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A TWO -SIGNAL PRIMER FOR FOURIER ANALYSIS OF
A RANDOM ACCESS COMMUNICATION SYSTEM

M. Nesenbergs

The detectability parameter, i.e., the acquisition signal-to-

noise ratio, is derived for an elementary two -signal multiple

access channel. The basic Fourier series approach requires
no approximations, and the methodology should be useful in

a forthcoming rigorous analysis of a nnore realistic random
access satellite repeater.

Key Words: Detectability parameter, ideal hard limiter,

random access, satellite repeater.

1. INTRODUCTION

A communications satellite with multiple, and in particular with

random, access capability is of interest to various data collection and

transmission networks. General aspects of such systems have been

explored (Schwartz, Aein, and Kaiser, 1966), and specific questions

dealing with synthesis and analysis of multiple access have been

answered (Jones, 1963; Aein, 1964; Shaft, 1965; SoUfrey, 1969;

Anderson and Wintz, 1969). Still, doubt remains about some of the

statistical arguments used and the results so obtained. For instance,

a new tractable and reliable derivation of the effective acquisition

signal-to-noise ratio (SNR) or, as it is often called, "the detectability

paramieter" is needed.

Our long-range goal is to analyze a multiple (e.g., M-customer)

random access repeater with an ideal hard limiiter. To accomplish

this in a concerted single effort, unfortunately, appears too complex a



task. Consequently, a short-range goal is defined and solved in this

report, limited to only two signals {M=2), using appropriate signal

design and word correlation detection, and establishing useful statistical

properties of the correlator outputs. The results of this study are to

be used later both as a guide and as a tool to treat the far nnore difficult

M-signal case. Because a full distribution of these random variables

is too cumbersome to derive, we are content to obtain the first two

moments (i. e. , means and variances) without a need for so-called

judicious and reasonable approximations.

AH signals are of equal amplitude (see Jones, 1963 and Shaft, 1965

for effects due to unequal amplitudes), the modulation is to n phase

shift keying (PSK), and the individual carriers deviate in frequency and

possess random phases. Some coding is likely to be used to design

the modulating waveformis. This will cause no complication, as the

present treatment permits arbitrary codes, be they pseudo noise (PN)

sequences, orthogonal codes, or what have you.

2. STATEMENT OF PROBLEM

Consider a communication system as shown in figure 1, The

channel consists ot an ideal hard limiter (IHL) plus additive white

Gaussian noise, n(t). A bandpass filter (BPF) is used to reject bother-

some higher harmonics. By observing its distorted and noisy input,

the receiver tries to detect the message of one of the transmitters,

say 0. The receiver nnust first decide whether transmitter is actually

transmitting (hypothesis H ), or some other transmitter, say 1, trans

-

o

mits instead (hypothesis H ).

i





The received signal plus noise is given by

x(t) = sgn
I

cos e (t) + cos 02(t)] + n(t), v = 0, 1. (1)

The function sgn x denotes the nonlinear IHL characteristic

sgnx = + l ifx>0,

= if X = 0, (2)

= - 1 if X < 0,

and n(t) is the white Gaussian noise with autocorrelation function

R(T) = No 6(T), -oo<T<oo. (3)

The other quantities in (1) are defined as follows:

So (t) = UUo t + po (t) + cpo ,

01 (t) =aJit + Pi(t-Ti) +cpi, (4)

e2(t) =aJ2t + p2(t-T2) +CP2,

where further natural simplifications are possible. The frequencies

uDq , ^1 , and UJ2 are slightly deviating from the center frequency uu ,

^ ^ i£i ^^^ I ^ .(5)
(ju uu OJ

*

c c c

The phases cpo > cpi , and cp2 are assumed mutually independent random

variables with a common uniform distribution over (0, 2tt). The binary

i



access (or address) modulations 3o (t), P^ (t), Pa (t) perform phase

keying to tt , as shown in figure 2. The correlating (i.e. , reference)

signal is assumed to be perfectly matched to transmitter

r(t) = cos eo(t). (6)

and represents the most advantageous acquisition situation. The other

modulations are delayed by T^ and Tg respectively from the reference

(fig. 2). We assume ^ T^, Tg ^ T.

