	0.0	1.9	9.11	47.4	49.1	53.8	821.7	78.2	62.4	331.9	36.1	155,3	126,6	71.9	23.6
I sopods	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	1.1	0.2	0.0	0.0
Coleoptera larvae	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0,0	6.4	0.7	0.0		0.0	1.8	1.6	0.0
Coleoptera adult	0.0	0.0	0,0	0.0	0.0	0.3	0.3	0.3	0.3	0.4	0.2	0.3	0.0	0.2	0.3	0.0
Itosquito larvae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0
the source adult	0.0	0.0	0.0	1.0	0.0	0.0	0.0	6.0		0.0	0.5	0.4	0.0		0.3	0.0
Phantom midge larvae	0.0	0.0	0.0	0.0	16.7	I .8	4 ,9	8.S	3.3	6,3	14.7	7.5	9.2	5.2	5.9	6.7
Phantom midge pupae	0.0	6 0	0.0	1.9	3.6	1.5	1.4	2.4	2.8	1.5	1.8	1.2	1,8	9.0	0.4	0.0
Chironomid Jarvae	0.9	6.0	6.0	1.9	4.8	3.9	2.3	0, 1	5.6	1.1	6.4	0.9		6.9	1.6	0.0
Chironomid adult	0.0	0.0	0.0	0.0	0.2	0.1	0.6		0.9	0.1	1.2	0.4	0.5	0.0	0.4	0.0
Biting midges	0.0	0.0	0.0	0.0	0.0	0.3	0.0	6 ,0	+ 0	0.2	0.0	0.0	0.4	0.0	0.0	0.0
Springtatis	0.0	0.0	0,0	0.0	0,0	5,0	0.2		2,0	0.0	4.0 0		0.0		30	0.0
Under Diptera	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5,0	1.0	7 0 0	n , 0	0.0 0	7'n	2.0	.
hayfiy nymhs	0.0	0.0	0.0	0.0	0.0	.	0.1	0.0	2.0	0.0	0.2	0,0	0.2	0.0	0.0	0.0
Hayfly adults	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dragonfly larvae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0,0	2°0	0.0	n .0
Dragonfly inymus	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
StoneThes	0.0	0	0,0	0.0	0	2	0.0	5	3,0	2,0	2.0					
Lanus TIY larvae	0.0	6.0	6. T	0.0	7.0	8.0	c ,)		° , 0	2 C	7.0		.	• ••	, v 0	
Capits fly aguit	0,0	0.0	0,0	0.0	n 0	0.0	0.0	7,0			0.0	- 0	1.0	3	2.0	a 0
Diviso				0.0												
Decker Unerstand																
under maninpuenta Modes	2.0															
Randia					-											
Snall	0.0	00	0.0	0.0	0.0	00	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0
Unident i fied	2.9	0.0	1.8	9 	5.4	5.3	3.9	1.2	6.5	9.6	7.5	3.6	3.5	2.9	4.6	6.7
Total density by station	37.6	56°9	101.3	236.9	623.2	1095,8	914.4	4034.6	1103.5	851.1	2262.5	914.5	1926.1	1247.4	1951.3	192.1
Average volure sampled (m3)	5.3	5.5	5.4	5.2	1.1	11.2	11.6	10.8	11.6	10.01	11.8	10.7	11.9	11.8	11.5	6.9
(n) Dates sampled	-	-	1	-	15	61	18	61	8	ଷ	61	20	11	18	18	-

Mean densities (number/m³), by date, of zooplankton collected in lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985. Station numbers as in Figure 1. Table 41.

-..

.

Organi sn grouping 425 Kenstochs 0.0 Srylaria 0.0 Aracolosoma 0.0 Aracolosoma 0.0 Aracolosoma 0.0 Aracolosoma 946.1 Deptodra 213.6 Other cladocerans 946.2 Other cladocerans 62.1 Other cladocerans 62.1	42% 0.3	ম্ব	430	25	3	35	ន	510	512	514	516	513	250	522 .	524	526	8	62	8	610
bocerairs 22 23	0.0																			
boerans 20 96	0.3	1.0	1	6.0		0.4	0.0			0.0	0.0					0.0	6.0	0.0	0.0	0.4
bcerans bcerans		0.6		6.0		6.0	1.2			9.0	2					0.3	0.0	1.2	0.0	0.3
bcerans bcerans		2		0		9.0										٤ 0				0.3
locerans 21	0.4		4.0	1	4	6.0	0.3	1	0.6	5.0	2	:				1.9	6.1	5.2	0.6	2.2
s stocerans scoceod				6			5									6.0				1.9
socerans corecod																99				0.4
arlocerans s copeod	•						1			 - 										
artocerans s copepod	-			5			7.74										-			
	-	•••		457.3			102.9													2
				742.4			22.3													9.5
				357.3			62.3													13.2
				88.3	28.5		6.06				104.1 5							176.8 1	_	1.8 1.9
5							19.00	_					-		7			_	_	6.0
		170.8-1		5 656			147.9													17.6
		۰.		0			0.0											-		0.0
		9	8												00		0.0			0.0
																				5
																				3
0				2																2
				. .			0.0	2												3
Phanton midge larvae	4	6	9.5	9.4			N (4	0.0								20		ი. ი ი	
lac.		0.9	0.0	0.5			2.4								6 .1					3
Ð		H.I	s. 5	З.б			1:2	2.1	1.0						5.1		8.1		7.1	2
Chironomid adult		0.0	0.0	0.0				0.7							0.2		P .0		.	2
2		1.0	0.0	0.3			0.0								0.0		0.0		0.0	0.0
		1.5	0.8	0.0			0.0								0.0		0.0		0.0	0.0
'n.		0 .3	0.0	0.0			0.0								0.0		0.0		0.3	0,0
		0.0	0.0	0,0			0.0								E.0		0.0		2.0	2
		0.0	0.0	0.0			0.0								0.0		0.0		0.0	0.0
		0.0	0.0	0.0			0.0		0.4				0.0		0.0	0.0		0.0	0.0	0.0
nymuhis		0.0	0.0	0.0			0.0	1					•		0.0		2.0 2			3
	:	0.0	0.0	0.0			0.0								0.0		0°0		.	0.0
Ð		0.0	1,2	. .			1.5								0.0		5 .0		.	2.0
		0.0	0.3	0.0			0.2								0.0		0.0		0.0	0.0
Spongillafly larvae		0.0	0.0	0.0			0.0								0.0		0,0		0.0	
		0.0	0.0	0.0			0.0								0.0		0.0		0.0	0.0
		0.0	0.0	0.0			0.0								0.0		0.0		0.0	0.0
		0,0	0.0	0.0			0.0			•					0.0		0.0		0.0	0.0
		0.0	0.0	0.0			0.0								0.0		0.0		0.0	0:0
		0.0	0.0	0.0			1.2								0.3		1.5		0.4	0.0
		0.0	0.0	0.0			0.0								0.0		0.0		0.0	0.0
Unidentified 1	10.6	15.5	9.7	6.9	6.5	5.6	1.4	4.3		5.7	3.6	4.0		1.3	1.3		0.8		2.2	8.7
						-														
Total density by date 255	6.8.6	17.3 50	156.4 3	1 6.216	253.8 317.1 595.4 315.9 1590.9 1349.5 1070.1 595.8 470.0 393.6 746.9 822.3 1006.8 1104.9 1432.8 1520.5 993.9 595.5 295.6 485.5	1 2.9ME	91.070	95,8.4	0.03	n.6 74	6.9 82	201 6.6	11 8.3	04.9 14	32.8 1!	50.59	9.0.9 5	95.5 2	95.64	35.5
ed (m3)	1.2	10.5	10.6	12.5	8.6	9.7	8.6	10.4	- 6°6	8,01	9.3 1.	1.6	9.7	10.6	8.01	9.2	9.8	6.6	1.01	10.4
	S	9	2	2	15	5	5	15	15	15	M	9	Ξ	Ξ	=	Ξ	ð	Π	=	σ

not at river stations. In 1985, <u>Leptodora</u> was found as far upriver as Station 2 (Table 39), although it remained most abundant in western Albemarle Sound.

CLADOCERA. Cladocerans comprised the most abundant zooplankter group in 1984; their relative contribution (minus Leptodora) averaged 51.8% by station (Table 42) and 53.2% by date (Table 43). Cladocerans were most abundant at Stations 9 and 11, averaging 756.0/m³ and 531.6/m³, respectively (Table 36). Lowest densities occurred at Stations 1, 2, and 3 (156.7-216.7/m³). Greatest mean densities of cladocerans ($615.1/m^3$) were observed on 31 May 1984, influenced to large extent by Station 9 and Station 11 (Table 44). Lowest average densities of 177.4/m³ occurred on 4 June. No correlations were observed (Table 5) between mean density of cladocerans and sampling date or river flow, and no multiple regression model to predict cladoceran abundance was significant at P<0.05 (Table 6).

In 1985, all cladocerans combined were the second most abundant group of zooplankton (after copepods), representing a relative contribution of 29.2% by date (Table 45) and 43.8% by station (Table 46). The category was subdivided into Bosmina, Daphnia, and other cladocerans (excluding Leptodora) in 1985 to determine abundance relationships between striped bass larvae and their primary food sources. Bosmina were the most abundant cladocerans, comprising 12.4% of the zooplankton by date (Table 45) and 19.1% by station (Table 46). Daphnia was the second most abundant, representing 7.6% of all zooplankton by date and 13.1% by station. Cladocerans were patchy in distribution. On several occasions, cladocerans exhibited high abundance within the study area, notably at Station 15 on 30 April 1985 (Table 47). The density value of 19,869/m³ reflects a high concentration of Daphnia in the area on 30 April; at Station 13, approximately 2 km away, the concentration of cladocerans was low $(450/m^3)$. Average densities of Bosmina in the study area (Stations 5-15) were significantly correlated with JULDATE, FLOWO , and phytoplankton cell density (Table 11). Stepwise regression (Table 12) selected the variables JULDATE and average water temperature (TEMP) as best predictors of Bosmina abundance $(R^2=0.595; -n=20; P<0.001)$. For Cladocera as a group, only the sampling date (JULDATE) was an important predictor of average cladoceran abundance $(R^2=0.468; n=20; P<0.001)$.

