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Fig. 1. Plot of all severe weather reports for the 24-hour period beginning at 1200
UTC 6 July 1995. Dark circles indicate hail reports while the cross symbol
represents wind gusts or damage. Triangle represent tornadoes and diamond
shapes indicate hail and wind damage reported at the same location.

Fig. 2. Same as Fig. 1 but for the 24-hour period beginning at 1200 UTC 9 July
1995. Note the letter "T" indicates the location of a tornado.

Fig. 3. Monthly distribution of SSWEs during the period from 1955 through 1993,
Fig. 4. Mean composite chart at 0000 UTC for Pattern A SSWEs affecting
Washington and Oregon. Dotted line denotes 850 mb thermal ridge. Frontal
boundary is position of 700 mb front. Long dashed lines labeled H5 and H3
indicate trough axis positions at 500 and 300 mb. Thin line with arrow indicates the
jet axis at 500 mb while thick line with arrow represents the jet axis at 300 mb.

Broad zigzag line shows an area of 500 and 300 mb diffluence while 500 and 300
mb ridge axes are denoted by long, north-south oriented narrow zigzag line.

Fig. 5. Upper air analyses at (a) 850 mb, (b) 700 mb, {¢) 500 mb, and (d) 250 mb
levels for 1200 UTC 6 July 1995.

Fig. 6. Skew-T log p upper air sounding analyses for Spokane, Washington (GEG)
for July 1995 at (@) 0000 UTC 6th, (b) 1200 UTC 6th, and for Boise, Idaho {BOI) for
July 1985 at (¢) 0000 UTC 6th and (d) 1200 UTC 6th.

Fig. 7. Same as Fig. 5 but for 0000 UTC 7 July 1995.

Fig. 8. Same as Fig. 4 but for 0000 UTC 7 July 1995.

Fig. 9. Skew-T log p upper air sounding analyses for Spokane, Washington (GEG)
for July 1995 at (a) 0000 UTC 7th and for Boise, ldaho (BOI) for July 1995 at (b)
0000 UTC 7th.

Fig. 10. Same as Fig. 5 but for 1200 UTC 9 July 1995.

Fig. 11. Same as Fig. 6 but for 0000 UTC Sth and 1200 UTC Sth.

Fig. 12. Same as Fig. 5 but for 0000 UTC 10 July 1995.

Fig. 13. Same as Fig. 4 but for 6000 UTC 10 July 1985,






The 6 July and 9 July 1995 Severe Weather Events in the
Northwestern United States: Recent Exampies of SSWEs

Eric C. Evenson
National Weather Service Forecast Office
Boise, Idaho

Formerly From
National Severe Storms Forecast Center
Kansas City, Missouri

Abstract

During early July of 1995, two significant weather episodes affected parts of the
northwestern United States. Severe weather, over a relatively large area, was reported
with each event across portions of Washington, Oregon, Idaho, and the western portions
of Montana and Wyoming. Although the occurrence of severe weather in the northwestern
United States Is typically isolated in nature, a recent study by Evenson and Johns (1995-
hereafter £J) indicated that these significant severe weather episodes (SSWESs) occur at
an average frequency of about two per year. In the work by EJ, common synoptic and
thermodynamic patterns were found to produce these SSWEs. Characteristic composite
charts were developed to assist forecasters in recognizing the parameters associated with
these rather destructive severe weather events.

This study wilf examine two recent SSWEs, the events of July 6 and 9, 1995. On July 86,
severe weather was reported (33 reports) across portions of Washington, Oregon, Idaho,
and the western portions of Montana and Wyoming. Wind damage was the primary severe
weather phenomena during this event. On July 9, the presence of unusually large
instability lead to the development of severe weather (42 reports) across portions of
Washington, Oregon, Idaho, and the western parts of Montana. Of importance fo note is
that very large hail, between baseball and grapefruit size, was common over parts of
Washington and Oregon. This lead to extensive crop and property damage totaling over
eighty million dolfars. Common synoptic and thermodynamic conditions associated with
these events are discussed and compared with the findings by EJ. It will be noted that
these conditions producing the SSWEs were similar to those found by EJ. This suggests
that a greater understanding of the synoptic environment associated with these significant
and destructive events exists which should help forecasters in better forecasting and early
detection of such phenomena.