The receiver correlates the stored waveform r(t) with the

received waveform x(t), and eventually chooses between the two

alternative hypotheses Ho and H]_ . The statistical situation is therefore

as shown in figure 3, where a is the correlator output if we assume

H to be true:
V

a
V

T

^ I
cos eo(t) sgnTcos e (t) + cos e2(t)l dt

T
(7)

•^/.cos 00 (t) n(t) dt, V = 0, L

Because of the random phases, a is in general not a Gaussian random

variable. The distribution of a is not known, nor is it easily com-
V

puted. We will be content to derive the first two moments, Ea and

vara , averaged over the independent phases and noise.
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3. FOURIER COEFFICIENTS

The statistical moments of a (7) depend on the Fourier coefficients

of the function (O^^x^rr, O^y^n)

sgn (cos X + cos y) = + 1 if ^ x+y < n

= if x+y :^ n (8)

= - 1 if n < x+y < 2n,

which through even symmetry and periodicity of the arguments extends

to all X and y.

The Fourier series

03

sgn(cos X + cos y) = y C cosmxcosny (9)

m, n=0

has coefficients

C = —2" / I
sgn(cos X + cos y) dx dy

= 0,

TT n

C = C - —2" I I sgn(cos X + cos y) cos mx dx dy (10)mo om ^ J t

n n

C = C = —rr I / sgn(cos X + COS y) COS mx cos ny dx dymn nm ^ / /

8 (!)"- (-ir
~2" S 5— >

n m^ - n"

^m
m 2: n >



Two useful properties follow readily from (10),

(a) If m+n is even, the C =0, The largest coefficients are
mn

C , nonzero for all nn = 0, 1, Z, ... .

m+1, m
(b) The Bessel's equality applies and through the well known

identity

z-
m=l

TT

90 (11)

yields (see C balance sheet in fig. 4)mn °

~ "^--1
2

Z^ ^mo " 2^^ Z-/ <^mn "
3

nn=l m = Z n=l

(12)

4. DERIVATION OF MOMENTS

4.1 Means

In this section we find the average Ea of the random variable

a , V = 0, 1. We substitute the Fourier series (9) into (7), and con-

clude that most terms must vanish in the averaging process. The



3]

^ O

4

(Converges \

Rapidly ^ )

Figure 4. BALANCE SHEET FOR SUMS OF
SQUARES, C^mn.
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noise term has zero mean and can be promptly ignored. Conside:

- C /
Ea = 5^ -^^ Z /coseo{t)cosme (t)cos nGs (t)dt. (13)

m, n-0 J

If V = 0, only m = 1 can produce a non-zero integrand. Likewise,

n = is the only way to dispose of cps • We conclude that (m, n) = (1, 0)

is the only nonvanishing term

T

^^e/.EOo =^ E / cos'^eo(t)dt

I Cio (14)

^0. 405 284).

2 ^10

4

n

If V = 1 , no choice of (in, n) disposes of cpo and

Eai = 0. (15)

4. 2 Noise ,\ riance

To derive var Qi , we separate the mean square into noise and

signal ternns,

*Here and elsewhere, uu T need not be an integer. However, the

error is of the order of ^ and can be ignored for (JU > 10 Hz.

11



V

1

[y /cos0o{t)n(t)dtj

(16)

00 J-

+ Er ^^Q -^^ /
coseo(t)cosme (t)cos nBg (t)dtl

It is clear that the first entity does not depend on v and is by far

the simpler. We consider it next (see (3)):

T

a^ = e[y /coseo(t)n(t)dt]^

TT

= e[y^ / / cos0o{t)coseo(T)n(t)n(T)dtdTj

T I

-//
-)

(17)

T T

E[coseo(t)coseo(T)] E [n(t)n(T)]dtdT

^ I E[cos^eo(t)]dt

No
2T

4. 3 Signal Variance

The second quantity in (16) is evaluated next. To make things

come out neatly, i. e.
,

12



let us write

a^ +. Ea ; = E

vara ^ o^ + o^ , V = 0, 1, (18)
V n V

T
C

I

• ii.u.
J

- ii.\ / ^
—-— / cos9o (t)cos m6 (t)cos n92 (t) dt i

EC C, ,1 (m,n;k,^).mn k-L v'm, n, k, -t=0

(19)

where

T T

I (m, n;k, t) = —^ E / / cos9o (t)cosme (t)cosn92(t)=y/-

(20)

• cos9o (t)cos k9 (t)cos ^92(t) dtdT

T T

-^^ 2 E f Ccos [Bo (t) ±m9^(t) ± nB^ (t)

± 9o (t) ± k9 (t) ± I 92(t) j
dt dT.