Relative contribution (%), by date, of organism groups in zooplankton samples collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1984. Station numbers as in Figure 1.

					a	<	-	w							Overall
Organism grouping	519	225	523	525	527	63	B	62	9	68	610	614	616	618	
				•						•			0	00	~
likitatodes	0.0	0,0	5	? .			2	5		2			5		2 -
Polychaete worn	2	2			2.0		2	2,0	2.0				•	2	
Stylaria	4.0	°.	9.0	0	.	5	2	3		v 0			2	3	
Dero H	0.1	¢,	1.0	0	-	0.0	ð,	2		0.0	?		? {	3	-
Acolosama	0.1	0.1	0.1	0.1	0.3	ą	o.	0.1	0.5	5	0.0	0.0	0.0	0.0	0.1
Arachnids	0.3	0.1	C.0	0.1	0.6		0.0	0.2	0.3	0 .4	0.1	. .9	 0	0.4	0.3
Garmarids	0.1	1.1	1.1	1.2	. 0.6	1.9	1.1	2.0	6.3	1.1	1.3	1.6	0.8	9. 6	1.6
Participation	90	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	Q.
Participation Trea		00		0.0	0.0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	q
and the second	; -				00	04	0.8	0.1	10	0.1	5,9	2.2	8.9	9.1	2.0
Other cladecese	A		2		5	55.4	11.8	49.0	1.01	20.7	52.7	5.13	43.4	30.4	53.2
Outer Liguade and	2	4		9	4	6.5	0.8	7.4	1.1	5.6	3.8	9.6	5.7	21.1	5.9
Calanoid removed	90		2	1		4.3	5.5	4.8	4.0	7.8	10.3	6.4	12.5	5.9	5.1
fuelonist concel	16.7	0.01	Ş	21.9	24.6	246	15.6	21.7	28.3	22	17.4	18.5	18.3	1.61	21.0
) ¥		, - 			5	2	1	4.6	6	5.6	6.9	5.2
							;;;			:2				00	9
Coleoptera larvae		3			2	5				32	; -	3			2 -
Gyrinidae Jarvae		₽;	0	5	??	2,4						,			
Gyrinidae adult	F .0	5	33	• •	: `	₹.	7. ()	5				2, 4			
Posquito larvae	o.	0.0	0.0	0.0	2	0.0	•	⊇, «	7.0 7	0.0		2,5	,		,
Prospuito pupae	0.0	0	.	0	.	2.0	.	<u>,</u>		0.0			2,6		,
Prospection adult	o.	0.0	9	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	2.0	5	? ;
Phanton midge larvae	0.3	0.4	0.1	0.1	0.2	0.1	0.1	6.0	2	1.0	9.0	0.6	9. j	6.0	0.0
Phantom midge pupse	0,2	0.2	0.5	. .0	9.4	Ģ	0.1	0.2	0.7	3	0.2	0.6	0.5	4.0	0.3
Chironamid Tarvae	0.3	1.3	1.8	1.8	1.5	0.6	0.6		2.7		0.8	0.3	0.4	0.6	1.1
Chironomid adult	0.5	0.1	0.1	۰،1	Q	0.1	٩.	¢.	1. 0	0.1	0.0	0.0	0.1	0.1	0.1
Biting midges	0.1	0.1	0.1	0.2	o.	0	0.0	0.0	0.1	0.1	0.0		0.2	0.1	0.1
Mavel v numbs	0	0.1	0.1	0.1	0	. 0.1	9	0.1	0.0	°.	0.0	ç	0.1	q	o,
Havfly adults	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0.0
Order Odonata	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0,0	0.0	0,0	q
Dragonfly larvae	0'0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o,
Dragonf Jy myrruits	0.0	0.0	0.0	9	0.0	0.0	0.0	0.0	0.0	٩.	0.0	0.0	0.0	0.0	o,
Caddis fly Jarvae	¢.	Q	¢.	°,	0.1	0.0	0.1	٩.	I .0	ę,	0.0	o.	0.0	0.0	o,
Caddis fly adult	0.0	0.1	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0,0	0.0	c .0	0.0	0.0	o,
Spongillafly larvae	o.	0.0	o,	0.0	0.0	0.0	0.0	0.0	Q.	0.0	0.0	0.0	0.0	0.0	Q,
Scondillafly adult	0.0	0.1	0.0	1.0	0.2	0.0	0.0	°.	0.2	0.0	ġ	0.0	0.0	<u>.</u>	0
Diving wasp	0.1	0.0	0	0.0	0.0	0.0	0.0	0,0	0.0	o.	0.0	0.0	0.0	0.0	0,
Order Hemiptera	0.2	0.0	0.0	•	0'0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	.
Hydra	0.0	0.6	1,0	0.1	0.5	0.3	0.5	0.8	0.4	0.0	q	0.0	0.0	0,0	0.3
Rangia * ·	o.	0.2	0.4	0.1	0.1	0.3	0.1	0.2	0.0	0.2	0,5	0.8	0.2	0.0	0.2
Stail	Q.	0.0	0.1	0.1	0.0	0.0	0.0	°.	0.3	0.0	0.0	0.0	0.0	0.0	e.
Unidentified	1.5	2.6	2.0	2.9	1.6	0.9	0.7	1.2	2.1	1.0	1.2	1.4	1.3	6.0	1.5
Tath manuation	0 W I			0.00	0 UU	0.001	0.001	0.01	100.001	100.0	100.01	0.001	100.0	100.001	100.0
					21224										
•••															

Table 43.

Relative contribution (%), by station, of organism groups in zooplankton samples collected from the lower Roanoke River, delta, and western Albemarle Sound, North Carolina, in 1985. Station numbers as in Figure 1. Table 45.

.