I. Introduction

Recent work by Evenson and Johns
(1995-hereafter EJ) noted that significant
severe weather episodes (SSWEs) in the
northwestern United States occur at an
average frequency of about two per year.
These episodes, which are generally
atypical of the type of severe weather
commonly found in the western United
States (e.g., isolated high based
thunderstorms  producing damaging
winds), have been found to produce
severe weather over a relatively large
area and can be quite destructive.
Because of factors such as population
density (McNuity, 1981), the average may
actually be higher than two per year. The
addition of radars, public awareness, and
spotters will likely lead to an increased
detection (documentation) of SSWEs,
such that the climatology will be more
representative of actual events.

In early July 1995, two SSWEs occurred
across portions of Oregon, Washington,
ldaho, and the western portions of
Montana and Wyoming. On the 6th, 33
severe weather events were reported
(Fig. 1), and 42 severe weather events
were recorded on the 9th (Fig. 2). Very
large hail, between baseball and
grapefruit size, fell on the Sth contributing
to over eighty million dollars in damage to
crops and property across portions of
north-central and northeast Oregon as
well as southeast Washington. In
addition, wind gusts between 60 and 80
mph and a tornado were reported.

This study will examine the synoptic and
thermodynamic conditions associated
with the SSWEs on the 6th and Sth. Data
from these two events will be compared

with each other as well as with the
characteristic composite synoptic patterns
developed by EJ. In addition, forecast
implications of the findings will also be
discussed.

Il. SSWEs

As defined by EJ, an SSWE is any of the
following:

1) A severe weather episode where 10
or more severe weather events occur in
the study area' during a 24-hour period
beginning at 1200 UTC.

2) A severe weather episode with 5 or
more severe weather events in the study
area during a 24-hour period beginning at
1200 UTC, including at least one tornado
of F3 or greater intensity.

3) A severe weather episode in which
the Storm Data description suggests a
widespread severe weather event has
occurred in the study area even though
the specific severe weather report criteria
in either 1) or 2) are not met (e.qg., a
generalized entry indicating that
numerous trees were blown down and/or
farge hail has occurred over a large
portion of a state or over portions of
several states).

During the March-September time periods
from 1955-1893, 27 SSWEs were found
using the guidelines noted above. For
this 38 year period, the average

‘For this project, the study area is defined
as the following states: Woashington, Oregon,
Idaho, and the western portions of Montana and
Wyoming.



frequency is less than one per year.
However, in the last 13 years of that
period (1981-1993), over 50 percent of all
severe weather events were reported in
every state of the study area, and 21 of
the 27 SSWEs were identified during this
time period as well. Given this trend in
the reporting of severe weather, the data
suggest that SSWEs may occur as often
as twice per year.

The monthly distribution of SSWEs is
noted in Fig. 3. All SSWEs have
occurred during the months of April
through September. One third (9) of all
SSWEs have occurred in the month of
June followed by July and August each
having reported five SSWEs. This
indicates that SSWEs are primarily a
summer season phenomenon.

Two common synoptic patterns based on
mid- and upper-level trough orientation
were common with SSWEs:

1) Pattern A - the negative tilt pattern
2) Pattern B - the trough axis pattern

The study area was divided into two
regions when analyzing the
meteoroiogical features associated with
SSWE development. Region 1 consists
of ldaho and the western sections of
Montana and Wyoming, with Oregon and
Washington in region 2. Pattern A is the
maost common synoptic pattern asscciated
with SSWEs occurring in both regions (21
cases). The 6 July 1995 and 9 July 1995
cases closely resembie the characteristic
composite charts for Pattern A cases
affecting Oregon and Washington (Fig.
4.

in the study by EJ, several common
features appear to be associated with
Pattern A SSWEs. All of these cases are
associated with a trough to the west of
the study area, and a south to
southwesterly flow, at mid and upper
levels, prevails over the area of severe
weather occurrence. In addition, all
cases are associated with a shortwave
trough moving into the region and in most
situations, the shortwave trough is
negatively tilted®.

The mid- and upper-level flows are
relatively strong with a 40 to 60 knot 500
mb jet max and a 50 to 100 knot jet max
at 300 mb. Severe weather development
is typically associated with a diffluent
region at 500 and 300 mb and usually
takes place along and ashead of the
boundary layer coid front. Because of
terrain  effects and general higher
elevation over the western United States,
the boundary layer cold front is most
easily identified by examining the 700 mb
thermal field (Williams, 1972) and its 12
and 24 hour changes. The front is
typically located near the tightest thermal
gradient at 700 mb.

