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Abstract To cover its large dynamic range, radar reflectivity factors have historically been displayed and
used on a logarithmic scale, that is, decibels of reflectivity (dBZ). Logarithmic reflectivity has also been used for
data assimilation without being questioned or well validated. However, fundamental limitations exist with
directly assimilating logarithmic reflectivity, such as strong nonlinearity of the observation forward operator
and the fact that the impacts of small reflectivity values are amplified, leading to exaggerated increments when
mapped back into physical space. In this study, we power-transform both reflectivity and hydrometeor mixing
ratios to alleviate the aforementioned issues with using conventional logarithmic reflectivity. Forecast
evaluation across eight severe convection events demonstrates that applying the Box-Cox power
transformations to both reflectivity and hydrometeor mixing ratios effectively reduces the nonlinearity between
the observations and control variables. This approach significantly improves analyses of model hydrometeor
variables and forecasts of composite reflectivity and hourly precipitation.

Plain Language Summary Owing to its huge dynamic range spanning many orders of magnitude,
reflectivity from weather radars is typically presented in a logarithmic scale. However, using this data in a
logarithmic scale to update numerical weather models introduces several fundamental issues that may
undermine its potential benefits, including inflating the adjustments from low reflectivity values and
exacerbating the complex relationship between reflectivity and model variables. In this study, we use a new
power transformation to scale the reflectivity, partially mitigating some of the problems introduced by the
conventional logarithmic approach and improving the prediction of severe thunderstorms.

1. Introduction

Convective-scale numerical weather prediction (NWP) is very sensitive to initial and boundary conditions.
Doppler weather radar is a primary observational data source for the convective scale. As such, assimilation of
high-density radar observations, such as radial velocity (v,) and radar reflectivity at horizontal polarization (Z,, in
mm® m™ or Z; = 10log(Z,) in dBZ), to improve the initial conditions of NWP models has led to impressive
achievements over two decades (Gao et al., 2024). Radial velocity v, can be assimilated more easily and directly
than Z, due to the linear relation between v, and the model wind components. Radar reflectivity measures the
power scattered by hydrometeors, but the high degree of nonlinearity between the Z,, and model hydrometeor
control variables (mixing ratios ¢ and number concentrations N,) of multiple species leads to more complexity and
difficulty in directly assimilating reflectivity using a forward observation operator. Some studies have attempted
to achieve indirect assimilation of reflectivity by first retrieving the intermediate variables (e.g., hydrometers,
water vapor, vertical velocity) and then assimilating them (Gan et al., 2023; Lai et al., 2019; Wang et al., 2013).
However, indirect assimilation is very sensitive to the retrieval procedure which can have significant errors.

To directly assimilate radar reflectivity into NWP models, accurate and efficient forward operators that link
model variables to Z, are needed (Gao & Stensrud, 2012; Jung et al., 2008; Tong & Xue, 2005; Zhang
et al., 2021). However, most previous studies have focused more on the development of advanced assimilation
methods and less on the radar forward operators and the representation of reflectivity in NWP models. The
forward operators used in most studies directly assimilating radar reflectivity are based on the Rayleigh scattering
approximation, which requires particle sizes much smaller than the radar wavelength (e.g., D<A1/16)
(Zhang, 2016). In addition, only rain and dry ice species (snow, graupel, and/or hail) are considered, while the
mix-phased species (e.g., wet snow) that contribute more to reflectivity and have significant radar features (e.g.,
bright band) are either ignored or inaccurately calculated (Blahak, 2016; Jung et al., 2008; Wolfensberger &

LIU ET AL.

1 of 11


https://orcid.org/0000-0002-8343-0019
https://orcid.org/0000-0001-7841-3217
https://orcid.org/0000-0001-9999-5455
mailto:Peng.Liu-1@ou.edu
https://doi.org/10.1029/2025GL116531
https://doi.org/10.1029/2025GL116531
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2025GL116531

Berne, 2018). Zhang et al. (2021) developed a set of parameterized forward operators (PFOs) to improve the
accuracy of calculated radar variables based on rigorous scattering calculations performed using the T-matrix
method. Liu, Zhang, et al. (2024) implemented a new continuous melting model into these parameterized for-
ward operators to enhance the radar representation of mixed-phased species. The new PFOs with the continuous
melting model resulted in superior analyses and forecasts when used to directly assimilate Z, compared to the
widely used power-law forward operators based on the Rayleigh scattering approximation (Liu, Gao, et al., 2024).
However, there is still a lot of room for improvement of radar forward operators to enhance the direct assimilation
of radar data.

