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Abstract

Skillful El Nino—Southern Oscillation (ENSO) prediction is one of the most important problems in
climate science due to its substantial global impacts. There have been many successful examples of
predicting ENSO using dynamical climate models since the mid-1980s. It was therefore unexpected
that many operational climate models significantly overestimated the likelihood of La Nifia
conditions in 2024. In this report, we examine the physical processes associated with the arrested
development of La Nifia conditions in 2024 /25, and the possible reasons for overestimated
predictions of its strength. Despite favorable subsurface cooling conditions following a strong 2023/
24 ElNifo, we argue that arrested development of La Nifia conditions in 2024 /25 resulted from weak
episodic easterly wind anomalies and associated weak upwelling Kelvin wave activity, which failed to
shoal the thermocline sufficiently to initiate basin-wide air-sea coupling. Furthermore, we find that
weaker Kelvin wave activity and ENSO amplitude reduction were linked to the ENSO regime shift
with strengthened mean zonal sea surface temperature contrast and enhanced mean trade winds in
the tropical Pacific around 2000. Model limitations in capturing atmospheric variability and
interdecadal shift contributed to the overestimated strength of the La Nifa predictions in 202425,
underscoring the importance of properly simulating atmospheric variability and the interdecadal
regime shift in dynamical models used for predicting ENSO.

1. Introduction

ElNifio-Southern Oscillation (ENSO) is the most important source of global climate predictability on
seasonal-interannual time scales (e.g., Rasmusson and Wallace 1983, National Research Council 2010,
McPhaden et al 2020, Hu et al 2020a). ENSO prediction has been a major research objective since the
breakthrough work of Bjerknes (1969) with the first successful prediction of an El Nifio using a dynamical
model in 1986 (Cane et al 1986). Today, operational ENSO monitoring and forecast systems have been a
centerpiece of many climate services, such as the National Oceanic and Atmospheric Administration’s National
Centers for Environmental Prediction (NOAA/NCEP; Hu et al 2022, L’Heureux et al 2024), and the National
Climate Center of China Meteorological Administration (Ren et al 2018).

© 2025 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Hovmoller diagrams of the monthly mean of (a) SST (shading; °C) and D20 (contours; m), and (b) OLR (shading; W/m?)
and surface wind stress (N /m?; black vectors) anomalies averaged in 2°S-2°N during January 2024 - April 2025.

La Nifa conditions developed in the boreal winter and spring of 2024 (figure 1) with observations showing
negative sea surface temperature anomalies (SSTA), an unusually shallow thermocline, suppressed convection
and positive outgoing longwave radiation (OLR) anomalies in the eastern and central equatorial Pacific, and
enhanced convection together with negative OLR anomalies in the western equatorial Pacific. Consistently,
anomalous low-level zonal winds were mostly easterly in the central equatorial Pacific at this time. After the
strong El Nifio in 2023 /24 (Tan et al 2024a; figure 2(b)), a La Nifa of substantial amplitude was anticipated based
on recharge oscillator dynamics (Jin 1997, Meinen and McPhaden 2000, Wang and Picaut 2004, Wang 20138,
Planton et al 2021, Vialard et al 2025). According to the recharge oscillator dynamics, after an El Nifo, the equa-
torial Pacificis in a heat-discharged condition, favoring a phase transition to La Nifia. However, despite favorable
antecedent subsurface cooling in the tropical Pacific in the wake of the strong 2023 /24 El Nifo (figure 1(a)), the
anticipated duration and amplitude of Nifio3.4 SSTA La Nina conditions did not materialize (figure 2(b)).

The purpose of this study is to address the important question of what caused the unexpected evolution of the
LaNifa conditions in 2024,/25 and to assess the real-time predictions. The data and methods used in this work are
introduced in section 2. In section 3, we analyze the evolution of the zonal wind anomalies in the tropical Pacific
and wind-forced Kelvin wave activity in 2024,/25. Moreover, it has been documented that interdecadal variations
of ENSO may modulate its predictability (e.g., Ye and Hsieh 2006, Jiang et al 2020). Specifically, around 1999/
2000, ENSO has shifted to a regime with higher frequency and smaller amplitude events compared with that in
1979-1999 (McPhaden 2012, Hu et al 2020b), which contributed to a decrease in seasonal prediction skill (Barn-
ston et al 2012). Therefore, we also discuss the influence of the ENSO regime shift around 1999,/2000 on the
evolution and predictability of conditions in 2024/25. With that background, we assess model predictions in
2024/25 and examine their shortcomings in section 4. A summary and discussion are provided in section 5.