Instability typically reaches moderate
values in the Pattern A cases with surface
based lifted index {SBLI) of -3 to -6 and
surface based Convective Avajlable
Potential Energy (CAPE) of 1000 to 2000
Jkg'. In some cases SBLI values may be
as low as -8 with CAPE values to 2500
Jkg'. Destabilization as the result of
cooling aloft is typically not a major factor

% A negatively tilted tfrough is one whose
axis is not meridionaily oriented, but leans toward
the west with increasing latitude (Bluestein 1992).



with Pattern A cases, but is brought about
by the strong diurnal heating in advance
of the frontal boundary where surface
dew points are at least 45 degrees
Fahrenheit (F). In most cases, late night
or early morning precipitation can
contribute to an increase in low-level
moisture, enhancing potential instability.
This late night or early moming
precipitation contributes to the vertical
distribution of moisture in the low and mid
levels of the atmosphere. In addition, a
backing upper-level flow ahead of a
negatively tilted trough in Pattern A cases
can contribute to the horizontal transport
of moist air from the southwestern United
States, especially during the monsoon
season (Hales, 1974).

lll. The Case of 6 July 1995

The 1200 UTC upper-air data on 6 Juiy
1995 are shown in Fig. 5. At 850 mb, a
thermal ridge extended from the Alberta-
British Columbia border southward across
western Montana, central idaho, and the
eastern portions of Nevada. The frontal
boundary, although somewhat difficult to
detect, was defined by examining the 24
hour temperature changes at 700 mb.
This placed the location of the front from
southern British Columbia southwestward
into the Pacific Ocean along the
Washington and QOregon  coasts.
Southwesterly flow aloft (500 and 250
mb) existed across Washington, Oregon,
and ldaho while ridge axes extended from
west-central Montana southward into
central Arizona. A band of 40-50 knot
500 mb winds prevailed from northwest
California northeastward into central
ldaho while 50-80 knot winds at 250 mb
existed across the same area. Height
falls at both 500 and 25C mb (between 40

and 70 meters at 500 mb and 60 to 100
meters at 250 mb) were noted across
southwest Oregon and northern
California which indicated the approach
of a relatively strong shortwave trough. [t
is not uncommon in SSWEs to see the
existence of stronger height falls at 250
or 300 mb than at 500 mb. Thus, the 250
or 300 mb level may be more useful in
evaluating the presence of a shortwave
trough. Satellite photos (not shown)
confirmed the presence of a well-defined
shortwave trough moving into northwest
California at 1200 UTC. Precipitation
occurred during the overnight hours
across portions of eastern Oregon and
parts of Idaho and surface dew points
across this area were greater than 45°F.
A region of surface dew points in the low
to mid- 50s existed across northeast
Oregon and the central sections of ldaho.

Environmental soundings for Spokane,
Washington (GEG) and Boise, ldaho
(BOI) taken at 1200 UTC are shown in
Fig. 6. Both soundings showed the
airmass was slightly stable with SBLIs of
+1 at BOIl and +4 at GEG. However,
moisture had increased substantiaily in
the past 12 hours on both soundings. An
increase in mid-level moisture on the BOI
sounding helped create an inverted-V
structure, a common thermodynamic
profile for the development of dry
microburst which produce damaging
winds. While the moisture in the lower
layers of the atmosphere had increased
on the GEG sounding, the profile also
exhibited inverted-V characteristics. This
increase in moisture would enhance the
potential instability that would be realized
later in the afternoon as surface heating
oceurred.