6 6 -3

Because Z, spans many orders of magnitude (varying from less than 1 mm® m™ up to more than 10’ mm® m™3),
the radar meteorology community typically represents it on a logarithmic scale Zy; = 10log(Z,). The data
assimilation and NWP communities also use Zy; in forward observation operators. This logarithmic representation
amplifies the contribution of small or no-precipitation reflectivity during the minimization process and easily
produces spurious cells in the analysis. To prevent this, a threshold of 5-15 dBZ is usually set to filter out regions
of low Zy (Aksoy et al., 2009; Gao et al., 2016; Janji¢ & Zeng, 2021). A lower threshold tends to increase the
amount of spurious convection, while a higher threshold risks losing important observational information,
especially for nascent convective storms. The high nonlinearity of the forward operator is also a major challenge
for assimilating Z;. Some studies have applied a power transformation to the hydrometeor control variables to
adjust their range and distribution shape and accelerate minimization convergence, with demonstrated improved
performance (Chen et al., 2021; Hu et al., 2023). However, the power-transformed hydrometeor control variables
still have a complicated nonlinear relationship with Z;.

To further improve reflectivity forward operators by reducing their nonlinearity, we propose for the first time
applying a Box-Cox power transformation (Box & Cox, 1964) to Z, instead of the logarithmic representation. In
this approach, power transformations are utilized for both Z; and the hydrometeor control variables to alleviate the
high nonlinearity of the reflectivity forward operators and overcome the limitation of low reflectivity thresholds
so that more information can be extracted from reflectivity observations. Herein, the impact of this reduction in
observation operator nonlinearity is assessed for short-term forecasts of eight high-impact convection events
using the newly developed reflectivity PFOs within a 3DV AR framework. The data and methods are described in
Section 2. The analysis and forecast evaluation are presented in Section 3. A summary and discussion are pro-
vided in Section 4.

2. Methodology

2.1. Direct Assimilation of Radar Reflectivity
2.1.1. Calculation of Radar Reflectivity Factor

Prior to any transformation, the direct assimilation of reflectivity requires the calculation of Z, from model state
variables. In most previous studies, Zj, is calculated as the sixth moment of the drop size distribution for rain and is
proportional to the sixth moment of the particle size distribution (PSD) for other species assuming Rayleigh
scattering, taking into account the presumed hydrometeor density. However, as described previously, Liu, Gao,
et al. (2024) demonstrated that the T-matrix-derived PFOs of Zhang et al. (2021) are more accurate and efficient
for directly assimilating reflectivity. Herein, we use these PFOs to calculate the Z;, of each hydrometeor species x
for both the logarithmic and power-transformed schemes to more readily isolate the effects of the applied
transformations.

In the PFO for rain, Z, () is fitted to polynomial functions of mass/volume-weighted mean diameters (D,,,, mm)
and liquid water content W = p_q, (g m™>), where p. (kg m~>) and g, (2kg™") are the air density and mixing ratio
of rain, respectively, following Mahale et al. (2019):

Zy,(r)~ W(=0.3078 + 20.87D,,, + 46.04D;, , — 6.403D;,  + 0.22480;,,)2. )

For a given ice and mixed-phase species x (such as snow, graupel, and hail), Z,(x) is parameterized as a poly-
nomial function of D,, and the percentage of melting (f,,.), as follows:
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Zh(x) ~ Zx[aZO (fmx) + azi (fmx)Dm,x + aza (fm}c)l)m,)c2 + azs (fmx)Dmx3]27 (2)

where a; are fitting coefficients detailed in Tables 1-3 of Zhang et al. (2021). The f;,,, mixing ratio, and number
concentration of each melting species are estimated from the melting model (Liu, Zhang, et al., 2024). In
Equation 2, Z, is equal to the sixth moment of the PSD, as follows:

Z.= M, = 1125 % 1032&&,,,(3, 3

X

where p, (g em™) and ¢, (g kg™") are the density and mixing ratios for ice and melting species, respectively.