answer and and<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5/26 5/29 6/2 0.0 .0 0.0 0.0 0.0 0.1 0.1 0.2 0.4	
01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 .0 0.0 .0 0.0 0.2 .0 0.0 0.1 0.1 0.2 0.4	01/9
0 0	D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	.0 0.0 0.2 .0 0.0 0.1 0.1 0.2 0.4	0.1
00 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.0 0.1 0.2 0.4	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 0.2 0.4	0.1
01 01 0 01 </td <td>0.1 0.1 0 0.1</td> <td></td> <td>9.0</td>	0.1 0.1 0 0.1		9.0
01 0 0.1 <th0.1< th=""> <th0.1< th=""> <th0.1< th=""></th0.1<></th0.1<></th0.1<>	01 0 0.1 3.4 3.0 1.0 5 1.5 1.8 1.7 2.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 1.7 0.5 0.5 1.7 0.5 0.5 1.7 0.5 <td>0.1 .0 0.7</td> <td>0.4</td>	0.1 .0 0.7	0.4
85 87 77 85 77 73 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0.4 0.2 0</td><td>1.0</td></td<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4 0.2 0	1.0
B: M:A 31: 11: 27: 27: 20 11: 11: 12: 27: 24: 11: 11: 12: 27: 24: 11: 12: 27: 24: 11: 12: 25: 27: 13: 14: 17: 14: 17: 14: 17: 14: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15: 15:	B: N: 13. <th13.< th=""> <th13.< th=""> <th13.< th=""></th13.<></th13.<></th13.<>	3.8 4.6 4.8	3.6
13 12 22 22 24 114 87 208 103 112 24 25 25 115 11 31 113 113 105 27 12 12 11 113 11 113 105 27 12 12 113 114 114	T.1 112 212 224 114 8.7 208 108 182 20.6 20.6 115 4.4 5.5 To 113 4.7 7.8 113 4.7 7.8 124 24 To 113 4.7 7.8 124 24 25 5 7 4 00 212 10.5 213 49.8 To 113 4.7 7.8 124 24 25 5 7 4 0.9 212 10.5 213 49.8 To 115 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.8 1.5 1.7	6.9
24 12 22 0 03 21 13 58 62 62 49 113 47 78 12 42 17 13 31 05 27 41 44 625 02 114 64 85 00 01 00 00 00 00 00 01 01 01 01 01 00 01 01	2.4 3.2 2.0 0.8 2.1 3.8 5.8 6.2 4.9 11.3 7.8 1.2 7.8 1.2 7.8 1.2 7.8 1.2 7.8 1.2 7.8 1.2 7.8 1.3 7.8 1.2 7.8 1.1 4.1 4.1 5.7 7.8 5.8 5.7 7.4 5.8 7.4 5.8 5.7 7.8 5.8 7.4 5.8 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.3 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4 5.5 7.4	3.2 3.4 8.0	1.9
19 3.2 4.6 2.7 1.8 6.8 5.1 3.7 5.8 5.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.8 3.11 3.7 3.7 3.9 3.7 3.9 3.7 3.9 3.7 3.9 3.7 3.9 3.7 3.9 3.9 3.7 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 <th3.9< th=""> <th3.9< th=""> <th3.9< th=""></th3.9<></th3.9<></th3.9<>	19 3.2 4.6 2.7 1.8 6.8 6.7 0.8 1.0 1.0 2.0 0.0	1.7 1.8 3.1	2.7
418 445 25.0 23.7 33.9 45.0 31.7 27.4 25.9 37.1 3	Hi Hi Zi Ji Ji <thji< th=""> Ji Ji Ji<!--</td--><td>3.8 10.3 29.7</td><td>8.4</td></thji<>	3.8 10.3 29.7	8.4
epsile 117 4.3 3.2 7.6 308 13.4 12.7 6.5 7.4 10.5 11.7	end 1,7 4,3 3,2 7,6 20,8 10,9 12,7 6,5 7,4 10,9 21,2 19,5 23,5 </td <td>65.5 43.1 29.7</td> <td>40.2</td>	65.5 43.1 29.7	40.2
00 00<	0.0 0.0 <td>0.61 1.15 2.71</td> <td>9,6</td>	0.61 1.15 2.71	9,6
115 0 0 00 00 00 00 00 00 00 00 00 00 00 0	15 0	0.0 0.0 0.0	0.0
70 0 <th0< th=""> 0 0 0</th0<>	70 0	0.0 0.0 0.0	0.0
Ame D.D D.D <thd.d< th=""> <thd.d< th=""> <thd.d< th=""></thd.d<></thd.d<></thd.d<>	Noise 0.0 </td <td>0.0 0.0 0.0</td> <td>0.1</td>	0.0 0.0 0.0	0.1
Yea Diamonda Diamonda <thdiamonda< th=""> <thdiamonda< th=""> <thdia< td=""><td>Yate D.0 <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<></td><td>0.0 0.0 0.0</td><td>0.0</td></thdia<></thdiamonda<></thdiamonda<>	Yate D.0 D.0 <thd.0< th=""> <thd.0< th=""></thd.0<></thd.0<>	0.0 0.0 0.0	0.0
Mate D12 D2 D3 D3 D4 D3 D3 <thd3< th=""> <thd3< th=""> <thd3<< td=""><td>Mat D12 D2 D13 D3 D4 D3 D4 D5 D1 D1 D1 D1 D1 D2 D13 D3 D1 D1 D1 D1 D1 D2 D1 D3 D1 D3 <th< td=""><td>0 0.0 0.1</td><td>0.1</td></th<></td></thd3<<></thd3<></thd3<>	Mat D12 D2 D13 D3 D4 D3 D4 D5 D1 D1 D1 D1 D1 D2 D13 D3 D1 D1 D1 D1 D1 D2 D1 D3 D1 D3 D3 <th< td=""><td>0 0.0 0.1</td><td>0.1</td></th<>	0 0.0 0.1	0.1
Diamonda	Def D.1 D D.0 D D.1 D.2 D.2 D.1 D.3 D.3 <thd.3< th=""> <thd.3< th=""> <thd.3< th=""></thd.3<></thd.3<></thd.3<>	1.8 3.0 0.5	9.1
0 0.4 0.1 <th0.1< th=""> <th0.1< th=""> <th0.1< th=""></th0.1<></th0.1<></th0.1<>	0 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1	.0 0.2 0.7	0.5
0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 <th0.2< th=""> <th0.2< th=""> <th0.2< th=""></th0.2<></th0.2<></th0.2<>	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.2 0.2 0.4	1.0
010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 .0 0.2	0.3
010 0 0 00 00 00 00 00 00 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0
000 00 00 00 00 00 00 00 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0
00 00 00 00 00 00 00 00 00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.1	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0 0.0 0.	0.0 0.0 0.0	0'0
0.0 0.0 <td>0.0 0.0<td>0.0 0.0 0.0</td><td>0.0</td></td>	0.0 0.0 <td>0.0 0.0 0.0</td> <td>0.0</td>	0.0 0.0 0.0	0.0
Its 0,0 <td>Ites 0.0 <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></td> <td>0.0 0.0 0.0</td> <td>0.0</td>	Ites 0.0 <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<>	0.0 0.0 0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ty larvae 0 0.0	0.0 0.0 0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ty addit 3.0 0.	0.0 1.0 0.	0.0
Infly larvae 0.0 <th0.0< th=""> <th< td=""><td>Altry larvae 0.0 <th0.0< th=""> <th< td=""><td>0.0 0.0 0.0</td><td>0.0</td></th<></th0.0<></td></th<></th0.0<>	Altry larvae 0.0 <th0.0< th=""> <th< td=""><td>0.0 0.0 0.0</td><td>0.0</td></th<></th0.0<>	0.0 0.0 0.0	0.0
Latty adult 0.0 <th0.0< th=""> 0.0 <th0.0< th=""> <th0.< td=""><td>Inity statut 0.0 <th0.0< th=""> <th< td=""><td>0.0 0.0 0.0</td><td>0.0</td></th<></th0.0<></td></th0.<></th0.0<></th0.0<>	Inity statut 0.0 <th0.0< th=""> <th< td=""><td>0.0 0.0 0.0</td><td>0.0</td></th<></th0.0<>	0.0 0.0 0.0	0.0
mest 0.0 <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<>	meso 0.0 <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<>	0.0 0.0 0.0	0.0
Output 0.0 <th0.0< th=""> <th0.0< t<="" td=""><td>omfletera 0.0 0</td><td>0,1 0.0 0.0</td><td>0.0</td></th0.0<></th0.0<>	omfletera 0.0 0	0,1 0.0 0.0	0.0
1 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>	1 0.0	0.0 0.0 0.0	0.0
1 .0 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>	1 .0 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>	0.0 0.0 0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.2 0.2	0.0
0.4 0.2 0.2 0.4 0.4 0.1 0.7 0.7 0.7 0.5 0.5 0.6 0.1 0.1 0.1 0.5 0.8 1.8	0.4 0.2 0.2 0.4 0.4 0.1 0.7 0.7 0.7 0.5 0.5 0.6 0.1	0.0 0.0 0.0	0.0
		0.1 0.1 0.5	1.8

Densities (number/m³) of Cladocera (excluding <u>Leptodora</u>) collected from the lower Roanoke River, delta, and western Albemarle So<u>und, Nort</u>h Carolina, in 1985. Station numbers as in Figure 1. Table 47.

	Average	1.9911	1723.1	3249.2	1.0971	570.4	375.1	417.8	6.661	196.5	136.6	256.1	150.3	२.थ्य	9.071	363.8	134.3	8.4 4	85.9	39.0	60.1
	16	*	*	×	*	*	#	*	*	*	*		+	*	*	#	*	*	•	*	27.0
	15	752.1	403.4	19869.5	181.4	380.4	1.1 8	418.5	36.6	6.11	51.6	107.6	58.1	50.8	55.5	71.3	0.0	*	40.04	25.7	•
	14	1920.3	1756.7	1196.2	510.5	415.5	68.3	31.6	64.0	29.3	368.1	160.1	50.1	25.0	110.0	63.4	8.5	•	0.021	27.1	*
	13		5258.1	449.9	5.9.2	424.4	185.2	1045.3	B3.9	125.5	442.2	275,0	76,5	19.6	123.8	51.7	32.9	*	30,9	78.3	*
£	21	2454.5	1279.0	1921.3	2057.7	453.9	656.7	241.7	6.7	2.9	5,0	275.0	9 .	231.3	83.9	23.5	0.0	35.0	73.6	63.7	5
z	=		0,1405	910.2	B76.1	4.7661	6 <u>9</u> .3	714.8	275.7	662.1	B4. 7	631.3	354.6	124.5	361.5	195.3	50.3	C.89	77.5	0.2	0 11
•	2	542.7	976.9	3923.2	3170.5	219.6	371.6	78.2	74.2	22.4	7.5	33.7	2.1	2.2	19.2	6.3	4.4	201.2	(0.3	14.6	A FC
-	6	325.8	926.4	410.4	1712.6	8,9KE	228.4	277.6	922.9	6.22.9	152.3	707.2	314.9	B),2	239.5	201	139.5	51.6	50.8	44.6	110.6
۲	æ		1590.6	1209.3	1944.9	1753.7	1639.2	1342.9	432.3	554.9	437.0	279.6	1.182	346.5	415.3	22.5	6.291	167.2	67.1	47.5	ç
۷	~		826.3	2309.2	8,6761	87.8	835.6	26.7	173.7	1.02	141.9	*	153.2	303.5	50,8	1374.5	279.8	70.2	60.4	44.6	
Η.	•	•	1766.8	252.7	4339.4	BHA.2	315.0	443.8	22.5	129.5	1.121	209.9	135.4	1.001	257.1	835.2	8.115	21.4	265.3	25.1	5
s	5	*	*	*	*	1415.5	330.9	219.3	8.7	40.6	21.2	244.4	*	47.9	159.2	764.4	337.1	55.3	119.4	57.8	
	4	*	+	*	*	603.1	69.2	316.8	0.10	33.4	106.2	83.0	*	+	*	-	*	•		*	•
	-		#		*	45.1	88	1.621	45.1	9.CF	6.)	5.5		*		*	*	•	•	*	•
	2	+	*	÷	*	6.2	0.0	103.2	0.0	5.9	0.0	11.11		*	*	*		`. -	4	•	4
	-		#	*		19.7	i R	146.0	12.6	0.0	19.4	57.3	#	*		•		#	*		•
•	1	4/26/95	4/28/85	4/30/85	5/2/85	5/4/85	5/6/85	5/8/85	5/10/85	5/12/85	5/14/95	5/16/85	5/18/85	5/20/85	5/22/85	5/24/85	5/26/85	5/29/85	6/2/85	6/6/85	C 100 100

84

and	
delta,	
liver, igure 1	
anoke 1 as in F	
wer Ro umbers	
s (number/m ³) of Copepoda collected from the lower Roanoke River, delta, and Ibemarle Sound, North Carolina, in 1984. Station numbers as in Figure 1.	
ed from 984. St	
collect a, in 1	
epoda c Carolin	
of Cop North	-
er/m ³) : Sound,	
(numbe	
Densities (nur western Albemar	
Table 48.	

ça.

