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Figure S1: Seasonal distribution of the MARMAP/EcoMon data set for samples collected
in Wilkinson Basin, Jordan Basin, and Georges Basin of the Gulf of Maine. Grey shaded
boxes indicate that no data were for that season and year.
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Figure S2: Correlations of the spring, fall, and 75-105 DoY Copepodite Stage Index
(CSI) GAM averages with the associated seasonal MARMAP/EcoMon data averages.
Average abundances (first two columns) are in units of ln(abundance m−3 + 1).
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Figure S3: Sensitivity analysis of the magnitude and length of chlorophyll-a concentration
threshold for calculating bloom initiation date, or DC , in units of day-of year (DoY).
Across all basins, interannual trends in DC remain relatively synchronized regardless of
the chosen threshold.
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Figure S8: Simple Lotka-Volterra model results demonstrating hypothesized density-
dependent predator-prey interactions driving Calanus finmarchicus population dynam-
ics in Wilkinson and Jordan Basins. P represents the annual phytoplankton bloom, Z
represents C. finmarchicus abundance, and C represents potential predators. Refer to
https://github.com/iahonda/Shifting-Phenology.git for the full model and initial condi-
tions.
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