2.Data and methods

We use monthly mean Optimum Interpolation SST v2.1 (OISSTv2.1; Huang etal 2021) ona 1° x 1° grid since
September 1981. This product is computed from the daily OISSTv2.1 that incorporates observations from
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Figure 2. (a) Lead and lag correlations between the Nifo3.4 and WWYV indices in January 1982—December 2023. The negative
(positive) numbers along the x-axis denote the number of months of the Nifio3.4 index lagging (leading). The bar with triangles
denotes significant correlations at the 5% significance level using a t-test with independent sample size estimation (Bretherton
etal 1999). (b) Monthly mean of the observed (shading) and predicted (green line) Nifo3.4 index (°C) during January 2024-April
2025. The two horizontal dashed lines in (b) represent 0.5 °C and —0.5 °C. The predicted Nifio3.4 index is computed based on
equation (1). The predicted values indicated by closed circles in (b) are less than —0.5 °C.

different platforms (satellites, ships, buoys, and Argo floats) into a regular global 4 ° by % © grid. ENSO is
represented by the Nifio3.4 index (the SSTA averaged in 5°S—5°N, 170°W—120°W; Barnston et al 1997, Li et al
2023a). The classification of ENSO events follows the NOAA /CPC’s definition, and the Oceanic Nifio Index
(ONI) is from the NOAA/CPC webpage (https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/
ensostuff/ONI_v5.php). An EINifo (La Nifia) is defined when the ONI is larger (smaller) than 0.5 °C
(—0.5 °C) for a minimum of 5 consecutive overlapping seasons (L’'Heureux et al 2024). ONI is 3-month
running mean of the Nifio 3.4 index, based on centered 30-year base periods updated every 5 years.

Recharge/discharge processes in the equatorial Pacific (Jin 1997) are associated with the cyclic evolution of
ENSO and represented by the warm-water-volume (WWYV) index, defined as the monthly mean anomalies of
the depth of 20 °C isotherm (D20) averaged in (5°S—5°N, 120°E—80°W) (Meinen and McPhaden 2000). A
normalized Kelvin wave index (Seo and Xue 2005) is calculated using pentad ocean temperature of the upper
300 meters along the equatorial Pacific between 135.5°E—94.5°W, based on an extended empirical orthogonal
function analysis. A positive (negative) index represents downwelling (upwelling) Kelvin wave activity, favor-
ing El Nifo (La Nifia) development.

The monthly mean D20 and surface wind stress, and pentad surface zonal wind stress are derived from the
Global Ocean Data Assimilation System (GODAS; Behringer 2007). GODAS is forced by momentum flux, heat
flux, and freshwater flux from the NCEP-Department of Energy Reanalysis 2 (R2; Kanamitsu et al 2002).
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Figure 3. Hovmoller diagrams of (a) pentad mean zonal wind stress anomalies averaged in 2°S-2°N with amplitudes larger than

0.04 N m 2 plotted, and (b) normalized pentad oceanic Kelvin wave index (contours) during January 2024 —April 2025. To eliminate
the stationary component and low-frequency variations in the Kelvin wave index, a high-frequency pass-filtered index with the
155-day running mean removed is displayed in shading in (b). A negative (positive) Kelvin wave index implies an upwelling
(downwelling) Kelvin wave.

Tropical deep convection activity is measured by monthly mean OLR ona 1°x 1° grid from January 1974
onward (Guo et al 2024). The OLR data are the NOAA /CPC blended level-2 OLR retrievals.

To assess the prediction skill of ENSO in climate models, we use predictions from the North American
Multi-Model Ensemble (NMME; Becker et al 2022). The six models are the NCEP Climate Forecast System
version 2 (CFSv2), the National Aeronautics and Space Administration NASA_GEOS5v2, the National Center
for Atmospheric Research NCAR_CCSM4, the Geophysical Fluid Dynamics Laboratory GFDL_SPEAR, the
Environment and Climate Change Canada CanCM4i, and GEM5_NEMO. The predictions (hindcasts and
real-time predictions) start from January 1982 to the present, with lead times extending to 9 months. The num-
bers of ensemble members for the six models vary from 4 to 20. CanCM4i and GEM5_NEMO were retired in
August 2024, and their replacements did not have real-time predictions with initial conditions before Septem-
ber 2024. All model specifications have been detailed in Becker et al (2022; see their table 1). The OISSTv2.1is
adopted as observations in verification.

Monthly and pentad anomalies in the observation-based analyses or reanalysis, and in the NMME predic-
tions, are computed as the departures from their respective climatologies over 1991-2020. The statistical sig-
nificance of correlations is tested using the Student’s two-tailed t-test at the 5% significance level with
independent sample size estimations according to Bretherton et al (1999).