The second line in (20) is based on the trigonometric identity

(proof by induction)

J

/I cos X. = — 2_\ cos(xo ±Xi ± . . . ± X ) (21)

j=0 J 2^ ±

13



that holds for all integers J ^ and all arguments Xq , x-^ , . . . , x ,

J
subject to proper interpretation of symbol Z. All 2 ± connbinations

(distinct or not, zero or not) are included in the sum.

Let us review the conditions for a nonvanishing term I (m, n;

k, -t). The indices must be such that (a) the coefficients of uu t and
c

uu T vanish (to assure a spectrum passage through BPF before correl-

ation), and (b) the coefficients of cpo , cp^ , and cpg vanish (to avoid

averaging to zero). These coefficient constraints are summarized as

follows:

V = V = 1

uj t:

c
1 ± m ± n =

(ju T:
c

± 1 ± k ± ^ =

cpo: 1 ± m ± 1 ± k =

cpi:

cps: ± n ± -t =

1 ± m ± n =

± 1 ± k ± ^ =

1 ± 1 = (22)

± m ± k =

± n ± ^ =

In both cases there are three linearly independent equations for four

unknowns, and multiple solutions cannot be avoided. We proceed by

treating the case v = in section 4.4 and case y = 1 in section 4. 5.

4.4 Hypothesis Ho

If the hypothesis Ho is true, v = may be substituted in (18) - (20) .

Define the quantity

e(t, T) = 00 (t) - e2(t) - 00 (T) + e2(T) (23)

and observe that the argument of (20) that satisfies (22) for v = must

be a multiple of e(t,T). Therefore, only (m,n,k,-t) values giving rise

to

14



1 1

I(J) = ^ /*
A°^

T T

.s j 0(t, t) dtdT, j = 0, 1, 2,

can contribute to (20).

The lo (m, n, ;k, l)'s that do not vanish are

(24)

]o(l,0;l,0) = 2 1(0),

]o(0,l;0,l) = 2"^
1(1),

1^(0, 1;2,1) = ^,(2,1;0,1) - z'^l{l),

]o(2, 1;2,1) = 2''^I(1),

(25a)

and four equal terms for all j ^ 2,

]^(j ± l,j; j± l,j) = 2 I(j). (2 5b)

It remains to evaluate the integral I(j) in (24). Let j be even,

j - 2k (k - 0,1,2,...),

and

cos2k6(t, T) = cos 2k(iiUo -(D2) (t - T)

= cos 2k(a)o -^3 )t cos 2k((jOo -uug ) T

+ sin2k(aJo -uu2)t sin2k(uUo -^s) T,

(26)

T _2

I(2k) = 1-^ / cos 2k(ajo -aJ2)tdt-| I
cos2k(ajo-aj2)tdt + Pf /

^

[

sin 2k(uJo "^^2)^ 1 -cos 2k(iiJo """2)^

2k(ajo-uu2)T
J I

2k(uJo-iU2)T
J

T ^2

sin 2k(uJo -uU2)t dt

r sink(uUo -U02)t "|

I

k(UUo-UJ2)T

(27)

15



For odd j = 2k - 1 (k = 1,2,...) we introduce the followrn^

LOtation. For 1-1=1, 2, let

P(^,t) = %{t) - p^(t - T^), (28)

a function that is either or n. Consequently cos p(|a, t) must equal

±1 for all ^ t ^ T. We expand this function in Fourier series (with

i =/^),

2Tr^

cosp(^,t) = 2 y U-j:\

2tt^ 1 /
"'^~^

\,,i,n—^ = - /cosp(|j, t)e dt

(29)

r 2tt^, 1 f

This is a line spectrum with line separation 2n/T. The power in the

spectrum can be summarized as

T 2 ^

A ^ Icosuutcos p(^, t)dt + U; I
sinojt cos P(|_L, t) dt

where

(30)

(31)

= otherwise.