Date	Average		169.0	9131	131.2	180.1	200.8	0.101	217.0	181.3	242.6	169.7	149.8	205.6	205.4	
	8			. .	*		*		÷	#	#	*	127.3	157.1	137.0	
	=		* 1				*	*	*	÷	¥	¥	30.2	42.1	73.1	
	91 91		*	* *	: 4	*	¥	*	#	*	*	#	343.5	756.7	149.8	
	15		382.0	1.12	8	21.12	51.2	159.7	2.9.8	155.0	127.2	219.3	110.3	234.7	50.8	
	¥	-	1.011	62.2	1. 14		36.3	191.4	255.3	20.9	8	154.1	219.2	157.9	145.1	
	1		97.2	150.9			245.9	116.6	459.6	159.2	201	16191	155.1	211.8		
Z	13		135.8	145.6	30. 5	20	5.5	255.5	 	0.0	42 Y		10	, i		
0	=		159.0	133.3	4.)	192.2			1.001	110011	0 210					0.110
-	9		263.0	172.2	160.3	211.9	9°18	2	i i		2 2	;			1.10	2° 4
-	6		9. 1 9	106.3	522.3	127.4	R. 15	9.091				2	201.1	1.101	2.62	9° 612
<	8		246.5	20.1	139.6	177.5	6		0.53			7.12	149.1	14.0	142.2	311.7
-	-	•.	617	92.8	177.6	246.8	212.6	151.4	275.9	6.6/1	116.9		73.5		-	•
~	, 0		6	2.53	216.3	65.4	410.3	232.9	210.8	0.41	115.0	217.8	159.2	-	*	
	2			11.8	33.4	141.6	127.2	301.2	194.5	102.3	. 385.9	630.8	503.2	*	.	*
	4			и к (8	9.16	95.1	112.7	3.H.E	149.4	116.4	*	*	*	•	*	*
	-			125.3	9.6	76.8	0.111	178.0	6. 03	70.2	•	#	*	+	•	• :
	~			•	1 0 1	V-52	182.2	270.8	60.2	53.9	-		*	*	*	•
	-	•				M2.0						+	*	•	*	•
	· I ·			5/13/94	HQ/77/G	40/52/c	5/21/84	16/02/3	5/11/84	6/2/84	6/4/94	6/8/84	6/10/84	6/14/84	6/16/94	6/18/34

Table 50 Chlorophyll a concentration (ug/liter) in the Roanoke River and western Albemarle Sound,

į

(yy) 1 2 3 4 5 6 84 5 4 6 4 84 5 4 6 4 6 84 7.5 13.7 9.6 12.0 4.0 4.4 6 84 11.0 9.5 1.0 8.4 7.4 6.3 84 9.4 8.8 12.0 11.4 6.3 6.6 9.0 84 13.4 1.0 9.6 12.0 10.4 6.7 6.9 84 6.4 6.0 2.7 6.0 84 6.4 6.0 2.7 6.0 2.7 6.0 84 9.7 6.5 5.9 5.9 84 5.7 5.0 5.9 5.9 34 5.7 5.7 5.9 5.9 5.9 <th>HUFUI CATOLINA, IN 1984. DASNES INUICAUE</th> <th>2</th> <th>samples taken</th> <th>en.</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th>	HUFUI CATOLINA, IN 1984. DASNES INUICAUE	2	samples taken	en.			-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Station	uo							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5	8 9	10 11	12	13	14	15	16	17	13
7.5 13.7 9.6 12.0 4.0 4.4 8.7 5.3 4.0 4.9 5.2 5.2 5.2 9.4 8.0 2.7 6.2 6.0 4.0 4.4 9.4 8.0 2.7 6.2 6.0 4.0 4.4 11.0 9.6 1.0 8.4 7.4 6.3 5.2 5.2 13.4 1.0 9.6 12.0 11.4 6.3 6.6 9.0 13.4 1.0 9.6 12.0 10.4 6.7 6.0 7.1 6.4 1.0 6.4 6.0 2.7 6.0 7.1 6.1 6.0 2.7 6.0 2.7 6.0 7.1 6.1 6.6 7.4 6.5 6.9 6.6	6.4 3	2.8 5.2	4	6.0			4.0	2.8		
8.7 5.3 4.0 4.9 5.2 5.2 9.4 8.0 2.7 6.2 6.0 4.0 9.4 8.0 2.7 6.2 6.0 4.0 8.8 12.0 11.4 6.3 6.6 9.0 13.4 1.0 9.6 12.0 10.4 6.7 13.4 1.0 9.6 12.0 10.4 6.7 13.4 1.0 9.6 12.0 10.4 6.7 13.4 1.0 9.6 12.0 10.4 6.7 13.4 1.0 9.6 12.0 10.4 6.7 13.4 1.0 6.4 6.0 2.7 6.0	12.0 4.0 4.4	5.6 20.8	5.2 3.6	4.4	3.2	4.4	6.4		ł	1 1 1
11.0 9.5 1.0 8.4 7.4 6.3 9.4 8.0 2.7 6.2 6.0 4.0 8.8 12.0 11.4 6.3 6.6 9.0 13.4 1.0 9.6 12.0 10.4 6.7 13.4 1.0 9.6 12.0 10.4 6.7 9.7 6.5 9.7 6.5 9.9 9.7 6.5 9.9 9.7 6.5 9.7 6.5 9.7 6.5 9.7 6.5 8.5 9.9	4.9 5.2 5.2 4	4.0 5.2	ω,	6.4			6.4		1 1 1	1 1 1
9.4 8:0 2.7 6.2 6.0 4.0 8.8 12.0 11.4 6.3 6.6 9.0 13.4 1.0 9.6 12.0 10.4 6.7 6.4 1.0 6.4 6.0 2.7 6.0 7 6.0 2.7 6.0 2.7 6.0 7 7 6.0 2.7 6.0 7 7 6.0 2.7 6.0 7 7 6.0 2.7 6.0 7 7 7 9.7 6.5 7 7 7 7 6.0 7 7 7 7 6.0 7 7 7 7 6.1 7 7 7 7 6.1 7 7 7 7 6.1 7 7 7 7 6.1 7 7 7 7 6.1 7 7 7 7 6.1 7 7 7 7	8.4 7.4 6.3 6	4.4 6.3		6.8			11.2	1 1 1	† 1 1	1 1 1
8.8 12.0 11.4 6.3 6.6 9.0 13.4 1.0 9.6 12.0 10.4 6.7 6.4 1.0 6.4 6.0 2.7 6.0 9.7 6.5 9.7 6.9 9.9 9.7 6.9 9.7 9.9 9.9 9.7 6.5 9.7 6.5 9.7 6.9 9.7 6.9	6.2 6.0 4.0 6	5.3 7.1	9	7.2			3.4		† † †	
13.4 1.0 9.6 12.0 10.4 6.7 6.4 1.0 6.4 6.0 2.7 6.0 9.7 6.5 9.7 6.5 9.7 6.5 9.7 6.5 9.9 9.7 6.5 9.7 6.5 9.7 6.5 9.7 6.5 9.7 6.5 9.7 6.5 <t< td=""><td>6.3 6.6 9.0 6</td><td>4.4 4.0</td><td>0.</td><td>5.6</td><td></td><td></td><td>5.6</td><td>1 1 1</td><td>1 1 1</td><td>† 1 1</td></t<>	6.3 6.6 9.0 6	4.4 4.0	0.	5.6			5.6	1 1 1	1 1 1	† 1 1
6.4 1.0 6.4 6.0 2.7 6.0 	12.0 10.4 6.7 6	5.3 7.2		6.9			9.2	1	1 1 1	1 1 1
	6.0 2.7 6.0 3	5.3 1.2	æ	_	1.5		1.0	1	1	
		1 1 1 1 1			8 8 7	,	1 1 F	1 1 1	1	1 1 1
		6.8 6.3	10.5 6.7	10.0	1.1	2.0	9.4		1 1 1	† † †
	3.5 9.9	8.9 12.4	4.4 6.1	11.8	10.4	5.2	8.4	1	! ! !	1
	2 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.1 12.3		6.0	8.0	3.6	5.5		10.8	1.0
	1	1.2		9.1	10.0	4.8	8.0	8.0	7.1	4.0
	† . †		1	† 	† † †		;	† 5 1	1	1
2.0 1.0	4 8.0 6.7 6.2 6.0	5.6 7.4	6.3 6.7	6.3	5.8	4.2	6.9	7.8	0.0	2.5
	•	.•	÷							

-					•										
Date									Stat	Station					
(ww/dd/yy)	-	2	C	4	5	9	<u> </u>	3	6	10	JI	12	13	14	15
04/26/85						12.8	9.3	7.2	7.6	1.5		6.0	8.8	11.6	11.2
04/28/85	L 1 1	! ! !	1 1 1	1 1 1	1 1 1	9.2	11.6	14.8	14.0	16.0	11	6	2.0	1.7	4.8
04/30/35	1 1 1	1	1	1	:	3.8	15.6	10.0	14.4		5.6	23.2	12.1	2.5	8.8
05/02/85	t t	t t T	r - 1 1			10.3	10.8	8.4	12.8	19.2	14.0	17.6	1.7	1.3	2.0
05/04/85	7.6	о. 8	10.0	13.6	12.8	14,8	27.6	6.0	14.0	13.2	8.8	10.4	9.6	8.0	8.8
00	5,6	7.6	6.8	11.2	11.2	19.6	19.6	14.0	26.0	30.8	23		8.0	10.4	3.2
05/08/85	11.6	9,2	10.0	12.0	12.3	6.8	0 • 0	14.4			18.0		12.0	12.0	27.2
05/10/85	1.6	2.4	2.4		4.0	6.0	4.4	3.6		0.0	9		8. 8	5.2	7.2
05/12/85	3.8	7.6	5.6	9.C	5.6	8.0	8.4	16.8	11.2	9.6	10		7.2	6.8	6.8
05/14/85	4.4	4.8		2.8	2.8	5.2	4.3	10.4	8.0	13.2	9.2	6.8	4.4	2.8	14.4
05/16/85	13.4	21.6	17.2	21.6	15.6	16.4	18.4	48.9	23.2	31.6		33.2	16.4	11.2	32.5
05/18/85	! ! !	1	1			~	12.0	16.8	6.3	13.2		20.4	1.0	6.4	1.3
05/20/85	1 1 1	1	-	l F L	8.0	10.8	7.2	10.3	12.4	6.8	11	10.8	1.0	12.8	27.6
05/22/35	1 1 1	† † †	1 1 1	1	13.0	9	10.4	16.0	18.4	23.6	9.2	27.2	1.7	18.8	15.2
05/24/85	1 1 1	1 1 1	1 1 1	1	6.9	9.2	10.3		13.6	7.6	12.0	4.5	2.4	1.6	1.7
05/26/35	† 1 1	1 1 1	1	1	3.6	12.4	12.8		13.6	21.2	32.4	12.8	6.4	4.8	4.8
05/29/85		† † 1		1 1 1	6.0	4.0	4.4		6.4	.10.0	11.2	13.6	1	1 1 1	1
06/02/85	1		1		8.0	6.4	8.0		4.4	5.6	4.4	2.8	3.6	6.4	1 1 1
06/06/85	1	1 1 1	1	1	5.6	1.7	4.4	2.4	6.8	4.4	4.8	2.0	2.5	1.0	1.0
06/10/85	1 1 1			 	2.1	5.6	19.6	7.6	2.4	15.2	9.2	25.6	10.0	1	
				، ب				· · · · · · · · · · · · · · · · · · ·	•		, (,	0 1	•	6 1	1
Mean	α	2	0												