2.1.2. Traditional Reflectivity Logarithmic Assimilation Scheme

In all previous direct assimilation studies, the radar reflectivity factors Z, (mm® m™) for each hydrometeor
species x are summed and converted to a logarithmic-scale Zy; (dBZ),

Zy = Zy(), )

Zu =10 1log(Zy), (5)

and used within the assimilation scheme.

2.1.3. New Reflectivity Power-Transform Assimilation Scheme

Yang et al. (2020) proposed applying the Box-Cox power transformation (Box & Cox, 1964) within a variational
framework. Subsequently, this transformation was extended to hydrometeor control variables including mixing
ratio and number concentration, as well as water vapor mixing ratio, in order to adjust their dynamic ranges (Chen
etal., 2021; Hu et al., 2023; Li et al., 2022). We propose a new radar reflectivity direct assimilation approach that
simultaneously applies this power transformation to Z;, and the control variables to alleviate the high nonlinearity
between the observations and model state variables. The power-transformed radar reflectivity factors Z, and
control variables g are calculated as follows:

Zy =z - 1)/p., (6)

q = (qpq - 1)/pq7 (7)

where p, and p, represent the transform parameters for reflectivity and hydrometeor mixing ratios, respectively,
that are larger than zero but do not exceed 1. Chen et al. (2021) and Hu et al. (2023) demonstrated that p, = 0.4
yields the best analyses for convective storm structures; thus, p, = 0.4 is used here. Because Z;, and hydrometeor
mixing ratios are proportional to approximately the sixth and third moments of the PSD, respectively, the most
linear relation should be achieved when p, is about half of p,. We performed a set of sensitivity experiments to test
the impact of two p, values: 0.1 and 0.2. The results indicated that the analyses and forecasts are sensitive to the
value of p, (not shown). Overall, p, = 0.1 showed the best performance for both reflectivity and precipitation
forecasts for most convective events, so it is used in this study.

Simulations of a real convection event using the PFO reveals that the strongest nonlinearity exists between the
logarithmic reflectivity factors and linear mixing ratios (Figures lal-acl). Applying power transforms to the
mixing ratios alleviates some of the nonlinearity (Figures 1a2—1c2), while the best possible approximately linear
relationship is given by simultaneously applying power transformations to both the reflectivity factors and mixing
ratios (Figures 1a3—1c3).
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Figure 1. The mixing ratios for graupel (al-a3), snow (b1-b3) and rain (c1-c3) versus radar reflectivity factor calculated by the PFO from simulations at 2200 UTC on
24 May 2019 for three different transformation combinations: (al—c1) linear mixing ratios versus logarithmic reflectivity, (a2—c2) power-transformed mixing ratios
versus logarithmic reflectivity, and (a3—c3) power-transformed mixing ratios versus power-transformed reflectivity. The least-squares fitted regression line and the Sth—
95th percentile intervals are shown in red and blue lines, respectively. The Pearson correlation coefficients (cc) are also shown.

2.2. Experimental Design
2.2.1. Experimental Design and Model

To investigate the impact of logarithmic and power transformations on the direct assimilation of reflectivity, three
distinct sets of experiments are conducted. The first set (LogZLinearQ) uses mixing ratios as control variables to
assimilate logarithmic Zy, which is the most common approach. The second set (LogZPowerQ), uses power-
transformed mixing ratios as control variables to assimilate Zy. The third set (PowerZPowerQ), uses power-

transformed mixing ratios as control variables to assimilate power-transformed reflectivity factors Z,,.

In our study, eight severe convection events (01, 06, 20-24, and 28 May 2019)—see Table 1 in Liu, Gao,
et al. (2024) for more details—were chosen from the 2019 National Oceanic and Atmospheric Administration
(NOAA) Hazardous Weather Testbed (HWT) Spring experiment cases (Clark et al., 2020) to assess the impact of
different direct assimilation schemes on short-term severe weather forecasts. The WRF model version 3.7.1
(Skamarock et al., 2008) is utilized as the forecast model, and the model driven by High-Resolution Rapid Refresh
(HRRR) forecast product (Dowell et al., 2022). The model domain has 601 X 601 grid points with a 1.5-km
horizontal grid spacing. The model physics configuration is described in Supporting Information S1.