3. Observed anomaly evolution in 2024/25 and possible interdecadal modulation

Asaprecursor for ENSO evolution (Kug et al 2005, McPhaden et al 2006, Tseng et al 2017, Neske and
McGregor 2018), based on the lead-lag correlation between the Nifio3.4 and WWYV indices in 1982-2023
(figure 2(a)), we can use the normalized WWYV index to forecast the ENSO evolution in 2024,/25 with the
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Figure 4. (a) Monthly zonal wind stress anomalies (zonal wind index) averaged in (5°S-5°N, 130°E-160°W) in June -October in La
Nifa developing years during 1982-2023 (black lines) and in 2024 (red line). (b) November-December-January (NDJ) ONI
(blue bar; left y-axis) and the zonal wind index averaged in June-October (red bar; right y-axis) in La Nifia years and 2024.

following equation:

Nifio3.4(t) = 0.55 4. WWV(t—5) (1)

Where Nifio3.4 is in units of °C. The forecasts (green line in figure 2(b)) called for a La Nifia event of
substantial amplitude peaking in August-September 2024 according to the ENSO event definition at NOAA’s
Climate Prediction Center (NOAA/CPC). The La Nifa did not develop as expected (figure 1(a)), we explore the
possibility that its arrested development may have been due to the weakness of intraseasonal atmospheric sur-
face wind anomalies, and associated Kelvin wave activity. Abrupt zonal wind pulses, either westerly wind bursts
or easterly wind surges (EWS; Chiodi and Harrison 2015), can force eastward propagating equatorial Kelvin
waves that perturb thermocline depth to affect the evolution of ENSO, especially in the developing phase of
ENSO events (e.g., Luther et al 1983, Harrison and Vecchi 1997, McPhaden 1999, Wang et al 2011, Puy et al
2016, Neske and McGregor 2018).

According to Puy et al (2016), zonal wind stress anomalies must be strong enough, with a magnitude of at
least 0.04 N m 2, and last for at least 5 days to trigger Kelvin waves. The value of 0.04 N m~*is approximately
two standard deviations of the equatorially averaged zonal wind stress anomalies. Here, we refer to the pentad
wind stress anomalies along the equatorial Pacific with values smaller than —0.04 N m ™ as an EWS. From
figure 3, we can see the connection between EWS and Kelvin wave activity. For example, EWSs between April
and early May 2024 and between early July 2024 and early September 2024 (figure 3(a)) were associated with
some upwelling Kelvin wave-like thermocline fluctuations (figure 3(b)). However, during spring—autumn
2024, the pentad easterly wind anomalies were weak overall, as was upwelling Kelvin wave activity. Notably,
EWSs mainly occurred in the eastern equatorial Pacific during this period, while pentad wind stress was near
normal in the western and central equatorial Pacific. The Kelvin wave response to episodic zonal wind forcing
depends on the strength and zonal fetch of the winds (Kessler et al 1995). The relative weakness and small zonal
fetch of significant EWSs in 2024 resulted in weak upwelling Kelvin waves, which were unfavorable for
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Figure 5. Monthly mean SST (shading;°C), OLR (contours; W/ 'm?), and surface wind stress (N /m?) averaged in (a) January
1982—December 1999, and (b) January 2000—December 2024; (c) are the differences of (b)—(a). Contour interval is 15 W m Zin
(a,b),and 3W m™?in (c).

initiating the basin-wide air-sea coupling. Hu et al (2012) argued that wind pulses in the western and central
equatorial Pacific are more favorable for ENSO growth than those in the eastern equatorial Pacific.

As aresult of overall weak upwelling Kelvin wave activity during the spring—autumn 2024 (figure 3(b)),
there was little tendency for further shoaling of the thermocline in the eastern Pacific to cool the ocean surface,
unfavorable for La Nifia development. A weak EWS in the equatorial western Pacific in November 2024 trig-
gered an upwelling Kelvin wave, leading to a short period of cooling with Nifio3.4 index = —0.6 °C in Decem-
ber 2024 to —0.7 °C in January 2025, but neutral conditions returned with Nifio3.4 index = —0.4 °Cin
February and 0.1 °C in March 2025 (figure 2(b)). The weak pentad EWS (figure 3(a)) is consistent with weak
monthly mean easterly wind stress anomalies (figure 4). An index for monthly mean zonal wind stress anoma-
lies (average in the western equatorial Pacific between 5°S-5°N, 130°E-160°W) was weaker in 2024 than in most
of the La Nina years during the June-October development phase of ENSO events (figures 4(a), (b)).