Upper-air data at 0000 UTC on 7 July
1995 are displayed in Fig. 7 and the
resulting composite chart is shown in
Fig. 8. Note that the composite chart for
0000 UTC on 7 July 1995 (Fig. 8) is
somewhat similar to the composite chart
developed by EJ for Pattern A cases
affecting Washington and Oregon (Fig.
4). The 850 mb thermal ridge extended
from southeast British  Columbia
southeastward across central Idaho and
into western Utah. The frontal boundary
(at 700 mb) had now moved eastward into
the central sections of Washington and
Oregon as well as northern California.
Southwesterly flow aloft (at 500 and 250
mb) continued to exist across the region
as the ridge axes extended from the
Alberta-Saskatchewan borders southward
across the central portions of Montana
and Wyoming. Wind speeds greater than
40 knots at 500 mb extended from
northern California northeastward into
southwest Montana. |n addition, greater
than 60 knot 250 mb winds prevailed
across the western portions of Oregon.
Late afternoon surface temperatures in
advance of the 700 mb front reached into
the 80s and lower 90s across much of
eastern Washington, eastern Oregon,
and ldaho. Meanwhile, surface dew
points greater than 45 °F existed over this
area with readings as high as 60°F in
north central Idaho. This resulted in
SBLis as low as -6 with CAPE values
between 1000 and 2000 Jkg™ across the
extreme eastern portions of Washington
and Oregon as well as parts of idaho.
Sounding analysis at 0000 UTC for GEG
and BOl on 7 July 1995 (Fig. 9) showed
the existence of an inverted-V
environment, especially on the BOI
sounding. This enhanced the potential
for damaging downburst winds.

Severe thunderstorms, mainly producing
wind gusts between 50 and 60 knots
(although several reports of hail greater
than 3/4 inch in diameter were reported
over parts of Idaho), developed during
the afternoon hours over northeast
Oregon, southeast Washington, and
western Idaho ahead of the 700 mb front
(Fig. 1). The severe thunderstorms then
spread northeastward into portions of
western Montana, southeast Idaho, and
northwest Wyoming during the late
afternoon and early evening hours.

IV. The Case of 9 July 1995

The morning upper-air data at 1200 UTC
is depicted in Fig. 10. The main thermal
ridge at 850 mb was oriented farther east
than is typically observed with Pattern A
SSWEs as the axis extended from
northern Utah northeastward into eastern
Montana. However, a secondary thermal
axis was noted across the east-central
sections of ldaho extending northward
into northwest Montana. |n addition, a
rather large area of extensive moisture
(dew points between 8 and 10 degrees
Celsius) covered a large part of
Washington, Oregon, ldaho, and the
western sections of Montana. Tweive
hour changes in the thermal pattern at
700 mb revealed the main frontal
boundary over the western portions of
Washington and Oregon. Southwesterly
flow aloft prevailed at both 500 and 250
mb while ridge axes at these levels
extended from the Alberta-Saskatchewan
borders southward across central
Montana, western Wyoming, and eastern
Utah. The main jet axis at 500 mb (60
knots) extended along the Pacific Coast
while a secondary jet was noted across



northwest Nevada, southeast Oregon,
and southwestern Idaho. This resulted in
a diffluent flow pattern over portions of
Washington and Oregon and the northern
portions of idaho.

A band of 90+ knot winds at 250 mb
extended from southwest Oregon into
west-central Washington. In addition,
strong height falls of 80-100 meters were
noted at 250 mb (50-60 m at 500 mb)
over western Oregon in response to a
shortwave trough moving onshore. The
1200 UTC soundings from GEG and BOI
(Fig. 11) showed that the moisture in the
lower levels had increased in the past 12
hours in response to thunderstorm activity
that moved across the area during the
nighttime and early morning hours.

The 0000 UTC 10 July 1995 upper-air
analyses are shown in Fig. 12 and the
resultant composite chart is displayed in
Fig. 13. The resultant composite chart
from 0000 UTC on 10 July 1995 closely
resembles the characteristic composite
chart found by EJ to produce Pattern A
SSWEs in Washington and Oregon. The
850 mb thermai ridge axis at 0000 UTC
continued to exist across the east-central
portions of Idaho into northwest Montana.
Dew points of 8 to 10 degrees Celsius
also persisted over the eastern portions
of Washington and Oregon, ldaho, and
the western portions of Montana. The
sharpest thermal gradient at 700 mb
existed across the central sections of
Washington and Oregon indicating the
presence of the main frontal boundary.
Southwesterly flow aloft at 500 mb and
250 mb continued to persist over the
region and ridge axes remained across
central Montana, western Wyoming, and
eastern Utah. The 500 mb wind fields

continued to show a double structure to
the jet maxima with one axes extending
along the Washington and Oregon coasts
and another from central California into
northwest Nevada and southwest |daho.
This structure indicated the presence of
diffluence aloft over portions of
Washington, Oregon, and [daho.