2.2.2. Assimilation System Setting and Observational Data

In this study, we employed a straightforward 3DVAR assimilation approach following the methodology of Gao
et al. (1999, 2004). This system, developed for high-frequency convective-scale data assimilation, has been
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utilized at the Center for Analysis and Prediction of Storms (CAPS) and the National Severe Storms Laboratory
(NSSL) for many years (Gao, 2017). The system can efficiently assimilate high-frequency radar data to produce
timely analyses beneficial in high-impact severe weather environments (Gao et al., 2013). All assimilated radar
data were NEXRAD Level-II data. Prior to assimilation, we performed rigorous quality control on the raw radar
data, including radial velocity de-aliasing, removal of ground clutter, and filtering of non-meteorological and
reflectivity outlier gates. For more details on the assimilation system and observational data, see Supporting
Information S1.

3. Results
3.1. 24 May 2019 Analysis

To illustrate the impact of applying a power transformation to the reflectivity factor on the analysis, a detailed
investigation of the 24 May case, which featured clusters of supercells, is presented. Figure 2 shows vertical
profiles of the mean absolute analysis increment for the hydrometeor mixing ratios at three observed reflectivity
thresholds during all assimilation cycles. Compared to the conventional assimilation scheme LogZLinearQ, the
LogZPowerQ and PowerZPowerQ experiments yielded larger rain increments and produced a graupel and snow
increment peak above the 20th model level (about 7.5 km). As shown in Figure 1, applying the power trans-
formation to hydrometeor variables improves the nonlinear relationship between reflectivity and hydrometeors,
resulting in larger rain and ice-phase species increments in the LogZPowerQ and PowerZPowerQ experiments.
Additionally, the maximum increments for ice-phase species appear at more reasonable heights after applying the
power transformation to the control variables. Comparing the logarithmic and power-transformed reflectivity
assimilation schemes, both experiments show similar vertical profiles for rain and ice-phase species, but with
slightly larger increments for rain and smaller increments for ice-phase species in PowerZPowerQ. This is due to
the current power parameters better mitigating the nonlinearity between reflectivity and rain than ice-phase
species. Interestingly, PowerZPowerQ exhibits smaller positive increments at smaller thresholds (Z, < 20
dBZ) and larger positive increments at larger thresholds (Z,, > 40 dBZ) than LogZLinearQ or LogZPowerQ, while
the opposite is true for negative increments. This is because the logarithmic transformation has a more pro-
nounced amplification effect on small reflectivity values than the power transformation, leading to overestimated
analysis increments, and potentially producing spurious convection when assimilating small reflectivity values.

3.2. 24 May 2019 Forecast

Figure 3 presents the analyzed and forecasted composite reflectivity for the different assimilation experiments
compared to observations. At the 2200 UTC 24 May 2019 initialization, a cluster of convective cells is observed
in northwest Oklahoma and southern Kansas (Region A), well-developed supercells exist in northwest Texas
(Region B), and another multicell convective storm is present in west Texas (Region C) (Figure 3a0). All three
analyses reproduce the observed convective cells and supercells, with some over-analysis in LogZLinearQ
(Figure 3al). By 2300 UTC, 1 hr into the forecast, LogZLinearQ exhibits significant underprediction of con-
vection in Regions A and B (Figure 3bl), consistent with the rapid disappearance of incremental information
reported in many studies of direct reflectivity assimilation using untransformed hydrometeor control variables
(Hu et al., 2023). By 0000 UTC, the scattered convective cells in Region A and the multiple supercells in Region
B merged and developed into a squall line (Figure 3c0). By 0100 UTC, 3 hr into the forecast, LogZLinearQ misses
almost the entire portion of this squall line within Region A. LogZPowerQ performs better than LogZLinearQ but
still does not predict the squall system well, with only PowerZPowerQ predicting the squall structure within
Region A relatively completely. On the other hand, all the experiments fail to predict the extent of the stratiform
area behind the leading convective line in Region B (Figure 3d0-3d3), a long-standing issue caused by a range of
complicated model factors (Han et al., 2019; Morrison et al., 2009, 2015; Varble et al., 2014).