Interestingly, one can see from figure 4(b) that the ONI (blue bars) was relatively strong compared to the
zonal wind index (red bars) before 2008, and relatively weak after 2008, implying that ENSO event strength
since 2008 was less sensitive to wind stress anomaly forcing in the western equatorial Pacific than before 2008
(figure 4(b)). This is consistent with strengthening trends in zonal wind stress and zonal SST contrast along the
Pacific equator in recent decades (Li et al 2023b) with strong warming trends in the tropical western Pacific/
warm pool and minor cooling trends in the southeastern tropical Pacific/cold tongue (figure 5).

These results suggest that background conditions may modulate upwelling Kelvin wave activity. For
instance, compared with 1979-1999, Kelvin wave activities in both upwelling and downwelling phases are
weaker in 2000-2024 (figure 6) when the mean easterly wind stress is stronger and the zonal SST gradient is
larger (figure 5). This is consistent with the westward shift and suppression of deep convection variability since
2000 (figure 5(c); Huetal 2012, 2020b, Liibbecke and McPhaden 2014). Lietal (2019) and Tan et al (2024b)
noted a weakening of Kelvin wave activity since 2000 associated with the ENSO regime shift around 1999,/2000
(McPhaden 2012, Huetal 2013,2017,2020b). Tan et al (2024b) further argued that in the context of a stronger
zonal SST contrast and enhanced trade winds since 2000, Kelvin waves have weakened, which implies a less
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Figure 6. Longitude—dependent variance of pentad oceanic Kelvin wave index averaged in 1979—1999 (bar) and in 2000—2024
(curve) for (a) total index, (b) positive phase, and (c) negative phase. The curve with a circle indicates when the change of the variance
is significant at the 5% level, using an F—test based on 1,000 Monte—Carlo resamples. Updated from Tan et al (2024b).

active role for them in the development of ENSO events. Similarly, Harrison and Chiodi (2009) suggested that
enhanced equatorial easterlies contributed to a change in ENSO characteristics for the decade following the
1997/98 El Nifio. Associated with these background changes, Kelvin wave activity is likely related to the asym-
metry in the surface wind stress response to SSTAs during periods of prolonged cold versus prolonged warmth
along the equator in the tropical Pacific. This in turn is related to the nonlinear response of atmospheric con-
vection to SSTAs in which colder SSTs suppress convection and lead to weaker wind changes for a given SST
perturbation (e.g., Liu et al 2024, Puy et al 2016, Chiodi and Harrison 2015).

4. Shortcomings in model predictions

To verify the predictions in the period from El Nifio decay in 2023 /24 to the growth of La Nifia conditions in
2024/25, we display the ensemble mean predictions of the NMME models at specified lead times (5 and 8
months in figures 7(a), (b)), and 20-individual members from CFSv2 predictions with initial conditions (ICs)
in April and July 2024 (figure 8). For the ensemble mean, among the six models in NMME, five models
predicted a transition from a strong E1 Nifio in 2023 /24 to a La Nina with a peak at the end 0 2024, while
GFDL_SPEAR called for a borderline La Nifa in 2024,/25 (figures 7(a), (b)). The weak cooling in the
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Figure 7. Observed (shading) and NMME model-predicted (lines) monthly mean Nifio3.4 index (°C) in January 2024-March 2025
with lead times of (a) 5 and (b) 8 months of the six models and their mean (black line). The two horizontal dashed lines represent
0.5 °Cand —0.5 °C.

GFDL_SPEAR predictions might be partially associated with warm biases in SPEAR ENSO predictions (Li et al
2023b).

Itis clear that the ensemble means from a majority of the NMME models do not capture the observed
evolution of the La Nifia in 2024/25 (figure 7). However, individual ensemble members are close to the obser-
vations, like, for example, some members in CFSv2 predictions with ICs in July 2024 (figure 8(b)). On the other
hand, all members with ICs in April 2024 are clearly distant from the observations (figure 8(a)), which may be
associated with the impact of the spring predictability barrier. ENSO forecasts are intrinsically more uncertain
or less skillful when starting prior to and during the Northern Hemisphere spring. This is a crucial challenge for
ENSO cycle prediction (Hu et al 2019). Thus, from a probability perspective, the departure of most members in
the CFSv2 predictions from observational means that the observed evolution of the ENSO in 2024 /25 was a
low-probability outcome for the ICs based on this model.