Return to the evaluation of I(2k - 1), k = 1 , 2, . . . . As in (26),

16
i



cos(2k - 1) 9(t, t)

= cos[(2k-l){'jUo-aj2)(t-T) + P(2 .; p(2,T)] (32)

= cos(2k-l)(a}o -'JU2) t cos(2k-l)(aJo-uU2) T cos p(2,t) cos P(2, t)

+ sin(2k -l)((iJo -'-^2) t s in( 2k - 1

)

((JUq -0^2) T cos 3(2, t) cos P(2, t),

and

T

I(2k-1) = '

;^ I
cos(2k-l)(iiio -uu2)tcos p(2, t) dt

^

1 f-^Jco:

T

Ya(^(2k-l)(aJo -^2)y

T

+ 1^ I sin(2k-l)(aJo-uu2)tcos p(2,t)dt
1 (33)

The major distinction between I(2k) and I(2k-1) must lie in their

dependence on niodulation (e. g. , coding). I(2k) does not depend on

miodulation at all. I(2k-1) does depend through (28)-(31). We may-

collect all I(2k)'s into a variance term a ^ that is divorced from
00

crossmodulation effects; and all I(2k-l)'s into a variance term a ^
ox

that does depend on crossmodulation between ^Qcind ^z{see (19)):

a ^ :^ a ^ + a ^ . (34)
o 00 ox

The component terms depend on (10), (19), (20), (27), and (33).

17



= 2",ECSk-l,2k+Sk+1.2j^'2'^'
k=l

2 V^ 1
I

sink(ajo > a)3)T]•

aj = 2 (2Coi+ Csi)^ 1(1) (35)

+ 2"' ,^, vC2k_2, 2k-l + ^2k, 2k-iy ^^^^"^^
k=2

n^ k=l [{2k-l)^- i?
Y2 (^(2k-l)(ujo-uu2)y

4. 5 Hypothesis H^

Let V = 1 and proceed as before. There are two arguments in

(20) that contribute for all m = 0, 1 , 2, . . . ,

and

3o(t) - 01 (t) +m[e2(t) - 01 (t)]

)o(T) + 01 (T) - m[e2(T) - 01 (T)],

)^(t) - 02 (t) + m[9,(t) - 02 (t)]

)o(T) + 02(T) - m[9i(T) - 02(T)]

(36)

18



Therefore in (19)

2
^ m = m+1 , m

1 1 (m+1, m;m+l, m) + li (m,m+l;iTi, m+1) '(37)

where for j = 1,2,... define

li(l,0;l,0) + li(0, 1;0, 1) = 2 J(0),

ii(j+i J;j+i.j) + ii(j,j+i;JJ+i) = 2"^j(j).

Each J(j) is a sum of four terms. Let j = 2k(k=0, 1, 2, . . . ),

T

j(2k) =1^ j
cos^aJo-(2k+l)aJi+2kuj2^t cos P(l,t)dtJ

+ lij''"0

T

+
l_x I

^°^ V °

'p

ojo -(2k+l)uJi+2kuj2)t cos p(l,t)dt (39a)

+2kuJi -(2k+l)uj2) t cos p(2, t)dt

;38)

uUo+2kuUi -(2k+l)uJ2 Jt cos p(2,t)dtl

Yi No -(2k+l)uji+2ka]2 i + Y2 ^ ujq +2kiJi -(2k+l)aj2^

19



Next, let j = 2k -1 (k=l, 2, . . . ),

J(2k 1) = Ij^
I

cosi^ajo+{2k-l)uji

T

2kaj2 )t cos p(l, t)dt
-i2

\- I sinruJo+(2k-l)uJi -2kaj2) t COS p(l, t)dt
I

r.. ^
+ T-

I
cos( (jUo -2kaJi +{2k-l)(jU2 H cos P(2, t)dt

'

(39b)

T
A

+ 1—1 sini oJo -2kaj-L +(2k-l)ai2 jt cos P{2, t)dt

= Yi ( uuo +(2k-l)(jUi -2kuu2 y + Ys ( ""o -^kuj;^ +(2k-l)(JU2 J •

Apparently, both J (2k) and J(2k-1) do depend on cross -modulation.

The variance (let a,^ ~ ^i
^ ^° agree with (34) and to emphasize this

dependence) follows from (10), (37), (38), and (39):

00

8 V^ 1 r ^ ' "^ r ^ l^~)

^Ix"^ ^ (4k+l)^ I
Yii^wJo-(2k+l)aji+2kuj2y + Y2 Q^o +2kiiji -(2k+l)aj2^|

j

(40)

^^ ^1 (4k-l)^ {[vi(a;o +(2k-l)(jji -2kuu2^ + Y2 (oJo -2kuJi +(2k-l)aj2 }^

5. DETECTABILITY PARAMETER

5. 1 Definitions

Aein (1964), Anderson and Wintz (1969) and others use a detectability

paranaeter

var Oo
(41)

20



This definition ignores the false alarm probability connpletely

(Helstrom, I960), and is suited to measure the message

output SNR after acquisition. The acquisition model (fig. 3) suggests

an alternative definition

var Oo + var tti

Rudnick (1962) gives Neyman -Pearson arguments for use of D , and

in fact shows that D should be maximized. Even in the present case

of E a
]^

= (15), the two definitions become equivalent only in the

extreme var Oi^ « var Qfo . If the two variances are of the samie

order of magnitude, then D — g d .