Neighborhood equitable threat scores (NETS) and false alarm ratios (NFAR) with a 6-km radius are calculated in
Figure 4 to quantitatively assess the composite reflectivity and precipitation forecast performance at different
thresholds (Clark et al., 2010; Schwartz, 2017). Larger NETS values indicate better forecast performance, while
larger NFAR values signify more spurious forecasts. For composite reflectivity, LogZLinearQ shows the worst
forecast performance, exhibiting the smallest NETS and the largest NFAR at various thresholds throughout the
entire forecast (Figures 4al-4b3). During the first 30 min of the forecast, NETS and NFAR for LogZPowerQ and
PowerZPowerQ almost overlap, with LogZPowerQ having a slightly larger NETS at the start. This may be related
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Figure 2. Vertical profiles of the absolute analysis increment mean for graupel (al-a3), snow (b1-b3) and rain (c1-c3)
mixing ratios in LogZLinearQ (black solid lines), LogZPowerQ (red dashed lines) and PowerZPowerQ (blue dashed lines)
over the grid points where the observed reflectivity is Z; > 20 dBZ (al—cl), 20 dBZ < Z;; < 40 dBZ (a2—2), and Z;; > 40
dBZ (a3—c3), averaged all assimilation cycles between 1900 and 2300 UTC on 24 May 2019. The shading in each panel
indicates the 95% confidence interval.

to the larger analysis increments of ice-phase species in LogZPowerQ. The most significant improvement in
PowerZPowerQ compared to LogZPowerQ occurs after 60 min, when PowerZPowerQ produces larger NETS and
smaller NFAR at all thresholds, especially above 40 dBZ. Consistent with the scores for composite reflectivity,
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LogZPowerQ

PowerZPowerQ
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) |

Figure 3. The observed (a0—d0), analyzed (al-a3) and forecasted (b1-d3) composite Z; (dBZ) and wind vectors at z = 3.0 km at 2200 UTC on 24 May (a0-a3), 2300
UTC on 24 May (b0-b3), 0000 UTC on 25 May (c0—3), and 0100 UTC on 25 May (d0—d3), by LogZLinearQ (al—d1), LogZPowerQ (a2—d2) and PowerZPowerQ (a3—
d3) initiated at 2200 UTC. The black solid lines in panels (al-d3) represent observed Z; = 35 dBZ. The black dashed rectangular boxes (A, B, and C) denote regions

referred to in-text.

LogZLinearQ provides the lowest precipitation forecast skill (Figures 4c1-4d3). Unlike composite reflectivity,
PowerZPowerQ's improvement in precipitation compared to LogZPowerQ is sustained throughout the forecast
period and is evident at all thresholds. As shown in Figures 2c1-2c3, the precipitation forecast improvement is
primarily due to the adjustment of the rain mixing ratios through the power-transformed reflectivity factors. That
is, applying a power transformation to the reflectivity factors alleviates the highly nonlinear relationship between
the reflectivity and hydrometeor variables, allowing the influence of small reflectivity values to be retained. This
avoids the amplification of small reflectivity factor values that occurs when directly assimilating logarithmic
reflectivity factors. In addition, we also performed an assimilation experiment (PowerZLinearQ) in which only
reflectivity was power-transformed while hydrometeor control variables remained linear. This experiment
revealed a consistent improvement over LogZLinearQ in forecasting performance, similar to that of LogZPowerQ
(not shown).
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Figure 4. The averaged NETS (al-a3 and c1-c3) and FAR (b1-b3 and d1-d3) with a 6-km radius over four cycles for 0-3 hr composite reflectivity (al-b3) and 1-hr
accumulated precipitation (c1-d3) forecasts. The thresholds for composite reflectivity and precipitation are 20 dBZ (al-bl), 30 dBZ (a2-b2), and 40 dBZ (a3-b3),
1.0 mm (c1-d1), 5.0 mm (c2-d2), and 10.0 mm (c3—d3), respectively. LogZLinearQ, LogZPowerQ and PowerZPowerQ are represented by black solid lines/bars, red,
and blue dashed lines/bars, respectively.