Meanwhile, a diffluent pattern was also
noted at 250 mb as a double jet structure
also existed. One jet axis was situated
across the coastal sections of
Washington, Oregon, and northwest
California while another jet axis extended
from central California into northwest
Montana. The 0000 UTC soundings at
GEG and BO! from 10 July 1995 showed
the presence of moderate to strong
instability  (Fig.  14). Surface
temperatures well into the 80s and fower-
90s and surface dew points in the mid-
50s to mid-60s greatly contributed to
significant airmass destabilization ahead
of the approaching 700 mb front. Based
on the 0000 UTC 10 July 1995 soundings
from GEG and BOI, SBLIs between -6
and -10 existed with CAPE values as high
as 3355 Jkg™'. Given the close proximity
of the GEG sounding to the most
significant severe weather producing
storm, the surface conditions were
modified on the GEG sounding using
SHARP (Hart and Korotky, 1991) to
sample the thermodynamic environment
over southeast Washington where the
thunderstorm, responsible for producing
a tornado and hail up to four inches in
diameter, was moving. Inputting the
surface data (note wind data was not
changed) from Walla Walla (ALW;
surface temperature of 90°F and surface
dew point of 65°F) lead to the extremely
large amount of CAPE (3355 Jkg' on the



GEG sounding, and heips to explain why
hail as large as the size of grapefruits fell

over the region.

The significant severe thunderstorms,
producing numerous reports of golfball to
grapefruit size hail, developed over north-
central Oregon by early afternoon on the
Sth and moved northeastward during the
afternoon and evening hours across
portions of northeast Oregon, eastern
Washington, western and central ldaho,
and western Montana (Fig. 2).

V. Forecast Implications

From the severe weather events on the
6th and the 9th, it appears that
recognition of a Pattern A SSWE event
was very useful in determining the severe
weather potential on these two days. In
addition, examination of the
thermodynamic environment was crucial
in recognizing the type of severe weather
expected. Inthe cases of the 6th and the
9th, surface dew points were in the mid-
40s to mid-50s, and mid-50s to mid-60s,
respectively. Late night and early
morning precipitation occurred over the
area on both days which helped increase
the depth of moisture. The vertical
advection of moisture in higher based
thunderstorm activity helped transfer the
amount of moisture from the mid levels
downward into the lower levels, This
resulted in evolving from an airmass
primarily conducive for high based
thunderstorms producing damaging winds
(on the 6th) to an environment where
storms would have [ower bases and have
much greater potential instability to
produce large hail as well (on the Sth).
This was the most obvious difference

pbetween the 6th and the Sth, as
soundings on the 6th reflected more of an
inverted-V environment over the entire
region resulting in more of a threat for
damaging microburst winds. It is noted
that the soundings on the 6th were not
characteristic of those found by EJ during
SSWEs as the depth of moisture in the
sounding is usually greater than what was
indicated on the 6th. However,
thunderstorm activity on the 7th and
especially the 8th heiped increase the
vertical extent of moisture on the 9th,
especially in the eastern portions of
Washington and Oregon. SBLIs/CAPE
values on the 6th were as low as -6/1000-
2000 Jkg', respectively, while
SBLIS/CAPE values on the 9th were -6 to
-10/as high as 3355 Jkg™, respectively.

Although the dataset of EJ for Pattern A
SSWEs in Washington and Oregon
contained only four cases, the event of 9
July 1995 supports the characteristic
composite charts of synoptic and
thermodynamic conditions associated
with Pattern A SSWEs in this part of the
country (Fig. 4). The SSWE event of 6
July 1995 was not as well defined in
terms of the characteristic composite
chart for Pattern A cases in Washington
and Oregon. This may be a function of
the limited number of cases that comprise
the composite chart. However, the most
significant meteorological parameters
necessary for SSWE development was
observed over the area. In addition, the
environmental soundings from GEG and
BOl on the 6th exhibited a drier
environment than is typically found in
Pattern A cases. Sufficient moisture did
exist however to result in an "inverted-v"
environmental sounding which was
conducive to the numerous occurrence of



damaging winds reported on that day. As
noted earlier, increased spotter groups,
heightened meteorological awareness,
and the addition of the WSR 88-D should
contribute to greater detailed recognition
of more widespread severe weather
events in this part of the country. Given
that fact, a greater understanding of the
conditions that produce SSWEs will be
important to the operational forecaster
when dealing with episodes of such
magnitude.