We have as our main result

2a^ +a ^ +(a ^ + a, '^) ' ^ ^
n 00 ox ix

where EOo is given in (14), a ^ in (17), a and a in (35), and^^ (=> n 00 ox

a ^ in (40). All the quantities are exact for the assumed system
Ix

model (fig. 1); no approximations or bounds have been used so far.

To elaborate nnore on the a 's in (43), one needs to invoke

additional properties of the channel. These properties are apt to be

based partly on measurement, and partly on engineering inference.

Consider a ^ in (35). The only unknown entity is the frequency

offset OJo -0)2 . By (5), the difference should be small but not necessarily

21



zero. The variance term can be upperbounded by setting (juq equal

to cug (see Abramowitz and Stegun, 1964),

'o:"?-ia (4k^-i)^ "°-°°^^^^- (44)

The crossmodulation-dependent quantities a ^ (35) and o
^

ox Ix

(40) also depend on the frequency spacings. The physical interpretation

of the variances amounts to weighted sums of crossnaodulation energy

at specified spectral lines. There is a great variety of methods for

estinaation and bounding of spectra; the difficulty must clearly lie

elsewhere. Consider our knowledge, or lack of same, about the

following:

(a) frequencies uuq , uu^ , uUg ,

(b) delays Ti , Tg ,

(c) modulations po (t), Pi(t), Pgi'^)-

Quantity a (44) was upperbounded by setting all frequencies

equal. This appears uncertain for o and a, , Also since
ox Ix

message FM is certain to be nnuch slower than address modulation, we

nnust decide whether there is practical justification for treating the

carrier frequencies (jOq , (ju^, and uug as deterministic constants

(functions) or as random variables (functions).

In common practice all possible delays O^T ^T(|a=l,2) can

occur. We may wish to single out the pair (Ti,T2) that has the

worst effect on a ^ + a, ^. The final answer depends on the codeox Ix ^

(e. g. , signal design) used. From figure 2 we can observe super-

ficially that maximum variance must occur at bit sync.

22



The choice of code, as indicated, offers an area of concern,

especially for large M. For M = 2, the three waveforms Po(t)> 3i(t), and

P2 (t) give little substance to a multiple access argument involving

crosstalk and/or lack of orthogonality.

5. 2 Example

Consider the following, atypically simple example. Set T^ =

To = 0, T = 2n, and for \i = 1,2, let uUq - uu = 1/M , where M » 1

is a large integer. Pick the codewords as

Po(t) = (0, 0,0,n,n,TT),

Pi(t) = (0,0,TT,0,n,n). (45)

p2(t) = (0,n,0, 0,n, 0).

By (28)

and by (29)

:os P(l,t) = (+1, +1, -1, -1, +1, +1),

:os P(2,t) = (+1, -1, +1, -1, +1, -1).

Yi(o) -~ (^°^ orthogonal),

Y2(o) = (orthogonal),

nrr L J

(46)

(47)

23



We denote by ='= the constraint that (2k-l)/M2 rnust be an integer and

write (35) as

^ ,^. [(2k-l)--i]-
k=M<

,^2k-l-

2 r ^2(1)
(48)

^f^MT

0. 002 080 (uuo -ojg)'

Similarly, from (40),

2 ^ 8 r Y> 1
I

A2k+1 2k ^
Ix ~ tF I ^,. (4k+l)^

I

^^ V Ml " Ms^

,^„.. Tik+rp "^^K

/'2k+l) 2k ^

k=0
M2 MiV

(49)

k=r
+ ^-...TikTI)^

^-2k 2k-l -s

^^^Mi " M2 ^

i^Ti*
(4k-

D'
2k 2k-

r

Y2^ TTVM2 Ml y
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where ''' denotes a constraint that the argiu.ieit of y (• • • ) nnust be an

integer, [i = 1 , Z,

^ 2 _ .4 r |Yx(1)|"
I

|-Y2(i)l^ + Iyi(Q)I^^ + ]
Ix rF L Mi^ Ms"" 4(Mi+M2)^ '

' ' J

^ 4 r 3 1 n^ f

= 0. 012 482 (ojo -uui)^ + 0. 004 161 (% -ajg)^

+ 0. 000 114 (2a)o -OJi-uUs)^.