Table 52 (continued)

Identification	Cell type	Cell volume (cubic microns)	
*Navicula sp. 2 Bory	412	4691	1.14
*Navicula sp. 3 Bory	203	276	10.86
*Navicula sp. 4 Bory	201	733	5.14
*Navicula sp. 5 Bory	26	951	2.29
*Navicula sp. 6 Bory	405	1000	3.43
*Navicula sp. 7 Bory	126	995	6.86
* <u>Navicula</u> sp. 3 Bory *Navicula sp. 9 Bory	439 137	251	1.71
*Navicula sp. 10 Bory	205	1047 2111	2.86
*Navicula sp. 10 Bory	. 19	1016	1.14 0.57
*Navicula sp. 12 Bory	477	2513	4.00
* <u>Navicula</u> sp. 13 Bory	46	1129	1.71
*Navicula sp. 14 Bory	104	146	1.14
*Neidium sp. Pfitzer	452	12063	0.57
*Neidium ladogense Oestrup	441	2403	0.57
Nitzschia gracilis Hantzsch	231	4592	1.71
Nitzschia sp. 1 Hassall	182	1268	1.14
*Nitzschia sp. 2 Hassall	440	1005	2.36
*Nitzschia sp. 3 Hassall	173	879	0.57
*Nitzschia sp. 4 Hassall	469	7854	0.57
Pinnularia sp. 1 Ehrenberg	129	. 3609	1.14
*Pinnularia sp. 2 Ehrenberg	158	6283	4.00
*Pinnularia sp. 3 Ehrenberg	371	5341	4.00
Skeletonema sp. Greg	74		1.71
Stauroneis sp. Ehrenberg	147	535	0.57
*Surirella sp. 1 Turpin	174	26704	0.57
Surirella sp. 2 Turpin	199	81279	0.57
* <u>Synedra</u> sp. 1 Ehrenberg	317	732	3.43
* <u>Synedra</u> sp. 2 Ehrenberg *Unknown #243	480	6597	0.57
*Unknown #273	248 273	2261	0.57 0.57
Unknown #276	275	31856 2827	0.57
Unknown #75	75	23703	0.50
	75	23703	0.00
Chlorophyceae			č
*Actinastrum hantzchii	49	276	8.57
Lagerheim			••
*Closterium sp. Nitzsch	59	213	4.00
Crucigenia fenestrata Schmidle	50	101	0.57
*Crucigenia rectangularis A. Brau		390	1.71
*Crucigenia sp. 1 Morren	8	439	4.00
Crucigenia sp. 2 Morren	232	110	0.57
Netrium sp. Nageli	73	49 -	1.14
*Pediastrum duplex Meyen	1	1000	0.57
*Pediastrum sp. 1 Meyen	280	432	1.14

Table 52 (continued)

Identification	Cell type	Cell volume (cubic microns)	Frequency of occurrence
Cyanophyceae			
<u>Anabaena</u> sp. Bory *Chroococcus sp. Nageli	434 107	113 130	2.29 2.29
"Chrobebeeus sp. hagern	107	120	2.29
Dinophyceae			
*Gymnodinium danicans Campbell	296	4064	2.86
*Gymnodinium sp. 1 Stein	80	2540	5.14
Gymnodinium sp. 2 Stein	311	3941	0.57
Peridinium sp. Ehrenberg	312	6283	1.14
Unknown #323	323	260	0.57
Euglenophyceae			
*Euglena sp. 1 Ehrenberg	435	188	2.86
*Euglena sp. 2 Ehrenberg	231	843	12.57
Trachelomonas sp. Ehrenberg	327	524	41.71
Unknown #344	344	7634	0.57
Unknown #527	527	100	0.50
Unknown			. [.] .
*Unknown #108	108	3224	0.57
*Unknown #140	140	754	24.57
*Unknown #149	149	44234	0.57
Unknown #151	151	24	0.57
*Unknown #197	197	1920	0.57
*Unknown #235	235	302	1.71
Unknown #249	249	43	0.57
Unknown #331	331	2488	0.57
*Unknown-#360-	360	524	0.57
*Unknown #363	363	13119	4.71
Unknown #369	369	9600	0.57
*Unknown #376	376	6434	2.29
Unknown #379	379	1728	0.57
Unknown #431	431	985203	1.14
Unknown #44	44	4	-0.57
*Unknown #476	476	4580	1.14
Unknown #482	° 482	34	0.57
Unknown #486	486	1437	1.14
Unknown #460	460	2009	-0.55

Table 53. (continued)

Identification	Cell type	Cell volume (cubic microns)	
*Fragilaria sp. 1 Lyngbye	167	559	1.27
Frustulia sp. 2 Agardh	243	488	0.84
Frustulia sp. 3 Agardh	37	1016	0.84
*Gomphonema sp. 2 Agardh	453	3384	0.84
*Gyrosigma sp. 2 Hassall	373	31416	5.49
<u>Melosira granulata</u> Muller	508	38	98.31
Melosira sp. Agardh	454	3619	1.27
*Navicula sp. 7 Bory	126	995	3.86
*Navicula sp. 5 Bory	26	951	0.42
Navicula sp. 15 Bory	448	53097	0.42
*Navicula sp. 4 Bory	201	733	7.59
*Navicula sp. 3 Bory	203	276	0.42
*Navicula sp. 10 Bory	205	2111	2.11
Navicula sp. 16 Bory	398	565	3.38
*Navicula sp. 9 Bory	137	1047	0.42
Navicula sp. 17 Bory	250	1270	1.69
*Navicula sp. 2 Bory	412	4691	1.27
*Navicula sp. 14 Bory	104	146	6.33
*Navicula sp. 1 Bory	234	1463	6.33
*Navicula sp. 13 Bory	46	1129	4.64
Navicula sp. 18 Bory	495	735	2.11
*Navicula sp. 12 Bory	477	2513	1.69
*Navicula sp. 8 Bory	439	251	1.69
Navicula sp. 19 Bory	374	452	0.42
*Navicula sp. 6 Bory	405	1000	0.42
*Navicula sp. 11 Bory	19 196	1016	0.42
Navicula sp. 20 Bory	186 441	214	0.42
*Neidium ladogense Oestrup *Neidium sp. Pfitzer	452	2403	0.42 0.42
Nitzschia sp. 5 Hassall	336	12063 1979	0.84
*Nitzschia sp. 4 Hassall	469	7354	1.27
*Nitzschia sp. 2 Hassall	409	1005	4.64
*Nitzschia sp. 3 Hassall	173	879 -	0.34
Nitzschia sp. 6 Hassall	308	152	0.84
*Pinnularia sp. 2 Ehrenberg	158	6233	0.42
*Pinnularia sp: 3 Ehrenberg	371	5341	1.27
Surirella sp. 3 Turpin	520	7854	_0.42
*Surirella sp. 1 Turpin	174	25704	0.42
Synedra sp. 3 Ehrenberg	509	680	58.65
*Synedra sp. 1 Ehrenberg	317	732	2.53
*Unknown #248	248	2261	0.42
*Unknown #273	273	31856	0.84
Unknown #274	274	8	3.80
Unknown #467	457	503	0.42
Unknown #513	513	7396	1.69

Table 53. (continued)

f

Identification	Cell type	Cell volume (cubic microns)	Frequency of occurrence
Gymnodinium sp. 3 Stein	288	503	0.42
Unknown #293	293	508	0.42
*Unknown #323	323	260	0.84
Unknown #396	396	785	0.42
Euglenophyceae			
*Euglena sp. 1 Ehrenberg	435	138	0.84
*Euglena sp. 2 Ehrenberg	231	848	2.53
*Trachelomonas sp. Ehrenberg	327	524	0.84
Unknown			_
*Unknown #108	108	3224	0.34
*Unknown #140	140	754	0.42
*Unknown #149	149	44234	0.34
Unknown #193	193	198	0.42
*Unknown #197	197	1920	1.27
Unknown #23	23 -	64	6.75
*Unknown #235	235	302	0.84
Unknown #27	27	228	0.42
Unknown #30	30	100	0.84
Unknown #313	313	100	4.64
Unknown #342	342	2771	4.22
*Unknown #360	360	524	2.11
*Unknown #363	363	13119	1.27
Unknown #367	367	264	0.42
*Unknown #376	375	6434	2.53
Unknown "#389	389	12095	0.42
Unknown #391	391	1696	0.42
Unknown #407	407	402	32.70
*Unknown #476	476	4580	0.34
Unknown #48	48	508	0,84
Unknown #502	502	1056	0.42
			·

<u>murale</u>, present in 96% of the samples. Other common green algae included a species of <u>Zygnema</u>, <u>Actinastrum hantzchii</u>, and <u>Stichococcus sp.</u>. <u>Synedra</u>, <u>Fragilaria</u>, <u>Cyclotella</u>, <u>Coscinodiscus</u>, and <u>Diploneis</u> were the other genera of diatoms represented in 10% of more of the samples.