We further note that the over-forecasted Nifio3.4 SST cooling is associated with too strong easterly wind
anomalies, particularly for the predictions with ICs in April 2024 (figures 8(a), (c)). The correlations between
the Nino3.4 index (blue bar) and zonal wind stress anomalies (red bar) among 20 members are 0.93 for ICs in
April 2024 averaged in May 2024-January 2025 (figure 8(e)), and 0.77 for ICs in July 2024 averaged in August
2024-April 2025 (figure 8(f)). Furthermore, the easterly wind biases link to strengthened SST gradients in the
tropical Pacific with warm (cold) biases in the western (central and eastern) tropical Pacific (figure 9). These
biases lead to overestimated La Nifia strength. That may also suggest that the cyclic transition from El Nifio to
LaNifain 2024/25 in NMME model predictions was dominated by oceanic heat recharge/discharge processes

8
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Figure 8. Observed (shading) and 20 individual members of CFSv2 predictions (lines) of (a), (b) the Nifio3.4 index (°C) and (c), (d)
zonal wind stress anomalies averaged in the Nifio3.4 region with ICs in April and July 2024, respectively. Mean of each individual
member (x-axis) of the Nifi03.4 index (blue bar; left y-axis) and zonal wind stress anomalies (red bar; right y-axis) averaged in (e)
May 2024-January 2025 and (f) August 2024-April 2025, respectively. The same color with the same mark in (a, ¢) or in (b), (d)
represents the same ensemble member. The two horizontal dashed lines represent 0.5 °Cand —0.5 °Cin (a), (b).

(Jin 1997, Meinen and McPhaden 2000, Planton et al 2021). However, in addition to these large-scale oceanic
conditions, intraseasonal atmospheric fluctuations, including the Madden—Julian Oscillation (MJO) and epi-
sodic wind bursts, also play an important role in ENSO evolution and prediction (McPhaden et al 2006, Gush-
chinaand Dewitte 2011, Wanget al 2011, Lybarger et al 2020). It is possible that the El1 Nifio to La Nina
transition was interrupted by unfavorable atmospheric fluctuations or noise, as demonstrated in the divergence
of CFSv2’s members of the predictions (figure 8), as happened in the case of the aborted El Nifio in 2014
(McPhaden 2015). Recently, Hu et al (2024) suggested that, in addition to the essential role of equatorial ocean
heat recharge, multi-scale interactions from a global perspective also played a role in the evolution and predic-
tion of the E1 Nifio in 2023 /24.

5. Summary and discussion

With noticeable antecedent subsurface cooling after the strong EI Nifio in 2023 /24, a La Nifia event of
substantial amplitude was expected from the perspective of the recharge/discharge paradigm. However, the
ensemble mean predictions of many operational climate models suggested that the event would be much
stronger than it actually occurred. Why the La Nifia did not grow as anticipated and what caused the strength to
be overestimated in model predictions is an important question.

We know that upper ocean heat content is a necessary but not a sufficient condition for the development of
ENSO events (Zhang et al 2022) and that stochastic forcing is also important from both theoretical (Levine and
Jin 2010) and observational (McPhaden et al 2006, Hu et al 2019) perspectives. Sub-seasonal wind bursts are
unpredictable on seasonal-interannual time scales, representing an unpredictable element of ENSO seasonal
evolution. The interplay between these two elements, the predictable deterministic slowly evolving subsurface
ocean heat content and the unpredictable stochastic wind forcing, determines the evolution and predictability
of ENSO. We also noted that the episodic easterly wind anomalies were mostly in the eastern equatorial Pacific
and also too weak to generate energetic upwelling Kelvin wave activity. As a result, the transport of cold
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Figure 9. Biases of SST (shading; °C) and surface wind stress (vector; N/m?) anomalies in CESv2 predictions with ICs in (a) April
2024 and (b) July 2024. The observations are the averages in (a) April 2024-December 2024 and (b) July 2024-March 2025. The
CFSv2 predictions are the averages of 20 ensemble members and 1-9 month leads.

subsurface water to the ocean surface was insufficient to trigger a basin-wide air-sea coupling via the Bjerknes
feedback, inhibiting ENSO SSTA growth.

Moreover, background or mean state changes modulate ENSO evolution and contribute to the arrested
growth of the La Nifa conditions in 2024/25. In particular, after the regime shift in 1999,/2000, intraseasonal
Kelvin wave activity along the equator in the Pacific was weaker and thermocline variability was suppressed
(Tan et al 2024b), which would contribute to weaker ENSO amplitude variability(Hu et al 2012, 2020b) and a
weaker La Nifa in 2024,/25. In addition, biases in most NMME models to predict the observed cooling in 2024/
25 may therefore also be associated with the changes in ENSO properties and predictability across the early
21st-century tropical Pacific regime shift. That is consistent with the decline of the ENSO prediction skill since
2000 (Barnston etal 2012, Hu et al 2020b).
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