3.3. Evaluation of Forecast Results Over Other Multiple Cases

To further evaluate the impact of applying the power transformation to both the reflectivity factor and the hy-
drometeor control variables, multiple other severe convection events with different convective characteristics
from the NOAA HWT are also shown in Supporting Information S1. As reported in previous studies (Chen
et al., 2021; Hu et al., 2023), the common direct assimilation approach using the original unscaled hydrometeors
as control variables to assimilate Z;; exhibits the lowest forecasting skill for all events in both composite
reflectivity and precipitation. Overall, the experiments assimilating power-transformed reflectivity factors pro-
duce higher forecast skill than those assimilating logarithmic reflectivity factors, with the improvement being
more pronounced for precipitation than for composite reflectivity. This is consistent with the results from the
single case of 24 May 2019 shown in the previous section. The improvements in PowerZPowerQ are observed in a
diverse set of cases including squall lines, clusters of supercells, and mesoscale convective complexes (1, 6, 20,
21,28 May 2019), which have relatively small model forecast errors. However, for the cases of scattered clusters
of strong storms (22, 23 May 2019), which have lower forecast scores throughout the forecast period due to large
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model errors, the improvements in PowerZPowerQ over LogZPowerQ are limited. In these cases, Power-
ZPowerQ's NETS are lower than LogZPowerQ during some periods.

4. Summary and Discussion

Direct assimilation of radar reflectivity is an important approach for improving the initial conditions for
convective-scale NWP. However, one of the outstanding challenges is the highly nonlinear relationship between
radar reflectivity and the model state variables. Moreover, logarithmically scaled reflectivity factors have been
used in all direct assimilation studies to cover the large dynamic measurement range. However, this logarithmic
representation amplifies the contribution of small or no-precipitation reflectivity regions and increases the
nonlinearity in the radar forward operator, causing reflectivity below a threshold (5—15 dBZ) to need to be filtered
out. To alleviate these fundamental and critical problems, this study is the first to document a new approach that
simultaneously applies the Box-Cox power transformation to both reflectivity factors and hydrometeor control
variables, rather than relying on the long-established approach that links logarithmic reflectivity factors with
linear hydrometeor control variables. The new and conventional approaches are compared through a detailed
squall line case study and forecast evaluations of multiple severe convective cases from past NOAA HWT Spring
Forecast Experiments.

Results from a detailed case analysis show that experiments using the most common assimilation approach
utilizing logarithmic reflectivity factors and linear hydrometeor control variables produce the worst forecast
performance for composite reflectivity and precipitation due to the high degree of nonlinearity between the
observations and control variables. The experiments assimilating logarithmic reflectivity factors using power-
transformed hydrometeor control variables provide much better forecast performance, while the newly pro-
posed assimilation approach that applies the power transformation to both reflectivity and hydrometeor control
variables exhibits the best overall forecast performance for reflectivity and precipitation. These improvements are
mainly attributed to the reduction in nonlinearity of the forward operator after applying nonlinear power trans-
formations to the reflectivity factors and hydrometeor control variables, as well as more reasonable hydrometeor
increments from small reflectivity factors, especially for rain. The results from a broader evaluation of different
types of convective events show that overall the new assimilation scheme assimilating power-transformed
reflectivity demonstrates improved precipitation forecast skill in most convective events, although not as pro-
nounced as in the single case of 24 May 2019.

In the Box-Cox power transformation, the power parameter plays a key role, as it directly influences both the
distribution and magnitude of the transformed data, and consequently, the performance of data assimilation.
Maximum Likelihood Estimation (MLE) is a typical approach to theoretically estimate the optimal parameters
that best fit the data to a Gaussian distribution. However, in practice, the optimal parameters for data assimilation
depend not only on the distribution of the transformed data, but also on multiple other factors such as the
magnitude of the data and the assumed errors. The parameter that yields a more Gaussian-like distribution (e.g.,
p, = 0.2) may not necessarily lead to the best assimilation performance. In this study, the power parameters for
both the mixing ratios and reflectivity factor were selected based on sensitivity experiments conducted on a
limited number of convection events. Therefore, the values adopted here should be regarded as preliminary and
further validation with more events is needed.

Lastly, we do not want to limit the idea of applying nonlinear transformations to observations and control var-
iables to mitigate observational operator nonlinearity only to the direct assimilation of radar reflectivity. We
believe that for most direct assimilation studies involving nonlinear observation operators, improvements can be
achieved by applying appropriate nonlinear transformations to the observations and control variables. This would
help reduce the effects of nonlinearities in the operator during the optimal analysis process and regulate/modify
the non-Gaussianity in variable error distributions.
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