Phytoplankton cell densities ranged from 42 cells/ml to 2248 cells/ml in 1984, but there was no discernable pattern in the distribution (Table 55). Values less than 100/ml or greater than 1000/ml were not common; most densities were between 300 and 700/ml. Biomass of the phytoplankton (ug wet weight/l) was also highly variable, but showed no clear pattern (Table 56). Phytoplankton biomass for most samples fell between 300 and 800 ug/l; occasionally small or large extremes were observed. For example, values were less than 10 ug wet weight/l at Station 14 on 18 May and 31 May (Table 56). Unusually high biomass values (e.g., 18,170 and 12,900 ug wet weight/l at Station 3 on 27 May and Station 2 on 31 May, respectively) were the result of either very high densities of average-sized cells (27 May), or relatively low densities of very large phytoplankters (31 May).

In 1985, phytoplankton cell densities ranged from 24 cells/ml to 23,558 cells/ml, and there were distinct temporal and spatial patterns in the distribution (Table 57). The densities tended to be higher early in the sampling period (late April-early May) than in late May and early June. The mean density for all stations ranged from 8000-10,000 cells/l from 26 April through 4 May, but declined gradually after then to around 1000-2000 cells/l from 22 May through 10 June. Mean algal densities, averaged by station over time, were relatively low at the upper Roanoke River stations, but increased in the delta (Stations 6, 7, 9, 10, and 12) and in western Albemarle Sound at the mouth of the Roanoke River (Station 15). Algal cell densities were lowest in the Cashie River (Stations 13, 14, and 16, Table 57).

------Phytoplanktom biomass (ug wet weight/1) was also highly variable in 1985, but showed about the same temporal and spatial patterns as algal cell density (Table 58). Biomass varied from 2-11,605 ug wet weight/1; most values ranged between 500 and 2000 ug wet weight/1. During the sampling period, the average biomass for all stations declined from 1500-3400 ug wet weight/1 early in the

Table 56. Phytoplankton wet weight biomass (ug/1) in the Roanoke River and western Albemarle Sound, North Carolina, during 1984.

Station						· · · · · · ·		Date		, , ,					
	05/18	05/18 05/22	05/23	05/25	05/27	05/29		06/02	05/31 06/02 06/04 06/08 06/10 06/14	06/08	06/10	06/14	06/16	06/18	MEAN
1			238	343	381	561	231	277							339
2	1 1	398	517	303	112	1251 1	12900	15	1 1 1		1 1 1	1	1	1	2214
ĉ	1	151	165	201]	18170	239	157	229	1 1 1	1	1 1 1	1	1	1	2766
4		176	299	466	ഗ	704	. 66	100	1 1 1	1	† 1	t 3	1	1 1 1	259
۰. Ω	78	114	165	364	69	867	117	730	716	113	362	11	† 1 1	t 1 1	336
9	241	417	. 63	181	197	310	1 1 1	173	493	318	220	1 1 1	1		261
	279	391	127	182	573	475	L 8 1	1011	951	333	865	1 1 1	F 1	1 1 1	519
8	384	205	354	300	87	563	1 1 1	11	33	184	390	160	615	750	316
6	95	384	309	95	82	450	138	287	282	178	391	251	105	220	237
10	<u>8</u> 8	234	500	226	219	129	37	22	112	155	890	90	174	183	219
11	202	116	253	631	209	270	1 1 1	110	273	318	499	101	471	211	282
12	276	249	1000	380	. 515	373		116	125	447	593	196	367	324	382
13	82	76	54	838	23	70	919	213	66	569	168	259	297	468	296
14	- 	49	13	13	1 1	295	9	40	218	275	106	55	754	377	170
15	. 67	233	235	857	515	122	123	83	120	741	106	296	8 8	275	280
16	ļ	! 	1	1	1	1 2 4	t ! !	1 1 1	1	\ ! !	ł 1	327	18	1 6	145
17	1	t 1. 1	† 1 †	1	1		1 1 1	1	1 1 1	 1 1	1 1 1	399	51	242	592
13		- 1 - 1	1 1 1	1. 1 1	•	1 1 1	1	8 1 1	t † 1	t 1 1	1 1 1	28	84	124	61
MEAN	⁰⁻¹¹ 163	228	286	359	1518	449	1474	232	309	331	417	197	275	297	
•		 	~	- 	·	•									

Table 58. Phytoplankton wet weight biomass (ug/l) in the Roanoke River and western Albemarle Sound during 1985. Dashes indicate no sample taken.

•• •

۰*۰* ،

.

••• •••

Station		•••							.		uate (mn/dd)										
	04/26	04/28	04/26 04/28 04/30 05/02	05/02	05/04 05/06	05/06	05/08 0	05/10 05/12		05/14 (05/16 0	05/18 0	05/20 05/22		05/24 0	05/26	05/29	06/02	06/06	09/10	Mean
-					1105	116.9	0000	750	1505	1361	595										
- ~			1		762	1/02 699	1799	000 038	1545	1641	13149										2922
	ł	;	;	1	1631	1613	1361	1555	1509	682	1543	1	!		1	1	;		ļ	ļ	1400
प	;	1		1	664	451	21 <u>6</u> 2	1639	1168	785	767	;	!	1	ļ	1	;	;	!	1	1001
S	1		1 1 1	1	1217	1947	1273	534	932	710	1332	!	529	1026	234	142	318	1184	657	111	846
9	2666	2762	1740	1676	1540	1524	2015	519	306	585	668	1000	1204	761	922	138	300	1940	1484	625	1354
7	3496	6497	3047	1374	2206	1953	2427	267	1321	639	428	1292	1073	227	432	221	532	744	1038	230	1472
60	873	845	1603	362	1511	1436	623	385	6450	466	553	437	1144	480	502	24	402	1092	665	285	1049
ი	2064	4103	1719	3265	2312	2635	3928	843	1213	1076	1211	526	377	363	1952	150	376	533	1000	125	1514
10	1754	4705	11605	4072	1003	2295	5482	431	681	1509	3324	774	1677	815	812	137	233	455	1003	1216	2202
11	690	1204	1093	2257	463	1230	1044	865	1063	261	304	1177	345	431	372	94	421	202	637	125	717
12	1484	1973	3371	1551	3220	:	1349	, 3082	366	900	933	1013	857	1163	118	53	2175	382	708	184	1244
13	604	714	43	234	2343	476	1851	1321	431	90	586	188	34	178	202	94	407	!	422	;	571
14	202	1436	297	27	387	246	504	877	337	437	102	~	117	54	231	2	-	150	133	:	367
15	2607	9810	1593	317	376	55	3403	.1493	657	767	753	2	1/1	257	9	72	428	ļ	170		1302
16	;	1	1		}	;	1	!	1 1 1	•	ł	.]		;		1	!	;;;	1	537	537
Mean	1643	3405	2612	1564	1482	1220	2096	1030	1345	783	1766	844	684	523	526	107	659	744	750	382	
			•																		

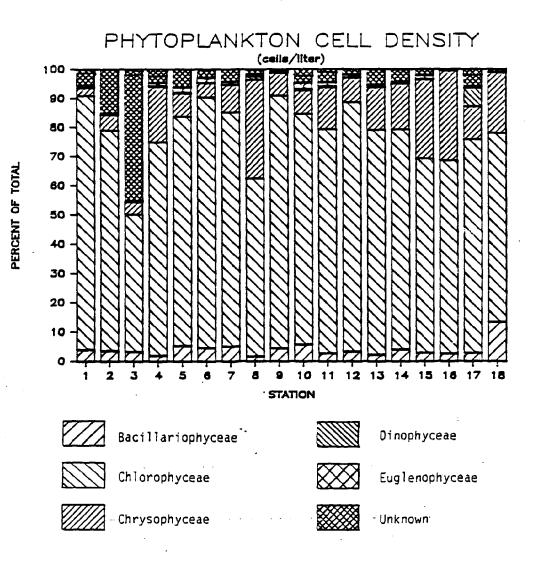


Figure 14. Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1984, averaged for each sampling station.

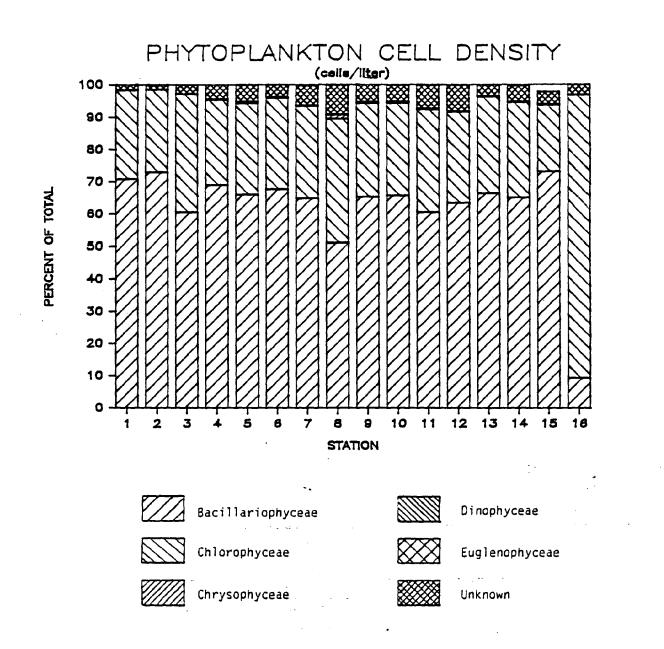


Figure 16. Relative abundance (% of total cell density) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station.