From a national center perspective, initial
Day One convective outlook forecasts
(from the National Severe Storms
Forecast Center, NSSFC) at 0700 UTC
on both the 8th and the 9th indicated a
"slight" risk of severe thunderstorms over
portions of the northwestern United
States. In both situations, the
characteristic composite charts were
used to help identify the potential for
severe thunderstorms. Given the
recognition of favorable synoptic patterns,
the degree of moisture, and the resultant
instability on the Sth, the forecast was
upgraded to indicate a "moderate” risk of
severe thunderstorms by early afternoon
across the eastern portions  of
Washington and Oregon, parts of idaho,
and northwest Montana. Severe
thunderstorm watches were issued in
both situations as well.

Recognition of these SSWEs can help
differentiate between days when severe
thunderstorms are generally isolated in
nature and occur from high based
thunderstorms to days when longer lived,
deeper convection producing widespread
large hail, damaging winds, and possibly
tornadoes over a larger area occurs.
This differentiation can also aid in the

decision to issue watches since SSWEs
have been found o produce numerous
amounts of severe weather.
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Fig. 1.

peginning at 1200 UTC 6 July 1995.
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Fig. 4. Mean composite chart at 0000 UTC for Pattern A SSWEs
affecting Washington and Oregon. Dotted line denotes 850 mb
thermal ridge. Frontal boundary is pesition of 700 wb front. Long
dashed lines labeled HS and H3 indicate trough axis positions at
500 and 300 mb. Thin line with arrow indicates the jet axis at 500
mb while thick line with arrow represents the jet axis at 300 mb.
Broad zigzag line shows an area of 500 and 300 wmb diffluence while

500 and 300 mb ridge axes are denoted by long, north-south oriented
narrow zigzag line.
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Chemicass Pe!er Mueller and Jorry Galt, August 1891. (PB91-235424)
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:gg:g:sﬁng Heavy Snow Events in Missoula, Montana. Mike Richmond, May 1992. (PB92-
)

wga\gﬁ)'quﬂ!Branhop in Portland, Oregon. Various Authors, December 1892. (PB93-

1

A Case Study of the Operational Usefulness of the Sharp Workstation in Forecasting a
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Climate of Pendleton, Oregon. Claudia Bell, August 1693. (PB83-227536)

Utilization of the Bulk Richardson Number, Helicity and Sounding Modification in the Assessment

of the Severe Convective Storms of 3 August 1892, Eric C. Evenson, September 1983. (PB94-
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Convective and Rotational Parameters Associated with Three Tomado Episodes in Northem and
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Climate of Santa Barbara, Califomia. Gary Ryan, December 1694. (PB85-173720)

Climate of Yakima, Washington. Greg DeVoir, David Hogan, and Jay Neher, December 1994.

(PB95-173688)

Climate of Kalispell, Montana. Chris Maier, December 1094, (PB95-160488)

Forecasting Minimum Temperatures in the Santa Maria Agricultural District. Wilfred Pi and Peter

Felsch, December 1984. (PB95-171088)

The 10 February 1994 Oroville Tomado—A Case Study. Mike Staudenmaier, Jr., April 1895,

(PB95-241873)

Santa Ana Winds and the Fire Outbreak of Fall 1993. vory Small, June 1995. (PB95-241865)

Washington Shte Tomldm Tresté Huse, July 1995. (PB96-107024)
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NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on
October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and
technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and
their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the

following kinds of publications.

PROFESSIONAL PAPERS--Important definitive
research results, major techniques, and special
investigations.

CONTRACT AND GRANT REPORTS--Reports prepared
by contractors or grantees under NOAA sponsorship.

ATLAS--Presentation of analyzed data generally in
the form of maps showing distribution of rainfall,
chemical and physical conditions of oceans and
atmosphere, distribution of fishes and marine
mammals, ionospheric conditions, etc.

TECHNICAL ~ SERVICE  PUBLICATIONS--Reports
containing data, observations, instructions, etc. A
partial listing includes data serials; prediction and
outlook periodicals; technical manuals, training pa-
pers, planning reports, and information serials; and
miscellaneous technical publications.

TECHNICAL REPORTS--Journal quality with extensive
details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS--Reports of preliminary,
partial, or negative research or technology results,
interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

NATIONAL TECHNICAL INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE

5285 PORT ROYAL ROAD

SPRINGFIELD, VA 22161
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