The total variance (denominator in (43)) contains N /T plus (44),

(48), and (50). For M^ » 1, a ^ can be ignored in comparison with
'^

O
2 T^A ^ ^ 2a . Moreover, a is quite likely to be negligible in respect to

5. 3 Error Probability

In this brief section we introduce elementary error probabilities

pertinent to the system (fig. 1). Quite typically a threshold device

follows the correlator. Some level a is used to decide which of the

hypotheses is likely to be true. Thus, if a > a^ holds, Ho is accepted

as true; and if a ^ a '^i is accepted.

The nature of such binary hypothesis testing is well understood

(Crame'^r, 1961; Helstrom, I960). Two types of error are possible,
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and occur with probabilities

(51)

P = Pr (select H^lH is true)

= Pr (a^ >a^),

P = Pr (select H JH^ is true)

Pr (a^^ a^).

If the distributions of a^ and a were accurately known, the error

probabilities could be evaluated exactly. However, we know the means

and variances exactly, and nothing beyond that about the distributions.

We present two idealizations that are easy to use but inaccurate in

practice. Nominally, the correct values will lie between them.

The Gaussian Model

Pretend that the random variable a (v = 0, 1) is Gaussian with

mean and variance given above. Then
,

a

P., = 1 - erf ^
01 /var tti

P , ^ - e rf
^ ^ /va r a

o

where the error function is defined as in Viterbi (1966)

1 r
-^'

/ e
~2"

du, -a><x<oo. (53)rfx=-L_ fy^ J
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Improved Chebyshev Bound

A manipulation (Cramer-, 1961 p. 256) of integration regions and

Schwarz's inequality yields for (51)

var a

P ^ = rr
01 var a + a

(54)

10 varaQ+ (Ea,^-a^)^ '

The two nnodels are far apart. The Chebyshev bound is too high

for realistic distributions, and the Gaussian result is typically too

low. Because of its exponential nature at high SNR, the Gaussian

version is more representative.

Observe that neither in (52) nor in (54) does the detectability

parameter D^ appear in a clear-cut form. We may start by expunging

the threshold a from its domiinant role in the arguments. In the

space of -la, , a j> the set relationships

(55)

c "o^^JU^'^o}

hold for all a . Regardless of threshold setting, a union bound yields
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^Ol + ^IO^P'^'^^"!'- <5^'

We interpret Pr(a^ a ) as an "irreducible error probability"

of sorts, and note that

Pr (a ^ a ) = erf D (Gaussian model),

1
'"'

< ^ (Chebyshev bound).

The second line follows from the Chebyshev bound (54) applied to

Pr [(ao - Eao) - (c^i - Ea^) ^ Ea^ - Ec^o] .

6. CONCLUSIONS

A direct second order analysis of an extremely simplified two-

signal multiple access channel has been carried out. The effects of

an ideal hard limiter are worked out with the aid of standard Fourier

series. This approach is conceptually quite simple (Anderson and

Wintz, 1969), as it avoids the formalism of hypergeometric functions

(Jones, 1963; Sollfrey, 1969).

The model, the techniques, and, in a qualitative way, the results

are intended to guide us in a forthcoming computer analysis of multiple

(M » 2) randora access channels. To retain trust in the basic solution,

the method presented does not require any approximations or bounds .

The channel model consists of an ideal hard limiter and Gaussian

noise. Carrier phases are mutually independent and uniform over

(0, 2tt). The relative delays and frequency deviations can be treated

as deterministic or as random variables. We have derived second

order statistics (means and variances) for the word correlation out-

puts. The underlying distributions are non-Gaussian and too cumber-

some to derive.
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Three properties that emerge in the above two -signal case and

may very well be valid in the general M signal case, are the following.

First, reasonable frequency drifts and departures from a true carrier

do not seem to increase the distortion variance in a drastic fashion.

The same conclusion appears to be valid for slow message FM or PM.

Second, the variance of the correlator outputs contains a substantial

term that is entirely independent of crossmodulations for the assumed

to n modulations. Third, waveform and coding departures from

orthogonality do not necessarily affect the detectability parameter by

robustly scaling down the signal mean.
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