....

· . ·

. . . .

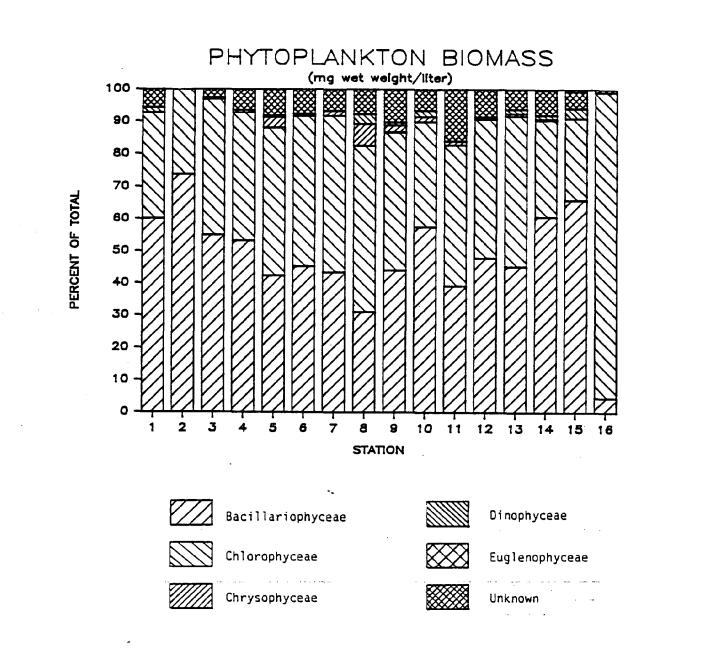


Figure 17. Relative abundance (% of total wet weight) of different algal classes in the Roanoke River and western Albemarle Sound, North Carolina, in 1985, averaged for each sampling station.

• •

In 1984, chlorophyll <u>a</u> and phytoplankton biomass were relatively low in the Roanoke study area, and also in the nearby Pamlico River Estuary, where data were collected on a bi-weekly basis throughout the year. In May and June 1984, phytoplankton cell density and biomass were only slightly higher in the upper (freshwater) portion of the Pamlico than in the Roanoke study area (Stanley and Daniel 1985). However, it is obvious from examination of the data for the Pamlico from previous years that the algal biomass there is normally much higher. It appears that unusually high river flow in early June 1984 resulted in washout of most of the Pamlico phytoplankton (Stanley and Daniel 1985). Similarly, the unusually high flow in the Roanoke River probably caused a washout of the phytoplankton in 1984. This hypothesis is supported by the fact that in 1985 both Roanoke and Pamlico phytoplankton biomass was higher, while flows were lower for the same May-June period (D.W. Stanley, unpublished data). Christian et al. (1986) found that algal density in the lower Neuse River is strongly controlled by fluctuation in river discharge.

There was no significant correlation between Roanoke chlorophyll <u>a</u> concentrations and phytoplankton biomass, which is not surprising for a system like the lower Roanoke River. A regression of chlorophyll against phytoplankton biomass yielded an R^2 value of 0.05, indicating no relationship between the two parameters. Two possible reasons for this come to mind. First, it is well known that the biomass:chlorophyll ratio varies widely (seven-fold or more) in phytoplankton, depending on the species composition and nutritional status of the cells (Valiella 1984). Second, the chlorophyll <u>a</u> levels measured for the Roanoke were near the lower limit of detection by the method used in our laboratory. In any case, the biomass:chlorophyll ratio for the Roanoke study area averaged 51:1, which is close to the value of 50:1 often reported as an average (e.g., Valiella 1984). Both parameters are useful: chlorophyll <u>a</u> for comparison to other systems because it is commonly measured in aguatic ecosystems of all types, and wet weight biomass because it is useful for addressing questions concerning trophic structure and functioning.

Most of the algae are small species that should be usable as food for grazing zooplankton in the Roanoke River. Blue-green algae, which are usually classified as undesirable food for zooplankters, were not present in significant

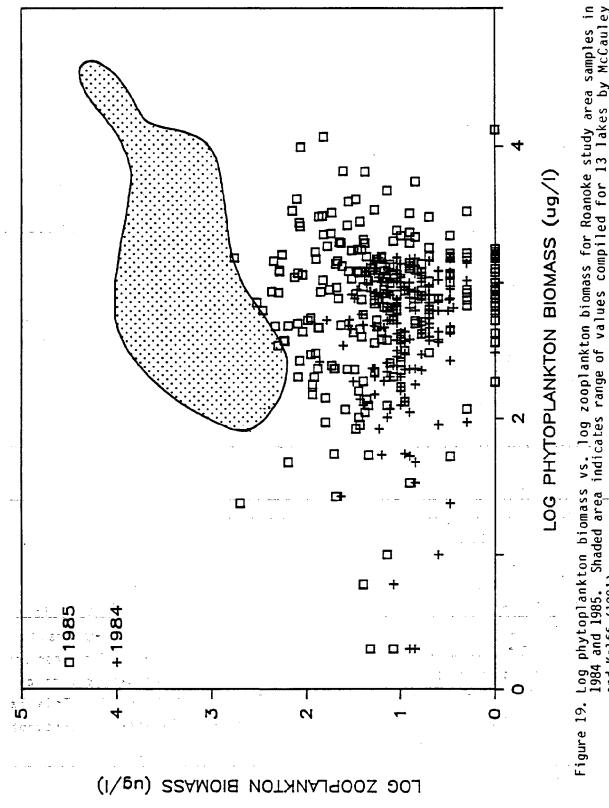


Figure 19. Log phytoplankton biomass vs. log zooplankton biomass for Roanoke study area samples in 1984 and 1985. Shaded area indicates range of values compiled for 13 lakes by McCauley and Kalff (1981).

by yolksac striped bass larvae. Unfortunately, no historical data base exists for Roanoke River and western Albemarle Sound zooplankton to indicate what level of food availability is necessary to produce successful striped bass year classes.

Higher than normal river flow in 1984 probably caused striped bass eggs and larvae to be washed out from the Roanoke River before feeding began. Striped bass eggs were found in the Roanoke River delta below the Highway 45 bridge (Station 12), which is approximately 125 river miles downstream from the major spawning ground. Larvae with yolk were common throughout the study site, including the Bachelor Bay stations. The few larvae in feeding condition were found exclusively in the mouth of the Cashie River (Station 11) and Batchelor Bay (Stations 13, 14, and 15) in the presence of low zooplankton densities.

Rulifson and Stanley (1985) interpreted these results to mean that the 1984 year class would not be an abundant one, at least not as abundant as the 1982 and 1983 year classes. This was confirmed by the juvenile abundance index (USDOI and USDOC 1985) conducted in Albemarle Sound that year, which was approximately 50% of the 1983 index and less than 1% of the highest index on record (25.4 fish per haul, 1959). The index value obtained by the North Carolina Division of Marine Fisheries was 0.0 striped bass young-of-the-year (YOY) per trawl; Dr. W.W. Hassler of North Carolina State University obtained a value of 0.36 (Sara Winslow, Division of Marine Fisheries, Elizabeth City, NC, personal communication). Rulifson and Stanley (1985) predicted that under lower flow conditions, zooplankton densities in the river should increase, and first feeding of striped bass larvae should be initiated in the lower river thus optimizing young striped bass survival.

This hypothesis was supported by results of the 1985 study. River flow was lower than in 1984, zooplankton densities were higher, and striped bass larvae began feeding in the Roanoke River between Plymouth and Jamesville. The juvenile abundance index for 1985 indicated better survival of striped bass than in 1984. The Division of Marine Fisheries obtained an abundance index value of 0.32 YOY striped bass per trawl, and Hassler obtained a value of 1.30 (Sara-Winslow, personal communication). These values are still quite low relative to

minimum of 2% of the larvae examined had parasites (Figure 13). The effects of parasitism on striped bass larvae at this stage of development is not documented in the literature, although other investigators have cited incidences of parasitism in other ecosystems (e.g., Buckley et al. 1985).

Incidence of deformed striped bass larvae was lower in 1985 than in 1984. Results of the earlier study indicated that up to 5% of the larvae examined were deformed (Figure 20). Less than 2% of the larvae examined in 1985 were in this condition. The causative agent responsible for this condition has not been determined. One possibility may be starvation of the larvae. Certainly, the rate of development and rate at which the oil globule is used is directly correlated with prey concentration (Eldridge et al. 1981; Rogers and Westin 1981). Another possibility may be that poor water quality is placing stress on the larvae during critical larval development (Palawski et al. 1985). Since water flows were higher in 1984, corresponding with increased incidence of deformed larvae, it is possible that physio-chemical properties of the runoff (e.g., sudden changes in water temperature, pH, or pollutant substances) at sublethal levels could have contributed to the deformities.

One suspected cause of larval striped bass mortality is excessive levels of aqueous aluminum in the presence of moderately low pH. Studies designed specifically to examine water quality of striped bass spawning grounds and nursery habitats, especially in Chesapeake Bay, have failed to identify any one causative agent for declining striped bass stocks (USDOI and USDOC 1985). These studies were correlated with extensive laboratory research. The possible exception is high aluminum in moderately acidic waters. In situ experiments of exposing striped bass larvae (24 hours after hatching) to natural waters of the Nanticoke River, a primary striped bass spawning tributary in Chesapeake Bay, were conducted to determine mortality rates (Hall et al. 1985). All 68 of the organic-and inorganic contaminants monitored during the study were present in low concentrations, with the exception of aluminum (120 ug/l in filtered samples). The average Nanticoke River pH was about 6.3, not extremely acidic but potentially stressful for larval striped bass (Hall et al. 1985). Recent laboratory experiments at the Columbia National Fisheries Research Laboratory showed that 19-day old striped bass larvae exposed to pH 6.5 died in seven days;

when 100 ug/l was added, death occurred within five days. Results of our water quality study in 1985 indicated total aluminum concentrations in the Roanoke River ranged from 200-2400 ug/l (unfiltered samples) and the water was moderately acidic (pH 6.0-6.8), suggesting a potential problem for striped bass larvae in the Roanoke. A pH range of 6.0-10.0 is favorable for survival of striped bass larvae and young (Regan et al. 1968); the optimum pH is 7.5 (Davies 1970, 1973). However, an instant change (pulse) of 0.8-1.0 pH units, even within the favorable range, will cause high mortality in striped bass larvae (Doroshov 1970). Short-term fluctuations of pH in the Roanoke River and the corresponding concentrations of toxic (labile) aluminum present, have not been determined and warrant examination. 7). Chlorophyll <u>a</u> concentrations were mostly between 4 and 7 ug/l in 1984 with no clear spatial or temporal patterns in the data. However, 1985 levels were higher (mostly between 5 and 15 ug/l) with a spatial pattern (lowest upriver, highest downriver, intermediate in western Albemarle Sound). Chlorophyll appeared to be negatively correlated with river flow.

8). The phytoplankton community resembled that of a lake more closely than that of an estuarine environment. About 150 phytoplankton cell types were identified; diatoms (Bacillariophyceae) exhibited the highest diversity followed by green algae (Chlorophyceae). Only 23 of the cell types appeared in more than 10% of the samples.

9). Phytoplankton densities between 300 and 700 cells/ml were common in 1984. No pattern was discernable in the distribution. Phytoplankton biomass fell between 300 and 800 ug wet weight/l for most samples.

10). Phytoplankton cell densities were higher in 1985 with distinct temporal and spatial patterns. Densities tended to be higher (8000-10,000 cells/l) early in the study (late April-early May) than later in May and early June (1000-2000 cells/ml). Densities were relatively low upriver in the Roanoke, and increased in the lower Roanoke and in western Albemarle Sound.

Phytoplankton biomass showed the same temporal and spatial patterns as algal cell density. Most biomass values ranged between 500 and 2000 ug wet weight/l. Average biomass for the study area declined from 1500-3400 ug wet weight early in the sampling period to around 400-700 ug wet weight/l in early June.

11). Green algae (Chlorophyceae) were numerically dominant at all stations in 1984, comprising 47-87% of the total cell density. Chyrsophyceae and Bacillariophyceae (diatoms) were of secondary importance. Generally, bulk of the total algal biomass was made up of green algae (44%), diatoms (15%), and chrysophytes (16%).

12). In 1985 diatoms replaced green algae as the major class, both in terms of cell density (40-60% at most stations) and biomass (40-60%). Green algae was second, comprising 25-30% of the total cell density and 20-40% of total biomass. Chrysophytes were also less important in 1985 than in 1984.

13). Most algae collected from the study area were small species that are potentially usable as food for grazing zooplankton.

larvae into western Albemarle Sound in 1984. Low river flow in 1985 allowed larvae to remain within the Roanoke River and delta to feed and grow.

23). Striped bass eggs, representing 2.9% of the total catch in 1984, were found throughout the study area including Albemarle Sound. Mean egg abundance within the study area was negatively correlated with river flow measured at Roanoke Rapids, N.C., lagged by three days. No eggs were found in the study area in 1985.

24). Stage 1 larvae (with yolk) comprised 96% of the catch in 1984 and 67% in 1985. Greatest concentrations in 1984 were from Williamston to the area just above the Thoroughfare (Stations 1-4), and also in the lower delta. Highest abundance in 1985 was from Williamston into the upper Roanoke River delta (Stations 6 and 7).

25). Stage 2 larvae (beyond yolk stage) comprised only 1.2% of the catch in 1984 and 33% in 1985. No larvae that had absorbed the oil globule were caught in 1984. Larvae with oil were most abundant in the lower Roanoke River and delta in 1985; larger larvae (up to 24 mm TL) were found in the lower delta and western Albemarle Sound late in the sampling season.

26). The number of striped bass larvae in feeding condition was much greater in 1985 than 1984. Only 1% were in feeding condition in 1984; of those, 11% had food items in their guts. All feeding larvae were caught in western Albemarle Sound. In 1985, first-feeding larvae were caught as far upstream as Station 4. Approximately 48% of Stage 1 larvae and 39% of Stage 2 larvae had consumed food items.

- -

27). In 1985 the number of larvae with food was correlated with sampling date, sample collection time, and density of cladocerans and copepods present. Major food items were cladocerans, primarily <u>Bosmina</u>, and copepodid stage copepods. Larger Stage 2 larvae consumed larger food items such as <u>Daphnia</u>, copepodid and-adult copepods, and fish (including Morone larvae).

28). Internal parasites were found in at least 2% of all <u>Morone</u> larvae examined in 1985. These parasites were of two types: Type I, tentatively identified as a protocephalid larva, attached to the intestine and stomach; and Type II (unidentified) attached at three locations (gut cavity, near the anus, and anterior to the heart).

ACKNOWLEDGEMENTS

We take this opportunity to thank Tony Mullis, Pete Kornegay, and Mike Humphreys of the North Carolina Wildlife Resources Commission, Division of Boating and Inland Fisheries, for collecting samples at Stations 1-5. We also appreciate the efforts of Institute personnel for field sampling, sample processing, and data management: David Bronson, Debbie Daniel, and Scott Wood. Mr. Wade Brabble of Plymouth, North Carolina, donated use of his private dock during the field season in both years.

LITERATURE CITED

A.P.H.A. (American Public Health Association). 1975. Standard methods for the examination of water and wastewater. A.P.H.A., New York.

Borror, D.J. and D.M. DeLong. 1964. An introduction to the study of insects, revised ed. Holt, Rinehart and Winston, New York.

Boynton, W.R., T.T. Polgar, and H.H. Zion. 1981. Importance of juvenile striped bass food habits in the Potomac Estuary. Trans. Amer. Fish. Soc. 110:56-63.

Buckley, L.J., T.A. Halavik, G.C. Laurence, S.J. Hamilton, and P. Yevich. 1985. Comparative swimming stamina, biochemical composition, backbone mechanical properties, and histopathology of juvenile striped bass from rivers and hatcheries of the eastern United States. Trans. Amer. Fish. Soc. 114:114-124.

Carpenter, E.J. 1971. Annual phytoplankton cycle of the Cape Fear River Estuary, North Carolina. Chesapeake Sci. 12:95-104.

Christian, R.R., W.L. Bryant, Jr., and D.W. Stanley. 1986. The relationship between river flow and <u>Microcystis aeruginosa</u> blooms in the Neuse River, North Carolina. Univ. North Carolina WRRI Rep. No. 223, Raleigh, 100 p.

Copeland, B.J., R.G. Hodson, S.R. Riggs, and J.E. Easley, Jr. 1983. The ecology of Albemarle Sound, North Carolina: an estuarine profile. U.S. Fish and Wildlife Service, Division of Biological Services, Washington, D.C. FWS/OBS-83/01, 66 p.

Davies, W.D.

1970. The effects of temperature, pH and total dissolved solids on the survival of immature striped bass, Morone saxatilis (Walbaum), Doctoral dissertation, North Carolina State University, Raleigh, NC.

Lippson, A.J. and R.L. Moran.

1974. Manual for identification of early developmental stages of fishes of the Potomac River estuary. Power Plant Siting Program, Maryland Dept. Nat. Resouces, 282 p.

Mansueti, R.J.

1964. Eggs, larvae and young of the white perch, <u>Morone americanus</u>, with comments on its ecology in the estuary. Chesapeake Sci. 5(1-2):3-45.

Marshall, H.G.

1967. Plankton in James River Estuary, Virginia. I. Phytoplankton in Willoughby Bay and Hampton Roads. Chesapeake Sci. 8(2):90-101.

McCauley, E. and J. Kalff.

1981. Empirical relationship between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci. 38:458-463.

McCoy, E.G.

1959. Quantitative sampling of striped bass, <u>Roccus saxatilis</u> (Walbaum), eggs in the Roanoke River, North Carolina. <u>M.S. Thesis, N.C.</u> State Univ., Raleigh, N.C., 136 p.

Mihursky, J.A., W.R. Boynton, E.M. Setzler-Hamilton, and K.V. Wood.

1981. Freshwater influences on striped bass population dynamics, pp. 149-167. In Proceedings of the National Symposium on Freshwater Inflow to Estuaries. Vol. I. U.S. Fish and Wildlife Service, FWS/OBS-81/04.

Palawski, D., J.B. Hunn, and F.J. Dwyer. 1985. Sensitivity of young striped bass to organic and inorganic contaminants in fresh and saline waters. Trans. Amer. Fish. Soc. 114:748-753.

Regan, D.M., C.L. Wellborn, and R.G. Bowker. 1968. Striped bass development of essential requirements for production. Bureau Sport Fish and Wildlife, Special Report, Atlanta, GA.

Rogers, B.A. and D.T. Westin.

1981. Laboratory studies on effects of temperature and delayed initial feeding on development of striped bass larvae. Trans. Amer. Fish. Soc. 110:100-110.

Rulifson, R.A.

1984a. Food and feeding of young striped bass in western Albemarle Sound, North Carolina. N.C. Dept. Nat. Res. Commun. Develop., Div. Mar. Fish., Compl. Rep. for Contract C-1366, 47 p.

Rulifson, R.A.

1984b. Investigation of possible finfish predators of striped bass (Morone saxatilis) in western Albemarle Sound, North Carolina. N.C. Dept. Nat. Res. Commun. Develop., Div. Mar. Fish., Compl. Rep. for Proj. AFC-18-3, Job 4, 75 p. The appendices, a total of 447 pages, are not included, but will be made available on request.

. .

.

Į

